Treatment of Agricultural Drainage Water by Surface-Flow Wetlands Paired with Woodchip Bioreactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and SFW+WB Design
2.2. Water Sampling and Chemical Analyses
2.3. Statistical Analysis
3. Results
3.1. Hydrological Performance
3.2. Nutrient Loads and Removal
3.3. SFW+WB vs. SFW in Gjol
4. Discussion
4.1. Nitrogen Removal Evaluation
4.2. Phosphorus Retention Evaluation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Novotny, V. Diffuse pollution from agriculture: A worldwide outlook. Water Sci. Technol. 1999, 39, 1–13. [Google Scholar] [CrossRef]
- Oenema, O.; Roest, C.W.J. Nitrogen and phosphorus losses from agriculture into surface waters; the effects of policies and measures in the Netherlands. Water Sci. Technol. 1998, 37, 19–30. [Google Scholar] [CrossRef]
- Vagstad, N.; Stalnacke, P.; Andersen, H.E.; Deelstra, J.; Gustafson, A.; Ital, A.; Jansons, V.; Kyllmar, K.; Loigu, E.; Rekolainen, S.; et al. Nutrient Losses from Agriculture in the Nordic and Baltic Countries: Measurements in Small Agricultural Catchments and National Agro-Environmental Statistics; TemaNord 591 Nordic Council of Ministers: Copenhagen, Denmark, 2001; Volume 74. [Google Scholar]
- Smith, V.H. Cultural eutrophication of inland, estuarine, and costal waters. In Successes, Limitations, and Frontiers in Ecosystem Science; Pace, M.L., Groffman, P.M., Eds.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems—A global problem. Environ. Sci. Pollut. Res. Int. 2003, 10, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Hautier, Y.; Niklaus, P.A.; Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 2009, 324, 636–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helminen, H.; Karjalainen, J.; Kurkilahti, M.; Rask, M.; Sarvala, J. Eutrophication and fish biodiversity in Finnish lakes. Int. Ver. Für Theor. Angew. Limnol. Verh. 2000, 27, 194–199. [Google Scholar] [CrossRef]
- Moller, A.B.; Beucher, A.; Iversen, B.V.; Greve, M.H. Predicting artificially drained areas by means of a selective model ensemble. Geoderma 2018, 320, 30–42. [Google Scholar] [CrossRef]
- Blicher-Mathiesen, G.; Rasmussen, A.; Rolighed, J.; Andersen, H.E.; Carstensen, M.V.; Jensen, P.G.; Wienke, J.; Hansen, B.; Thorling, L. Landovervågningsoplande 2015; Videnskabelig Rapport fra DCE—Nationalt Center for Miljø og Energi nr. 205; NOVANA. Aarhus Universitet, DCE—Nationalt Center for Miljø og Energi: Aarhus, DenmarK, 2016; p. 167. [Google Scholar]
- Gachango, F.G.; Pedersen, S.M.; Kjaergaard, C. Cost-Effectiveness Analysis of Surface Flow Constructed Wetlands (SFCW) for Nutrient Reduction in Drainage Discharge from Agricultural Fields in Denmark. Environ. Manag. 2015, 56, 1478–1486. [Google Scholar] [CrossRef]
- Borin, M.; Bonaiti, G.; Santamaria, G.; Giardini, L. A constructed surface flow wetland for treating agricultural waste waters. Water Sci. Technol. 2001, 44, 523–530. [Google Scholar] [CrossRef]
- Borin, M.; Tocchetto, D. Five year water and nitrogen balance for a constructed surface flow wetland treating agricultural drainage waters. Sci. Total Environ. 2007, 380, 38–47. [Google Scholar] [CrossRef]
- Groh, T.A.; Gentry, L.E.; David, M.B. Nitrogen Removal and Greenhouse Gas Emissions from Constructed Wetlands Receiving Tile Drainage Water. J. Environ. Qual. 2015, 44, 1001–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannesson, K.M.; Andersson, J.L.; Tonderski, K.S. Efficiency of a constructed wetland for retention of sediment-associated phosphorus. Hydrobiologia 2011, 674, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Johannesson, K.M.; Kynkaanniemi, P.; Ulen, B.; Weisner, S.E.B.; Tonderski, K.S. Phosphorus and particle retention in constructed wetlands—A catchment comparison. Ecol. Eng. 2015, 80, 20–31. [Google Scholar] [CrossRef]
- Kovacic, D.A.; Twait, R.M.; Wallace, M.P.; Bowling, J.M. Use of created wetlands to improve water quality in the Midwest-Lake Bloomington case study. Ecol. Eng. 2006, 28, 258–270. [Google Scholar] [CrossRef]
- Kynkaanniemi, P.; Ulen, B.; Torstensson, G.; Tonderski, K.S. Phosphorus Retention in a Newly Constructed Wetland Receiving Agricultural Tile Drainage Water. J. Environ. Qual. 2013, 42, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendes, L.R.D.; Tonderski, K.; Iversen, B.V.; Kjaergaard, C. Phosphorus retention in surface-flow constructed wetlands targeting agricultural drainage water. Ecol. Eng. 2018, 120, 94–103. [Google Scholar] [CrossRef]
- Reinhardt, M.; Muller, B.; Gachter, R.; Wehrli, B. Nitrogen removal in a small constructed wetland: An isotope mass balance approach. Environ. Sci. Technol. 2006, 40, 3313–3319. [Google Scholar] [CrossRef]
- Tanner, C.C.; Nguyen, M.L.; Sukias, J.P.S. Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy pasture. Agric. Ecosyst. Environ. 2005, 105, 145–162. [Google Scholar] [CrossRef]
- Tanner, C.C.; Sukias, J.P.S. Multiyear nutrient removal performance of three constructed wetlands intercepting tile drain flows from grazed pastures. J. Environ. Qual. 2011, 40, 620–633. [Google Scholar] [CrossRef]
- Crumpton, W.G.; Kovacic, D.A.; Hey, D.L.; Kostel, J.A. Potential of Restored and Constructed Wetlands to Reduce Nutrient Export from Agricultural Watersheds in the Corn Belt. In Final Report: Gulf Hypoxia and Local Water Quality Concerns Workshop; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008; pp. 29–42. [Google Scholar]
- Carstensen, M.V.; Larsen, S.E.; Kjærgaard, C.; Hoffmann, C.C. Reducing adverse side effects by seasonally lowering nitrate removal in subsurface flow constructed wetlands. J. Environ. Manag. 2019, 240, 190–197. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Larsen, S.E.; Kjaergaard, C. Nitrogen removal in woodchip-based biofilters of variable designs treating agricultural drainage discharges. J. Environ. Qual. 2019, 48, 1881–1889. [Google Scholar] [CrossRef] [Green Version]
- Kovacic, D.A.; David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage. J. Environ. Qual. 2000, 29, 1262–1274. [Google Scholar] [CrossRef] [Green Version]
- Braskerud, B.C.; Tonderski, K.S.; Wedding, B.; Bakke, R.; Blankenberg, A.G.B.; Ulen, B.; Koskiaho, J. Can constructed wetlands reduce the diffuse phosphorus loads to eutrophic water in cold temperate regions? J. Environ. Qual. 2005, 34, 2145–2155. [Google Scholar] [CrossRef] [PubMed]
- Koskiaho, J.; Ekholm, P.; Raty, M.; Riihimaki, J.; Puustinen, M. Retaining agricultural nutrients in constructed wetlands—Experiences under boreal conditions. Ecol. Eng. 2003, 20, 89–103. [Google Scholar] [CrossRef]
- Reinhardt, M.; Gachter, R.; Wehrli, B.; Muller, B. Phosphorus retention in small constructed wetlands treating agricultural drainage water. J. Environ. Qual. 2005, 34, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.G.; Fletcher, T.D.; Sun, G.Z. Nitrogen removal in constructed wetland systems. Eng. Life Sci. 2009, 9, 11–22. [Google Scholar] [CrossRef]
- Reddy, K.R.; Kadlec, R.H.; Flaig, E.; Gale, P.M. Phosphorus retention in streams and wetlands: A review. Crit. Rev. Environ. Sci. Technol. 1999, 29, 83–146. [Google Scholar] [CrossRef]
- Werner, T.M.; Kadlec, R.H. Wetland residence time distribution modeling. Ecol. Eng. 2000, 15, 77–90. [Google Scholar] [CrossRef]
- Kadlec, R.H. Nitrate dynamics in event-driven wetlands. Ecol. Eng. 2010, 36, 503–516. [Google Scholar] [CrossRef]
- Greenan, C.M.; Moorman, T.B.; Kaspar, T.C.; Parkin, T.B.; Jaynes, D.B. Comparing Carbon Substrates for Denitrification of Subsurface Drainage Water. J. Environ. Qual. 2006, 35, 824–829. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, D.B.; Kaspar, T.C.; Moorman, T.B.; Parkin, T.B. In Situ Bioreactors and Deep Drain-Pipe Installation to Reduce Nitrate Losses in Artificially Drained Fields. J. Environ. Qual. 2008, 37, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Moorman, T.B.; Parkin, T.B.; Kaspar, T.C.; Jaynes, D.B. Denitrification activity, wood loss, and N2O emissions over 9 years from a wood chip bioreactor. Ecol. Eng. 2010, 36, 1567–1574. [Google Scholar] [CrossRef]
- Robertson, W.D.; Merkley, L.C. In-Stream Bioreactor for Agricultural Nitrate Treatment. J. Environ. Qual. 2009, 38, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Woli, K.P.; David, M.B.; Cooke, R.A.; McIsaac, G.F.; Mitchell, C.A. Nitrogen balance in and export from agricultural fields associated with controlled drainage systems and denitrifying bioreactors. Ecol. Eng. 2010, 36, 1558–1566. [Google Scholar] [CrossRef]
- Robertson, W.D.; Ptacek, C.J.; Brown, S.J. Rates of nitrate and perchlorate removal in a 5-year-old wood particle reactor treating agricultural drainage. Groundw. Water Monit. Remediat. 2009, 29, 87–94. [Google Scholar] [CrossRef]
- Van Driel, P.W.; Robertson, W.D.; Merkley, L.C. Denitrification of agricultural drainage using wood-based reactors. Am. Soc. Agric. Biol. Eng. 2006, 49, 565–573. [Google Scholar] [CrossRef]
- Schipper, L.A.; Robertson, W.D.; Gold, A.J.; Jaynes, D.B.; Cameron, S.C. Denitrifying bioreactors—An approach for reducing nitrate loads to receiving waters. Ecol. Eng. 2010, 36, 1532–1543. [Google Scholar] [CrossRef]
- David, M.B.; Gentry, L.E.; Cooke, R.A.; Herbstritt, S.M. Temperature and Substrate Control Woodchip Bioreactor Performance in Reducing Tile Nitrate Loads in East-Central Illinois. J. Environ. Qual. 2016, 45, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Cooke, R.A.C.; Doheny, A.M.; Hirschi, M.C. Bio-reactors for edge-of-field treatment of tile outflow. In Proceedings of the 2001 ASAE Annual Meeting, Sacramento, CA, USA, 30 July–1 August 2001; p. 012018. [Google Scholar] [CrossRef]
- Gottschall, N.; Edwards, M.; Craiovan, E.; Frey, S.K.; Sunohara, M.; Ball, B.; Zoski, E.; Topp, E.; Khan, I.; Clark, I.D.; et al. Amending woodchip bioreactors with water treatment plant residuals to treat nitrogen, phosphorus, and veterinary antibiotic compounds in tile drainage. Ecol. Eng. 2016, 95, 852–864. [Google Scholar] [CrossRef]
- Choudhury, T.; Robertson, W.D.; Finnigan, D.S. Suspended Sediment and Phosphorus Removal in a Woodchip Filter System Treating Agricultural Wash Water. J. Environ. Qual. 2016, 45, 796–802. [Google Scholar] [CrossRef]
- Bruun, J.; Pugliese, L.; Hoffmann, C.C.; Kjaergaard, C. Solute transport and nitrate removal in full-scale subsurface flow constructed wetlands of various designs treating agricultural drainage water. Ecol. Eng. 2016, 97, 88–97. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Koreleff, F. Determination of total phosphor by alkaline persulphate oxidation. In Methods of Seawater Analysis; Verlag Chemie: Weinheim, Germany, 1983; pp. 136–139. [Google Scholar]
- Addy, K.; Gold, A.J.; Christianson, L.E.; David, M.B.; Schipper, L.A.; Ratigan, N.A. Denitrifying Bioreactors for Nitrate Removal: A Meta-Analysis. J. Environ. Qual. 2016, 45, 873–881. [Google Scholar] [CrossRef]
- Hoffmann, C.C.; Kjærgaard, C. Optimeret kvælstoffjernelse i matricevådområder. Vand Jord 2017, 24, 101–105. [Google Scholar]
- Mendes, L.R.D. Edge-of-field technologies for phosphorus retention from agricultural drainage discharge. Appl. Sci. 2020, 10, 634. [Google Scholar] [CrossRef] [Green Version]
- Mendes, L.R.D.; Tonderski, K.; Kjaergaard, C. Phosphorus accumulation and stability in sediments of surface-flow constructed wetlands. Geoderma 2018, 331, 109–120. [Google Scholar] [CrossRef]
SFW+WB | Establishment Year | Soil Type | AC | SB | WB | CB | ASFW+WB | ASFW+WB: Ac Ratio | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ha | m2 | m3 | m2 | m3 | Plant Species | Raw Woodchip Material | m2 | m3 | m2 | % | |||
Aakaer | 2011 | Clay sandy | 75 | 1050 | 840 | 144 | 110 | Typha latifolia; Phragmatis australis | Beech/Poplar/Willow | Absent | 1194 | 0.16 | |
Ondrup | 2010 | Sandy clay | 110 | 970 | 776 | 180 | 110 | Beech | 275 | 220 | 1425 | 0.13 | |
Ryaa | 2011 | Rough sandy | 85 | 780 | 624 | 175 | 140 | Beech | 625 | 500 | 1580 | 0.19 | |
Gjol | 2015 | Fine sandy | 164 | 890 | 623 | 165 | 110 | N.A. | Beech | 820 | 574 | 1875 | 0.11 |
SFW+WB | Year | Q | QOverflow | TNLoad | TNRemoval | TPLoad | TPRemoval | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
m3 | m3 | kg/ha | mg/L | kg/ha | % | kg/ha | mg/L | kg/ha | % | ||
Aakaer | 2012/13 | 361,638 | 0 | 30 | 6 | 4 | 14 | 1.01 | 0.21 | 0.39 | 39 |
2013/14 | 380,031 | 0 | 31 | 6 | 12 | 39 | 0.73 | 0.14 | 0.46 | 64 | |
2016/17 | 324,249 | 0 | 29 | 7 | 4 | 16 | 0.63 | 0.14 | 0.32 | 51 | |
2017/18 | 452,567 | 0 | 51 | 8 | 5 | 9 | 0.46 | 0.08 | 0.19 | 41 | |
2018/19 | 188,137 | 0 | 28 | 11 | 4 | 16 | 0.53 | 0.21 | 0.42 | 79 | |
Ondrup | 2010/11 | 131,382 | N.A. | 6 | 5 | 3 | 50 | 0.24 | 0.20 | 0.17 | 69 |
2011/12 | 175,508 | N.A. | 9 | 6 | 4 | 42 | 0.65 | 0.41 | 0.52 | 80 | |
2012/13 | 225,513 | N.A. | 11 | 5 | 4 | 34 | 0.35 | 0.17 | 0.19 | 56 | |
2013/14 | 165,828 | N.A. | 8 | 5 | 4 | 51 | 0.21 | 0.14 | 0.15 | 71 | |
2016/17 | 235,571 | N.A. | 10 | 5 | 3 | 26 | 0.25 | 0.12 | 0.04 | 17 | |
2017/18 | 271,644 | 138,923 * | 13 | 5 | 4 | 32 | 0.64 | 0.26 | 0.25 | 39 | |
2018/19 | 155,345 | 85,248 | 10 | 7 | 2 | 16 | 0.27 | 0.19 | −0.06 | −23 | |
Ryaa | 2016/17 | 124,670 | 0 | 4 | 3 | 1 | 32 | 0.06 | 0.04 | 0.00 | 0 |
2017/18 | 194,155 | 0 | 16 | 7 | 3 | 18 | 0.14 | 0.06 | 0.09 | 67 | |
2018/19 | 108,647 | 0 | 13 | 10 | 1 | 8 | 0.06 | 0.05 | 0.03 | 44 | |
Gjol | December 18/November 19 | 101,777 | 0 | 5 | 8 | 1 | 27 | 0.45 | 0.72 | −0.11 | −24 |
Gjol SFW | December 18/November 19 | 230,732 | 0 | 12 | 8 | 3 | 26 | 0.82 | 0.58 | 0.05 | 6 |
Dependent Variable | r2 | p-Value | p-Value | Coefficient | r2 | p-Value | p-Value | Coefficient | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HLR | TN | HLR | TN | HLR | TP | HLR | TP | ||||||
Aakaer | Removal rate | 0.20 | 0.03 * | 0.12 | 0.03 * | 0.37 | 4.57 | 0.68 | 0.00 * | 0.00 * | 0.00 * | 0.04 | 13.78 |
Ondrup | 0.24 | 0.01 * | 0.02 * | 0.24 | 1.10 | 3.29 | 0.30 | 0.00 * | 0.01 * | 0.01 * | 0.15 | 13.72 | |
Ryaa | 0.20 | 0.03 * | 0.01 * | 0.56 | 0.73 | −0.37 | 0.78 | 0.00 * | 0.00 * | 0.00 * | 0.05 | 3.39 | |
Aakaer | Removal efficiency | 0.36 | 0.00 * | 0.00 * | 0.87 | −0.65 | −0.23 | 0.24 | 0.01 * | 0.12 | 0.00 * | 0.86 | 225.89 |
Ondrup | 0.08 | 0.27 | 0.12 | 0.89 | −1.14 | 0.58 | 0.02 | 0.72 | 0.42 | 1.00 | 2.56 | −1.70 | |
Ryaa | 0.43 | 0.00 * | 0.01 * | 0.10 | −1.50 | −2.05 | 0.44 | 0.00 * | 0.00 * | 0.03 * | 13.12 | 1284.01 | |
Gjol | Removal rate | 0.38 | 0.14 | 0.06 | 0.70 | 3.36 | −0.48 | 0.85 | 0.00 * | 0.70 | 0.00 * | −0.08 | −6.57 |
SFW+WB | 0.46 | 0.09 | 0.03 * | 0.33 | 3.84 | −0.28 | 0.66 | 0.01 * | 0.73 | 0.00 * | −0.06 | −0.81 | |
Gjol | Removal efficiency | 0.31 | 0.23 | 0.95 | 0.11 | −0.20 | −4.25 | 0.80 | 0.00 * | 0.95 | 0.00 * | 0.26 | −117.47 |
SFW | 0.59 | 0.03 * | 0.77 | 0.01 * | 3.34 | −6.74 | 0.74 | 0.00 * | 0.85 | 0.00 * | 2.52 | −66.81 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, L.; Skovgaard, H.; Mendes, L.R.D.; Iversen, B.V. Treatment of Agricultural Drainage Water by Surface-Flow Wetlands Paired with Woodchip Bioreactors. Water 2020, 12, 1891. https://doi.org/10.3390/w12071891
Pugliese L, Skovgaard H, Mendes LRD, Iversen BV. Treatment of Agricultural Drainage Water by Surface-Flow Wetlands Paired with Woodchip Bioreactors. Water. 2020; 12(7):1891. https://doi.org/10.3390/w12071891
Chicago/Turabian StylePugliese, Lorenzo, Henrik Skovgaard, Lipe R. D. Mendes, and Bo V. Iversen. 2020. "Treatment of Agricultural Drainage Water by Surface-Flow Wetlands Paired with Woodchip Bioreactors" Water 12, no. 7: 1891. https://doi.org/10.3390/w12071891
APA StylePugliese, L., Skovgaard, H., Mendes, L. R. D., & Iversen, B. V. (2020). Treatment of Agricultural Drainage Water by Surface-Flow Wetlands Paired with Woodchip Bioreactors. Water, 12(7), 1891. https://doi.org/10.3390/w12071891