Non-Fickian Solute Transport in Rough-Walled Fractures: The Effect of Contact Area
Abstract
:1. Introduction
2. Fracture Model
2.1. Fracture Generation
2.2. The Relationship between the Aperture Distribution, Contact Area Ratio, and Normal Deformation
3. Direct Simulation of Conservative Solute Transport
3.1. Physical Considerations and Governing Equations
3.2. Direct Numerical Modeling Settings
3.3. Inverse Modeling Using Breakthrough Curves
3.3.1. 1D Advection–Dispersion Equation (ADE) Model
3.3.2. Continuous Time Random Walk
4. Results and Discussion
4.1. Flow Field in the Fracture
4.2. Importance of Diffusion within the Fracture
4.3. Evolution of the Concentration Field
4.4. BTCs, First Arrival Times and the Residence Time Distributions (RTDs)
4.5. Uniformity of the Concentration Distribution within the Fracture
4.6. Inverse Model for Non-Fickian BTCs
5. Conclusions and Suggestions
- (1)
- As Δu increases, the contact area between the two fracture surfaces increases and more void spaces are reduced. The streamlines within the rough-walled fractures show that the contact areas block off the flow and, thus, the streamlines go around the contact areas, resulting in preferential flow paths and a complex velocity distribution. The spatial evolution of the solute within the fractures for different c values shows that the transport exhibits a strong channeling effect and notable fingering type transport paths, indicating that the contact conditions have a crucial effect on the flow paths and solute transport.
- (2)
- The non-Fickian early arrival and long tail characteristics in all of the BTCs for fractures with different Δu and H values were captured. The normalized first breakthrough time (Ts’) at the outlet for different c values was used to quantify the characteristic of the early arrival of the BTCs. As c varies from 0% to 22.04%, Ts’ decreases from 0.83 to 0.26, indicating that the breakthrough time of solute transport is shortened as the contact area ratio increases.
- (3)
- The uniformity of the concentration distribution within the fracture was quantified using the concept of the concentration–dilution index. The temporal evolution of the dilution index reveals that the immobile zone around the developing contact areas provides strong resistance to solute transport and delays the solute exchange with the main flow channel. We conclude that the dilution index at a given pore volume (PV) can effectively describe the relationship between the magnitude of the tails of the BTCs and the delayed rate of solute exchange. Although the solute exchange processes between the main flow channel and the contact area cannot be directly quantified, our results qualitatively highlight the fact that the tails are caused by the increasing contact area and surface roughness.
- (4)
- The CTRW–TPL model is quite capable of capturing the effect of contact area ratio on non-Fickian transport in 3D rough-walled fractures. The estimated β values of the CTRW model decrease from 1.92 to 0.81 as c increases from 0% to 22.04% and H decreases from 0.65 to 0.50, indicating that the developed contact area and rougher fracture surface increase the magnitude of the non-Fickian transport. The connections we established between β and Δu and c allow for the upscaling of the effects of the local spreading and mixing processes around the contact areas within the CTRW framework, at least for 3D single rough-walled fractures.
Author Contributions
Funding
Conflicts of Interest
References
- Zhou, R.; Zhan, H. Reactive solute transport in an asymmetrical fracture–rock matrix system. Adv. Water Resour. 2018, 112, 224–234. [Google Scholar] [CrossRef]
- Wang, L.; Bayani Cardenas, M. Transition from non-Fickian to Fickian longitudinal transport through 3-D rough fractures: Scale-(in)sensitivity and roughness dependence. J. Contam. Hydrol. 2017, 198, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cvetkovic, V.; Frampton, A. Solute transport and retention in three-dimensional fracture networks. Water Resour. Res. 2012, 48, 419–420. [Google Scholar] [CrossRef]
- Zhao, Z.; Jing, L.; Neretnieks, I.; Moreno, L. Numerical modeling of stress effects on solute transport in fractured rocks. Comput. Geotech. 2011, 38, 113–126. [Google Scholar] [CrossRef]
- Bodin, J.; Delay, F.; de Marsily, G. Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeol. J. 2003, 11, 418–433. [Google Scholar] [CrossRef]
- Berkowitz, B. Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 2002, 25, 861–884. [Google Scholar] [CrossRef]
- Moreno, L.; Neretnieks, I. Fluid flow and solute transport in a network of channels. J. Contam. Hydrol. 1993, 14, 163–192. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Chen, Y.; Cardenas, M.B. Mass Transfer Between Recirculation and Main Flow Zones: Is Physically Based Parameterization Possible? Water Resour. Res. 2019, 55, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Sleep, B.; Zhan, H.; Zhou, Z.; Wang, J. Multiscale roughness influence on conservative solute transport in self-affine fractures. Int. J. Heat Mass Transf. 2019, 133, 606–618. [Google Scholar] [CrossRef]
- Zou, L.; Jing, L.; Cvetkovic, V. Modeling of Solute Transport in a 3D Rough-Walled Fracture–Matrix System. Transp. Porous Media 2017, 116, 1005–1029. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.K.; Dentz, M.; Le Borgne, T.; Juanes, R. Anomalous transport on regular fracture networks: Impact of conductivity heterogeneity and mixing at fracture intersections. Phys. Rev. E 2015, 92, 22148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiger, S.; Cortis, A.; Birkholzer, J.T. Upscaling solute transport in naturally fractured porous media with the continuous time random walk method. Water Resour. Res. 2010, 46, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Berkowitz, B.; Scher, H. Anomalous Transport in Random Fracture Networks. Phys. Rev. Lett. 1997, 79, 4038–4041. [Google Scholar] [CrossRef]
- Chen, Z.; Zhan, H.; Zhao, G.; Huang, Y.; Tan, Y. Effect of Roughness on Conservative Solute Transport through Synthetic Rough Single Fractures. Water 2017, 9, 656. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Xu, W.; Zhan, L.; Li, J.; Chen, Y. Quantitative characterization of solute transport in fractures with different surface roughness based on ten Barton profiles. Environ. Sci. Pollut. Res. 2020, 27, 13534–13549. [Google Scholar] [CrossRef]
- Carrera, J.; Sánchez-Vila, X.; Benet, I.; Medina, A.; Galarza, G.; Guimerà, J. On matrix diffusion: Formulations, solution methods and qualitative effects. Hydrogeol. J. 1998, 6, 178–190. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhan, H. Quantification of solute penetration in an asymmetric fracture-matrix system. J. Hydrol. 2018, 563, 586–598. [Google Scholar] [CrossRef]
- Zou, L.; Jing, L.; Cvetkovic, V. Modeling of flow and mixing in 3D rough-walled rock fracture intersections. Adv. Water Resour. 2017, 107, 1–9. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhan, H.; Jin, M. Analytical solutions of solute transport in a fracture–matrix system with different reaction rates for fracture and matrix. J. Hydrol. 2016, 539, 447–456. [Google Scholar] [CrossRef]
- Becker, M.W.; Shapiro, A.M. Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing. Water Resour. Res. 2000, 36, 1677–1686. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.A.; Kang, P.K.; Yang, Z.; Cueto Felgueroso, L.; Juanes, R. Impact of Confining Stress on Capillary Pressure Behavior during Drainage through Rough Fractures. Geophys. Res. Lett. 2019, 46, 7424–7436. [Google Scholar] [CrossRef] [Green Version]
- Huo, D.; Benson, S.M. Experimental Investigation of Stress-Dependency of Relative Permeability in Rock Fractures. Transport. Porous Med. 2016, 113, 567–590. [Google Scholar] [CrossRef]
- Watanabe, N.; Sakurai, K.; Ishibashi, T.; Ohsaki, Y.; Tamagawa, T.; Yagi, M.; Tsuchiya, N. Newν-type relative permeability curves for two-phase flows through subsurface fractures. Water Resour. Res. 2015, 51, 2807–2824. [Google Scholar] [CrossRef]
- Bertels, S.P.; DiCarlo, D.A.; Blunt, M.J. Measurement of aperture distribution, capillary pressure, relative permeability, and in situ saturation in a rock fracture using computed tomography scanning. Water Resour. Res. 2001, 37, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Hu, S.; Fang, S.; Chen, Y.; Zhou, C. Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. Int. J. Rock Mech. Min. Sci. 2015, 80, 202–218. [Google Scholar] [CrossRef]
- Chen, Y.; Lian, H.; Liang, W.; Yang, J.; Nguyen, V.P.; Bordas, S.P.A. The influence of fracture geometry variation on non-Darcy flow in fractures under confining stresses. Int. J. Rock Mech. Min. Sci. 2019, 113, 59–71. [Google Scholar] [CrossRef]
- Vogler, D.; Settgast, R.R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F. Experiments and Simulations of Fully Hydro-Mechanically Coupled Response of Rough Fractures Exposed to High-Pressure Fluid Injection. J. Geophys. Res. Solid Earth 2018, 123, 1186–1200. [Google Scholar] [CrossRef]
- Liu, R.; Huang, N.; Jiang, Y.; Jing, H.; Yu, L. A numerical study of shear-induced evolutions of geometric and hydraulic properties of self-affine rough-walled rock fractures. Int. J. Rock Mech. Min. Sci. 2020, 127, 104211. [Google Scholar] [CrossRef]
- Jeong, W.; Song, J. Numerical Investigations for Flow and Transport in a Rough Fracture with a Hydromechanical Effect. Energy Sources 2005, 27, 997–1011. [Google Scholar] [CrossRef]
- Koyama, T.; Li, B.; Jiang, Y.; Jing, L. Numerical simulations for the effects of normal loading on particle transport in rock fractures during shear. Int. J. Rock Mech. Min. Sci. 2008, 45, 1403–1419. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.K.; Brown, S.; Juanes, R. Emergence of anomalous transport in stressed rough fractures. Earth Planet. Sci. Lett. 2016, 454, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36, 1403–1412. [Google Scholar] [CrossRef] [Green Version]
- Cherubini, C.; Giasi, C.I.; Pastore, N. Evidence of non-Darcy flow and non-Fickian transport in fractured media at laboratory scale. Hydrol. Earth Syst. Sci. 2013, 17, 2599–2611. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Chen, Z.; Zhou, Z.; Wang, J.; Huang, Y. Influence of eddies on conservative solute transport through a 2D single self-affine fracture. Int. J. Heat Mass Transf. 2018, 121, 597–606. [Google Scholar] [CrossRef]
- Haggerty, R.; Gorelick, S.M. Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in Media with Pore-Scale Heterogeneity. Water Resour. Res. 1995, 31, 2383–2400. [Google Scholar] [CrossRef]
- Wang, L.; Cardenas, M.B. Non-Fickian transport through two-dimensional rough fractures: Assessment and prediction. Water Resour. Res. 2014, 50, 871–884. [Google Scholar] [CrossRef]
- Berkowitz, B.; Cortis, A.; Dentz, M.; Scher, H. Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 2006, 44, G2003. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.R.; Scholz, C.H. Broad bandwidth study of the topography of natural rock surfaces. J. Geophys. Res. Solid Earth 1985, 90, 12575–12582. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Pignoni, R. The Fractal Geometry of Nature; W. H. Freeman and Company: London, UK, 1983. [Google Scholar]
- Odling, N.E. Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mech. Rock Eng. 1994, 27, 135–153. [Google Scholar] [CrossRef]
- Belem, T.; Homand-Etienne, F.; Souley, M. Fractal analysis of shear joint roughness. Int. J. Rock Mech. Min. Sci. 1997, 34, 130–131. [Google Scholar] [CrossRef]
- Bartoli, F.; Burtin, G.; Royer, J.J.; Gury, M.; Gomendy, V.; Philippy, R.; Leviandier, T.; Gafrej, R. Spatial variability of topsoil characteristics within one silty soil type. Effects on clay migration. Geoderma 1995, 68, 279–300. [Google Scholar] [CrossRef]
- Homand-Etienne, F.; Belem, T.; Sabbadini, S.; Shtuka, A.; Royer, J.J. Analysis of the evolution of rock joints morphology with 2D autocorrelation (variomaps). In Applications of Statistics and Probability; Lemaire, M., Favre, J.L., Mébarki, A., Eds.; Balkema: Rotterdam, Nederland, 1995; pp. 1229–1236. [Google Scholar]
- Madadi, M.; Sahimi, M. Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces. Phys. Rev. E 2003, 67, 26309. [Google Scholar] [CrossRef] [Green Version]
- Voss, R.F. Random Fractal Forgeries; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Ye, Z.; Liu, H.; Jiang, Q.; Zhou, C. Two-phase flow properties of a horizontal fracture: The effect of aperture distribution. Adv. Water Resour. 2015, 76, 43–54. [Google Scholar] [CrossRef]
- Liu, H.; Bodvarsson, G.; Lu, S.; Molz, F. A corrected and generalized successive random additions algorithm for simulating fractional levy motions. Math. Geol. 2004, 36, 361–378. [Google Scholar] [CrossRef] [Green Version]
- Dou, Z.; Zhou, Z.; Sleep, B.E. Influence of wettability on interfacial area during immiscible liquid invasion into a 3D self-affine rough fracture: Lattice Boltzmann simulations. Adv. Water Resour. 2013, 61, 1–11. [Google Scholar] [CrossRef]
- Huang, N.; Liu, R.; Jiang, Y.; Li, B.; Yu, L. Effects of fracture surface roughness and shear displacement on geometrical and hydraulic properties of three-dimensional crossed rock fracture models. Adv. Water Resour. 2018, 113, 30–41. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, H.; Jiang, Q.; Liu, Y.; Cheng, A. Two-phase flow properties in aperture-based fractures under normal deformation conditions: Analytical approach and numerical simulation. J. Hydrol. 2017, 545, 72–87. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Ma, G.; Zhou, J.; Zhou, C. Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations. Adv. Water Resour. 2016, 96, 373–388. [Google Scholar] [CrossRef]
- Molz, F.J.; Liu, H.H.; Szulga, J. Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions. Water Resour. Res. 1997, 33, 2273–2286. [Google Scholar] [CrossRef]
- Family, F.; Vicsek, T. Dynamics of Fractal Surfaces. World Sci. 1991. [Google Scholar] [CrossRef]
- Babadagli, T.; Ren, X.; Develi, K. Effects of fractal surface roughness and lithology on single and multiphase flow in a single fracture: An experimental investigation. Int. J. Multiphase Flow 2015, 68, 40–58. [Google Scholar] [CrossRef]
- Zou, L.; Jing, L.; Cvetkovic, V. Roughness decomposition and nonlinear fluid flow in a single rock fracture. Int. J. Rock Mech. Mech. Min. Sci. 2015, 75, 102–118. [Google Scholar] [CrossRef]
- Walsh, R.; McDermott, C.; Kolditz, O. Numerical modeling of stress-permeability coupling in rough fractures. Hydrogeol. J. 2008, 16, 613–627. [Google Scholar] [CrossRef]
- Montemagno, C.D.; Pyrak-Nolte, L.J. Fracture network versus single fractures: Measurement of fracture geometry with X-ray tomography. Phys. Chem. Earth Part. A Solid Earth Geod. 1999, 24, 575–579. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhou, C. Hydraulic properties of partially saturated rock fractures subjected to mechanical loading. Eng. Geol. 2014, 179, 24–31. [Google Scholar] [CrossRef]
- Wang, J.S.Y.; Narasimhan, T.N.; Scholz, C.H. Aperture correlation of a fractal fracture. J. Geophys. Res. Solid Earth 1988, 93, 2216–2224. [Google Scholar] [CrossRef]
- Oron, A.P.; Berkowitz, B. Flow in rock fractures: The local cubic law assumption reexamined. Water Resour. Res. 1998, 34, 2811–2825. [Google Scholar] [CrossRef]
- Cvetkovic, V.; Selroos, J.O.; Cheng, H. Transport of reactive tracers in rock fractures. J. Fluid Mech. 1999, 378, 335–356. [Google Scholar] [CrossRef]
- Neretnieks, I. Diffusion in the rock matrix: An important factor in radionuclide retardation? J. Geophys. Res. 1980, 85, 4379–4397. [Google Scholar] [CrossRef] [Green Version]
- Bodin, J.; Delay, F.; de Marsily, G. Solute transport in a single fracture with negligible matrix permeability: 2. mathematical formalism. Hydrogeol. J. 2003, 11, 434–454. [Google Scholar] [CrossRef]
- Li, Y.H.; Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Ac 1974, 38, 703–714. [Google Scholar]
- COMSOL Multiphysics. The AC/DC Module User’s Guide. V. 5.4.; COMSOL AB: Stockholm, Sweden, 2019; pp. 75–84. [Google Scholar]
- Dentz, M.; Cortis, A.; Scher, H.; Berkowitz, B. Time behavior of solute transport in heterogeneous media: Transition from anomalous to normal transport. Adv. Water Resour. 2004, 27, 155–173. [Google Scholar] [CrossRef]
- Cortis, A.; Berkowitz, B. Computing “Anomalous” Contaminant Transport in Porous Media: The CTRW MATLAB Toolbox. Groundwater 2005, 43, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Fried, J.J.; Combarnous, M.A. Dispersion in Porous Media; Academic Press: New York, NY, USA, 1971; Volume 7. [Google Scholar]
Parameter Name | Symbol (unit) | Value |
---|---|---|
Gravitational acceleration | g (m/s2) | 9.8 |
Water density | ρ (kg/m3) | 1.0 × 103 |
Water viscosity | μ (Pa·s) | 1.002 × 10−3 (20 °C) |
Molecular diffusion coefficient | Dm (m2/s) | 2.03 × 10−9 |
Injection concentration | C0 (kg/m3) | 1.0 |
Inlet Pressure | P (Pa) | 0.05 |
Reynolds number | Re (-) | 7.885 × 10−5–0.007 |
Péclet number | Pe (-) | 0.039–3.567 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Xu, W.; Zhan, L.; Ye, Z.; Chen, Y. Non-Fickian Solute Transport in Rough-Walled Fractures: The Effect of Contact Area. Water 2020, 12, 2049. https://doi.org/10.3390/w12072049
Hu Y, Xu W, Zhan L, Ye Z, Chen Y. Non-Fickian Solute Transport in Rough-Walled Fractures: The Effect of Contact Area. Water. 2020; 12(7):2049. https://doi.org/10.3390/w12072049
Chicago/Turabian StyleHu, Yingtao, Wenjie Xu, Liangtong Zhan, Zuyang Ye, and Yunmin Chen. 2020. "Non-Fickian Solute Transport in Rough-Walled Fractures: The Effect of Contact Area" Water 12, no. 7: 2049. https://doi.org/10.3390/w12072049
APA StyleHu, Y., Xu, W., Zhan, L., Ye, Z., & Chen, Y. (2020). Non-Fickian Solute Transport in Rough-Walled Fractures: The Effect of Contact Area. Water, 12(7), 2049. https://doi.org/10.3390/w12072049