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Abstract: The influence of contact area, caused by normal deformation, on fluid flow and solute
transport through three-dimensional (3D) rock fractures is investigated. Fracture surfaces with
different Hurst exponents (H) were generated numerically using the modified successive random
addition (SRA) method. By applying deformations normal to the fracture surface (∆u), a series
of fracture models with different aperture distributions and contact area ratios (c) were simulated.
The results show that the contact area between the two fracture surfaces increases and more void
spaces are reduced as deformation (∆u) increases. The streamlines in the rough-walled fractures show
that the contact areas result in preferential flow paths and fingering type transport. The non-Fickian
characteristics of the “early arrival” and “long tail” in all of the breakthrough curves (BTCs) for fractures
with different deformation (∆u) and Hurst parameters (H) were determined. The solute concentration
distribution index (CDI), which quantifies the uniformity of the concentration distribution within
the fracture, decreases exponential as deformation (∆u) and/or contact area ratios (c) increase,
indicating that increased contact area can result in a larger delay rate of mass exchange between the
immobile zone around the contact areas and the main flow channel, thus, resulting in a longer time
for the solute to fill the entire fracture. The BTCs were analyzed using the continuous time random
walk (CTRW) inverse model. The inverse modeling results show that the dispersion exponent β
decreases from 1.92 to 0.81 as c increases and H decreases, suggesting that the increase in contact area
and fracture surfaces enhance the magnitude of the non-Fickian transport.

Keywords: rough-walled rock fractures; normal deformation; contact area ratio; non-Fickian transport;
CTRW model

1. Introduction

Fluid flow and solute transport in fractured rock masses play a critical role in many geoscience
and geoengineering disciplines, including groundwater contamination and remediation, nuclear waste
disposal, shales oil extraction, carbon capture and storage, and geothermal energy extraction [1–7]. In a
natural rock, the fracture network consists of numerous single fractures. Therefore, in order to improve
the understanding of the transport properties in fractured rock, fluid flow and solute transport in a
single fracture, which is the fundamental element of a fracture network, should be studied.

Using numerical and theoretical models, laboratory and field experiments, many previous studies
have shown that macroscopic solute transport through a single fracture is often non-Fickian [8–14]
and is characterized by the “early arrival” and “long tail”. Specifically, the “early arrival” means

Water 2020, 12, 2049; doi:10.3390/w12072049 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0002-1716-8251
http://dx.doi.org/10.3390/w12072049
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/7/2049?type=check_update&version=2


Water 2020, 12, 2049 2 of 25

that the arrival time of the dimensionless particle concentration equals 0.5 in the BTCs, which is
earlier than that predicted by the Fickian transport model, while the “long tail” represents the longer
residence time of particles in the fracture [15]. Therefore, predictability of the observed non-Fickian is
essential for environmental and human health-related issues, such as radionuclide transport in the
subsurface or water quality evolution in managed aquifer recharge systems [11], as it controls the
early arrival and the long residence time of particles. It is well known that matrix diffusion can induce
non-Fickian transport [16] and that it plays an important role in transport processes in fracture–matrix
systems [1,10,17–19], but our interest in this study is in rock formations such as fractured granite,
in which the role of matrix diffusion is relatively minor and can often be ignored [20].

Geologic fractures always experience significant overburden stress or large displacement. Recently,
experiments and numerical modeling have shown that increasing the normal/shear deformation
increases the fracture roughness and the fracture contact area, resulting in lower relative permeability
values and an evolution of flow process [21–24]. For instance, Zhou et al. [25] and Chen et al. [26]
conducted a series of laboratory tests on fluid flow in rough fractures with normal loading, and they
found that the fracture aperture and fluid conductivity decreased notably with high normal stress.
Zhou et al. [25] also proposed that the normal loading could result in fracture closure, brittle damage
of surface asperities and an increase in the contact area, which leads to a tortuous flow paths in the
fractures. The surface roughness statistics for the experimental samples show that the surface roughness
is remarkably degraded after testing. Vogler et al. [27] carried out laboratory experiments and numerical
simulations to understand the coupled hydro-mechanical processes of fluid flow in heterogeneous
fractures, and found that a nonlinear fracture closure and fluid injection pressure increase with loading.
Liu et al. [28] numerically study the effect of shear on the evolutions of geometric and hydraulic
properties of 3D self-affine fractures. They found that as shear deformation increases, the streamlines in
the fracture become tortuous bypassing the contacts, showing obvious channeling flow phenomenon
because of a large number of contacts and the small mean aperture. While normal/shear deformation
has been shown to fundamentally impact fluid flow through rough-walled fractures, studies of
non-Fickian transport on the scale of individual fractures have only focused on the role of fracture
roughness and non-linear flow, while only a few studies have investigated the effects of normal
deformation on solute and/or contaminant transport processes in single rock fractures. Jeong et al. [29]
numerically investigated the flow and transport properties in a rough fracture under effective normal
stress conditions, showing that the flow paths offered to particles become isolated from main channels
due to the contact areas increasing with effective normal stresses. Koyama et al. [30] carried out
numerical simulations of particle transport in rock fractures with normal loading; their results show
that the effect of normal stress on the particle transport is significant, and dispersion becomes larger
with increasing normal stress. Zhao et al. [4] deduced an analytic solution to model the coupled
stress–flow–transport processes along a single 2D fracture embedded in a porous rock matrix. In their
study, they investigated the influence of fracture aperture closure on solute transport along the fracture
and into the rock matrix under increasing normal deformation conditions. Their results indicate that
the concentrations both along the fracture and within the rock matrix decrease with increasing normal
deformation due to the smaller fluid velocity (or fracture aperture). Kang et al. [31] reported the
emergence of non-Fickian transport through a 3D rough-walled fracture due to increasing normal
deformation. Their study showed that a larger number of contact areas in the highly deformed fracture
led to a heterogeneous flow dominated by preferential channels and stagnation zones, resulting in
non-Fickian transport behavior. Zou et al. [10] performed a direct numerical simulation of fluid flow
and solute transport in a 3D rough-walled fracture–matrix system with several contact areas induced
by normal and shear deformation. They found that the low-velocity and low-concentration zones
were mostly located around the contact areas, which resulted in the long tails of the solute spreading
within the fracture. Nevertheless, to the authors’ knowledge, quantifying the relationships between
the magnitude of the non-Fickian transport and the contact area ratio due to normal deformation has
not been attempted in previous studies.
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Based on the previous studies described above, in order to assess the significance of non-Fickian
character of solute diffusion, quantitative transport parameters should be introduced. To accomplish
this, several transport models have been developed, such as the fractional advection–dispersion
equation (FADE), the mobile–immobile method (MIM), the multi-rate mass transfer model and the
continuous time random walk (CTRW) model. A detailed description and comparison of these
transport models can be found in several previous studies [6,9,32–35]. By fitting non-Fickian BTCs
to the different transport models, it is possible to accurately estimate the transport parameters and
quantitatively evaluate the non-Fickian transport. The CTRW model was shown to be capable of
capturing both Fickian and non-Fickian transport, and the inverse CTRW model has been successfully
applied to many applications for characterizing non-Fickian BTCs. For example, the non-Fickian BTCs
in heterogeneous porous media and single variable-aperture fractures [9,36,37]. However, the capability
of the CTRW model to capture the non-Fickian characteristics induced by the contact area in a 3D
single fracture still needs to be investigated.

Here, we demonstrate that an increase in contact area caused by normal deformation can induce
non-Fickian transport in fractures. Normal deformation (∆u) transforms the fracture’s geometry
from a relatively homogeneous flow structure to a very heterogeneous flow structure. The contact
area between the two fracture surfaces increases and more void spaces are reduced as the mean
fracture aperture decreases, after which the flow becomes organized into preferential flow channels
and stagnation zones. To study the impact of the contact area ratio (c) on the flow and transport,
a self-affine fractal model is applied to generate rough-walled fractures with different surface roughness
parameters (H) using the modified successive random addition (SRA) method. The evolutions of the
aperture distribution in the deformed rough-walled fracture are simulated based on the topographical
data for the generated fracture surfaces. Then, the flow and transport problem through deformed
rough-walled fractures is solved. Then, the influence of the normal deformation and contact area ratio
on the flow paths, permeability, and non-Fickian transport are estimated. The non-Fickian transport
properties resulting from the different H, ∆u, and/or c are systematically investigated. Our findings
further our understanding of solute transport through fractured media by linking the magnitude of
the non-Fickian transport behavior with the contact conditions in fractures.

2. Fracture Model

2.1. Fracture Generation

In geological formations, the surface roughness of natural rock fractures typically follows a
self-affine fractal distribution [38–43], which can be commonly simulated using fractional Brownian
motion (fBm). Several methods have been attempted in the previous study to employ fBm to generate
fracture surfaces [44,45]. The most widely used methods are Fourier transformation, the randomization
of the Weierstrass–Mandelbrot function, and SRA. In this study, the SRA algorithm is used to generate
fracture surfaces for its efficiency and straightforwardness [9,46–51].

The fracture wall height can be simulated from a two-dimensional fBm (or 2D Wiener–Brownian
stochastic process) as the realization of a random, continuous, single-valued function Z(X) with
X = (x, y). Then, the stationary increment, [Z(X + h) −Z(X)] with h =

(
hx, hy

)
, over the distance (lag)

h = (hx
2 + hy

2)1/2 has a centered Gaussian distribution with variance σ2 [46,52]. The statistical self-affine
property of the fBm increment can be expressed as〈

Z(X + rh) −Z(X)
〉
= 0 (1)

σ2(r) = r2Hσ2(1) (2)
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where 〈•〉 represents the mathematical expectation, H is the scaling parameter or the Hurst exponent
varying from 0 to 1 and related to the 3D fractal dimension (D) by D = 3 − H (for the surface; D = 2 − H
for the profile) [46,53], and r is a constant. The variance is defined as

σ2(r) =
〈
[Z(X + rh) −Z(X)]2

〉
(3)

Based on the scaling properties of fBm, a modified SRA algorithm was developed by Liu et al. [47]
and Ye et al. [46] to generate the fracture surfaces, and it improves the poor scaling and correlation
properties of the fractal distributions involved in the traditional SRA algorithms.

By using Liu’s algorithm, a series of self-affine surfaces were generated with different H values.
It should be noted that the H of natural rock fractures has proved to vary mostly between 0.45 and
0.87 [40,51,54]. Therefore, H values equal to 0.50, 0.55, 0.60, and 0.65 were selected in this study for
comparison. Limited by the computer power and its memory capacities of solving the Navier–Stokes
equation and advection–diffusion equation for the 3D self-affine rough fracture models with highly fine
representation of the fracture surfaces, a domain of the surface of 32 mm × 32 mm in size that consist
of a 128 × 128 grid was obtained with an interval of 0.25 mm. The choice of the sample interval is
reasonable to represent the geometrical features of fracture surfaces, as an interval range from 0.2 mm
to 0.4 mm was commonly employed in research when using a high-resolution 3D laser scanning system
to obtain the topographical data of rock sample surfaces [8,51,55]. A more detailed description for
generating self-affine surfaces using the modified SRA method is described by Ye et al. [46].

For generating the fBm distribution surface more accurately, we optimized the SRA method by
controlling the error between the input roughness parameter H and the fitted H value of less than
0.001. Figure 1 shows a simulated example with H = 0.50 and an analysis of the scaling property.
The calculation between the standard deviation (σ) and the lag (r) in the horizontal direction shows
that the fitted H value is almost equal to the input values. It is further verified that the modified SRA
algorithm is robust and is capable of generating fBm distributions accurately.
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Figure 1. (a) Example of self-affine surfaces generated using the modified successive random addition
(SRA) algorithm with Hurst (H) = 0.50; (b) Log–log plot of the standard deviation σ (mm) versus the
lag constant (r, mm).

2.2. The Relationship between the Aperture Distribution, Contact Area Ratio, and Normal Deformation

Since the response of fluid flow and solute transport through a fractured medium is highly
sensitive to fracture aperture, it is important to accurately simulate the variation in aperture during
the shear and compression processes. Previous studies have shown that the aperture distributions of
both natural and artificial fractures mostly exhibit truncated Gaussian distributions [56–58]. In this
study, the method proposed by Wang et al. [59] was applied to generate the apertures with truncated
Gaussian distributions.
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Initially, the lower surface of the fracture is generated through the above modified SRA algorithm
and is described using the function Z1(X). Then, the upper surface is generated by replicating
the lower surface and displacing it through shear deformation rd = (xd, yd). It is expressed as
Z2(X) = Z1(X + rd) + b0, where b0 is the mean aperture between the lower and upper surfaces in the
initial state. Therefore, the aperture distribution b(X) can be calculated using

b(X) =

{
Z2(X) −Z1(X) = Z1(X + rd) −Z1(X) + b0 i f Z2(X) −Z1(X) > 0

0 otherwise
(4)

The value of b(X) = 0 indicates the contact point between the two fracture surfaces. A 20 mm ×
20 mm aperture field was extracted from the central part of the original model to ensure a constant
analysis area, due to the decreasing nominal contact area between the upper and lower fracture surfaces
during shear deformation. Shear deformation rd = (1.5 mm, 0) was used in the generation of the
fractures. An initial mean aperture of b0 = 0.4 mm was adopted to ensure that the initial aperture
distribution satisfied the Gaussian distribution. Figure 2 shows the original 3D self-affine fracture and
the generated aperture distribution for H = 0.50.
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Figure 2. Generation of the original self-affine fracture with the upper surface displaced from the
lower surface.

When rough-walled fractures are subjected to normal deformation ∆u, the two fracture walls
shift vertically due to the normal stress. However, due to the heterogeneity in the micro-geometrical
topography, the mechanism of fracture deformation is complex. For simplicity, the penetration model
suggested by Oron and Berkowitz [60] and Walsh et al. [56] was adopted to characterize the deformation
of the aperture distribution; a detailed explanation of the penetration model is described by Ye et al. [46].
Based on this model, the aperture distribution b(X) can be calculated using

b(X) =

{
Z2(X) −Z1(X) − ∆u i f Z2(X) −Z1(X) > ∆u

0 otherwise
(5)
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Figure 3 shows an example of the changes in the aperture distribution and contact area for different
normal deformation conditions (∆u = 0.15, 0.20, 0.25, 0.30 mm) for H = 0.50.Water 2020, 12, x FOR PEER REVIEW 6 of 26 
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As can be seen in Figure 3, the size of the apertures decreases and the contact area increases as the
normal deformation across the fractures increases. According to our previous study [46], the aperture
distribution for b ≥ 0 can be described as a function of a mean value of u and a standard deviation of σ:

f (b) =
1
√

2πσ
e−

(b−u)2

2σ2 for b ≥ 0 (6)

Thus, the frequency of the contact area with zero aperture value f (0) can be derived as:

f (0) = 1−
∫
∞

0
f (b)db = 1−

1
√

2πσ

∫
∞

0
e−

(b−u)2

2σ2 db =
1
2

erfc
(

u
√

2σ

)
(7)

where erfc is a complementary error function. In this study, the contact area is considered to be
zero between the two rough-walled fracture surfaces. Therefore, on account of aperture truncation,
the cumulative probability distributions of fracture aperture for fractures with different ∆u and H are
presented, as shown in Figure 4.
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Figure 4. Cumulative probability distribution of fracture aperture for fractures with different normal
deformations (∆u) and H.

As shown in Figure 4, for the case of ∆u = 0.00 mm, the cumulative probability distribution
curves show a typical Gaussian distribution for different H. However, as ∆u increases to 0.30 mm,
the cumulative probability distribution curves shift to the left, and shows a truncated Gaussian
distribution. For a certain H value, the frequency corresponding to b = 0 increases as ∆u increases,
indicating that the contact area between the two fracture surfaces increases, and more void spaces are
reduced by the normal deformation. An increase in the H value has the opposite impact on the contact
pattern and reduces the contact areas, and it can be found that the shape of the cumulative probability
distribution curve changes from a sharp curve to a broader curve as H decreases. This is due to the
fact that for H = 0.50, roughness spatial correlations are short, i.e., peaks are followed by valleys;
when applying a normal deformation to the surface, peaks are clutched together, and contact area
ratios increase with ∆u. As H increases, peaks and valleys become wider, resulting in less contact areas
clutched together under normal deformation, thus, the curve dependency between ∆u and c decreases.

In this study, the locations where the apertures are equal to or less than zero represent the
contact areas. The contact area ratio c (dimensionless) is proposed here to characterize the contact
characteristics, which is defined as the ratio of the area of the contacts to the total area of the fracture:

c =
Scontact

Stotal
× 100% (8)

where Scontact (M2) is the area of contacts, including dead voids, with no contribution to the flow;
and Stotal (M2) is the total area of the fracture. Figure 5 shows the changes in c for different ∆u
and different H. The results show that c increases with increasing ∆u, regardless of the value of H
used. Figure 5 also shows that the growth rate of c at smaller H values (i.e., H = 0.5) is higher than
that at larger H values (i.e., H = 0.65), directly indicating the important role of surface roughness in
developing contact area under normal deformation conditions. This is due to the fact that for H = 0.50,
roughness spatial correlations are short, i.e., peaks are followed by valleys; when applying a normal
deformation to the surface, peaks are clutched together, and contact area ratios increase with ∆u. As H
increases, peaks and valleys become wider, resulting in less contact areas clutched together under
normal deformation, thus, the curve dependency between ∆u and c decreases.
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Figure 5. Relationships between the contact area ratio (c) and H or ∆u for different fractures: (a) c versus
H; (b) c versus ∆u.

3. Direct Simulation of Conservative Solute Transport

3.1. Physical Considerations and Governing Equations

The aperture distribution of natural rock fractures is variable and plays an important role
in absorption and chemical reaction processes [1,10,18,19,61,62]. Bodin et al. [5,63] provided
a comprehensive review of the key physical mechanisms involved in fracture–matrix systems,
which mainly include solute advection, dispersion, and diffusion in the fracture; matrix diffusion
from the fracture into the matrix; fracture surface and matrix sorption; decay; and chemical reactions.
However, in this study, to highlight the variations with increasing normal deformation and contact area
ratio, we only consider three major transport mechanisms for simplicity: the advection, dispersion and
diffusion mechanisms within 3D self-affine fractures.

The fluid-flow field in a single rough-walled fracture can be solved directly using the Navier–Stokes
and continuity equations, which describe isothermal, incompressible, and homogenous single
Newtonian steady flow:

∇u = 0 (9)

ρ(u·∇u) −∇(µ∇u) = −∇P (10)

where ρ, u, P, and µ are the fluid density (kg/m3), velocity vector (m/s), total pressure (Pa), and dynamic
viscosity (Pa s), respectively. For the numerical simulations, the fracture surfaces were considered to
be non-slip boundaries (u = 0). A given pressure drop (Pa) was applied over the fracture’s length,
which is a Dirichlet boundary condition, to drive the fluid flow from left to right.

The solute transport through the 3D single rough-walled fracture was simulated using the
advection–diffusion equation coupled with the previously solved velocity field, which is expressed as

∂C
∂t

+∇·(uC) −∇·(Dm∇C) = 0 (11)

where C, t, and Dm are the solute concentration (kg/m3), time (s), and molecular diffusion coefficient
(m2/s), respectively. We assumed typical conservative solute transport, e.g., Cl− in water, and set Dm

equal to 2.03 × 10−9 m2/s, following the method of Yuan and Gregory [64].
The initial and boundary conditions were as follows:

ICdomain : C f (0 ≤ x ≤ L, 0 ≤ y ≤ L, z, t) = 0, t = 0 (12)

BCinlet : C f (x = 0, 0 ≤ y ≤ L, z, t) = C0, t > 0 (13)
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BCoutlet : ∂C f (x = L, 0 ≤ y ≤ L, z, t)/∂n = 0, t ≥ 0 (14)

where IC/BC is the initial/boundary condition, L is the longitudinal or vertical length of the fracture
(m), and n is the direction normal to the boundary. The initial concentration was assumed to be zero.
The inlet was a Dirichlet boundary assuming continuous injection with C0, whereas the outlet was an
open boundary with zero diffusive flux. It should be noted that the accurate velocity field calculated
by the Navier-Stokes equation (NSE) is the 3D vector field, but rather mean velocity; therefore,
the transport of solute by dispersion or mechanical mixing, caused by the non-uniform distribution of
the velocity field in the rough-walled fractures, was directly captured in the advection term ∇·(uC)
in the numerical simulation. Consequently, the advection, dispersion and diffusion processes are all
considered in this study [16].

The fluid flow and solute transport models, which are composed of nonlinear partial differential
equations coupled with the velocity, pressure, and concentration fields, were solved using the finite
element method (FEM) and were implemented using the commercial software of COMSOL Multiphysics
5.4 [65].

3.2. Direct Numerical Modeling Settings

The flux-weighted BTCs obtained from the numerical results can be expressed as a ratio of the
effluent solute mass to the fluid mass:

C f =

∫ b
0 uCdz∫ b
0 udz

(15)

To enable convenient comparison of the results, the concentration and time were normalized
as follows:

C′ = C f /C0 (16)

t′ = Qt/V (17)

where C′ is the dimensionless concentration, t′ is the dimensionless time or the pore volume (PV), Q is
the flow rate (m3/s), and V is the volume of the fracture (m3).

In this study, the Péclet number (Pe) is defined as the ratio of the rate of advection to the rate of
diffusion of the same solute driven by the gradient, and the Reynolds number (Re) is defined as follows:

Pe =
ub
Dm

=
Q

WDm
(18)

Re =
ρub
µ

=
ρQ
Wµ

(19)

W is the width of the fracture in Y direction (m).
The specific physical parameters and boundary conditions used in the simulations are summarized

in Table 1.

Table 1. Parameters and boundary conditions used in the simulations.

Parameter Name Symbol (unit) Value

Gravitational acceleration g (m/s2) 9.8
Water density ρ (kg/m3) 1.0 × 103

Water viscosity µ (Pa·s) 1.002 × 10−3 (20 ◦C)
Molecular diffusion coefficient Dm (m2/s) 2.03 × 10−9

Injection concentration C0 (kg/m3) 1.0
Inlet Pressure P (Pa) 0.05

Reynolds number Re (-) 7.885 × 10−5–0.007
Péclet number Pe (-) 0.039–3.567
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3.3. Inverse Modeling Using Breakthrough Curves

3.3.1. 1D Advection–Dispersion Equation (ADE) Model

In this study, it should be noted that in the numerical simulation, the solute transport by dispersion
or by mechanical mixing arises due to the non-uniform distribution of the velocity field within the
rough-walled fractures. In order to investigate the effects of the contact area ratio on the transport
behavior within the fractures, the least square fitting method based on the 1D ADE model was inversely
implemented to fit the BTCs obtained from the direct solute transport simulation. More details on this
method could be found in Dou et al. [9] and Hu et al. [15].

3.3.2. Continuous Time Random Walk

In order to determine whether non-Fickian transport occurs in the numerical simulation cases,
the continuous time random walk (CTRW) model is used. Following the example of Dentz et al. [66]
and Cortis and Berkowitz [67], this approach provides a solution for the one dimensional (1D)
Fokker–Planck equation with a memory term for the Laplace transformed concentration C̃(x, p):

pC̃(x, p) −C0(x) = −M̃(p)
[
uψ

∂
∂x

C̃(x, p) −DCTRW
∂2

∂x2 C̃(x, p)
]

(20)

where p is the Laplace variable, and x is the direction in which the particle moves. uψ and DCTRW
are the transport velocity and the dispersion within the framework of the CTRW model, respectively.
C0 (x) is the initial concentration, and M̃(p) is the memory function, which captures the non-Fickian
transport induced by the local heterogeneity or the local process, and the corresponding formulation is

M̃(p) = tp
ψ̃(p)

1− ψ̃(p)
(21)

where t is the characteristic time, and ψ̃(p) is the Laplace-transformed form ofψ(p). ψ(p) is a probability
density function (PDF), which is the core of the CTRW model and is defined as the probability rate for
a transition time t between the transport sites. In general, there are three different models for ψ̃(p):
the asymptotic model, the truncated power law (TPL) model, and the modified exponential model.
Details of the three different models of ψ̃(p) are described by Cortis and Berkowitz [67]. Here, we only
used the TPL model in the framework of the CTRW model, which is widely used to interpret transport
phenomena at different scales:

ψ̃(p) = (1 + τ2pt1)
β exp(t1p)

Γ
(
−β, τ2

−1 + t1p
)

Γ(−β, τ2−1)
(22)

where t1 is the characteristic transition time for the onset of the power law region, and t2 is the
cut-off time describing when the Fickian behavior dominates, τ2 = t2/t1. Γ() is the incomplete
Gamma function. β is a critical dispersion exponent characterizing the different types of solute
transport. As Cortis and Berkowitz [67] pointed out, 0 < β < 1 indicates highly non-Fickian transport;
while 1 < β < 2 is associated to moderate non-Fickian transport or moderately dispersive transport;
and β > 2 indicates Fickian transport with a Gaussian concentration plume. It should be noted that
both uψ and DCTRW depend on ψ̃(p), which is fundamentally different from the average flow velocity
(u) and the effective dispersion coefficient (DL) in the classical ADE model [9,36,37].
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4. Results and Discussion

4.1. Flow Field in the Fracture

The numerical results for the fractures with H = 0.65 and H = 0.50 at three normal deformations
of ∆u = 0.00, 0.20, and 0.25 mm are used for illustration and comparison without loss of generality.
Figures 6 and 7 show the 3D distributions of the pressure, normalized velocity (U/Umax) and flow
streamlines, respectively, during different normal deformations in fractures with H = 0.65 and 0.50.
As can be seen in Figures 6a–c and 7a–c, for the case of ∆u = 0.00 mm, the iso-surface of the pressure
is almost straight along the direction perpendicular to the flow (y-direction) and the pressure varies
along the flow direction (x-direction) almost linearly in fractures with H = 0.65 and 0.50. However,
as ∆u increases, obvious heterogeneous or uneven distributions of the pressure start to appear in
the fractures. This phenomenon is more obvious for smaller values of H with a dramatic increase in
the contact area (Figure 7). These results are caused by the contact area and the local changes in the
aperture, indicating that the contact area and surface roughness have a significant effect on the overall
pressure distribution within the fractures.
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As can be seen in Figures 6d–f and 7d–f, the flow patterns throughout the fracture models change
significantly with increasing ∆u and decreasing H. For the case of ∆u = 0.00 mm and H = 0.65 (see
Figure 6d), the streamlines of the fluid flow are almost linearly distributed in the fracture domain.
However, the normalized flow velocity (U/Umax) in Figure 6d was heterogeneously distributed within
the fracture domain due to the variable distribution of the fracture aperture. As ∆u increases, such as
for the case of ∆u = 0.25 mm and H = 0.65, the contact spots block off the flow and, thus, the streamlines
go around the contact spots, resulting in preferential flow paths and a complex velocity distribution.
As H decreases, such as for the case of ∆u = 0.25 mm and H = 0.50, the streamlines are cut off by the
widely spread contact areas, causing a significant decrease in the flow area. As a result, the actual flow
paths and/or streamlines become more tortuous at larger ∆u and smaller H. This phenomenon is the
well-known channeling effect. At present, only numerical simulations can realistically illustrate the
process of the complex evolution of flow localization (channeling) under different normal deformation
conditions, since direct measurements and visualizations are not possible.

Figures 6d–f and 7d–f also show that the flow is channeled into the main high-speed streams with
many stagnant zones with very low velocities around the contact areas. It can also be found that the
velocity field within a fracture with a smaller H and larger ∆u is more complex, with the high velocity
regions being more discretely distributed.
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In order to analyze the influence of the normal deformation on the permeability of fractures with
different H values, the relative permeability (K/K0), which relates the permeability at ∆u (K) to the
permeability at ∆u = 0.00 mm (K0) in the flow direction, is calculated. Notably, the permeability in this
study is macroscopic permeability of the fracture, which is obtained by Darcy’s law. The evolution
of K/K0 for different H with respect to ∆u and the contact area ratio c is displayed in Figure 8.
For each fracture roughness, K/K0 decreases as ∆u increases from 0.00 to 0.30 mm. In particular,
when ∆u = 0.30 mm, K/K0 reaches a minimum value and ranges from 0.029 to 0.057 with different H,
indicating that the permeability for different roughness can be 17.5 or 34.5 times smaller than that at ∆u
= 0.00 mm. Comparisons of four fractures with the same ∆u show that K/K0 increases as H increases,
suggesting that under normal deformation conditions, permeability changes more in rougher fractures.
The same evolution of K/K0 with respect to c is shown in Figure 8a. It should be noted that when c
increases, the decrease in K/K0 for a smaller H is more significant than for larger H values. This is
because the aperture distribution within the rougher fracture is more heterogeneous than that within
the smoother fracture (as described in Section 2.2) which results in more tortuous flow paths, and thus
a notable decrease in the permeability of the entire fracture.
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4.2. Importance of Diffusion within the Fracture

In this section, the numerical simulations that do not consider the diffusion process were carried out
to illustrate the importance of the diffusion process in solute transport within a fracture. The simulation
results of the concentration distribution at dimensionless time PV = 0.6 for H = 0.50 at ∆u = 0.00 and
0.20 mm are presented in Figure 9a,c, respectively. For comparison, the corresponding simulation
results considering the diffusion process are also plotted in Figure 9b,d.Water 2020, 12, x FOR PEER REVIEW 13 of 26 
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Figure 9. Comparisons of the concentration distribution in different cases for H = 0.50 at pore
volume (PV) = 0.6. (a) Case1: ∆u = 0.00 mm, without diffusion process; (b) Case1 #: ∆u = 0.00 mm,
with diffusion process; (c) Case2: ∆u = 0.20 mm, without diffusion process; (d) Case2 #: ∆u = 0.20 mm,
with‘diffusion process.

The contour map of Case1 and Case2 shows that the concentration distributions are spotty and
highly fragmented spread along the fractures. Additionally, the transport strongly follows preferential
flow channels and exhibits notable fingering type transport paths. This transport behavior illustrates
the fact that the flow heterogeneity caused by the complex geometric structure of the fracture roughness
and contact areas (as described in Section 4.1) has a significant impact on the transport processes within
the fracture.
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As shown in Figure 9a,c, as ∆u increases from 0.00 to 0.20 mm, the transport channels in Case 2
become more tortuous than those in Case1 due to the increased contact area ratio. As can be clearly
seen in Figure 9c, the zones around the contact area are immobile domains where the dead zones
with zero concentrations are formed. The reason for this is that the velocity around the contact area is
almost 0; this cuts off the pathway for concentration transport into these zones when the absence of the
diffusion obstructs the exchange of the concentration between the immobile zone (zero flow velocity)
and the mobile zone (non-zero flow velocity).

In addition, the iso-surfaces of the concentration distributions in Case1 # and Case2 # are not as
rough as those in Case1 and Case2, and the concentration fronts in Case1 and Case2 migrate faster than
those in Case1 # and Case2 #, while the tails move slower than in Case1 # and Case2 #. This is due to
the transverse redistribution of the concentration caused by the diffusion process, which slows down
the speed of the solute fronts and enhances the mixing process in the tails. According to the analysis of
Fried and Combarnous [68], both advection and diffusion contribute significantly to transport process
when Pe between 0.4 and 5. Therefore, this comparison preliminarily validates the importance of the
diffusion process in the evolution of the concentration field within the fractures, as the Pe numbers
for Case1 # and Case2 # are 2.81 and 0.56, respectively, which indicates that the diffusion process is as
important as the advection process. This finding is important in case of emergency pollution accidents
in fractured rocks when the diffusion process is dominated or the value of Pe is between 0.4 and 5,
according to previous study [68].

The flux-weighted BTCs calculated from the numerical simulations for Case1, Case1 #, Case2,
and Case2 # are illustrated in Figure 10 to show the breakthrough features of the solute transport
within the fractures with or without considering the diffusion process. As was explained in Section 3.2,
the BTCs were calculated using continuous injection conditions. The transport for these cases is
non-Fickian and exhibits early arrival and long tail characteristics. The early arrival and long tail
in Case1 # and Case2 # are shortened and weakened, respectively, compared to those of Case1 or
Case2, suggesting that the diffusion process notably affects the transport characteristics. Therefore, it is
concluded that the final transport characteristics are caused by the combined effects of the advection
and diffusion processes, which can be described by Pe.
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Figure 10. Breakthrough curves (BTCs) at the outlets for Case1, Case1 #, Case2, and Case2 #.

Figure 11 shows the values of Pe for the 20 simulation cases in this study. For a given fracture
roughness, the Pe number decreases as ∆u increases. It is clear that as ∆u increases, the permeability of
the fracture decreases and, thus, the flow rate (Q) in the fracture is decreased under the same pressure
drop condition, resulting in a decrease in Pe. For all of the cases, the value of Pe ranges from 0.04 to
3.57. This indicates that both the diffusion term and the advection term are important for this study
and, thus, they are taken into consideration in the following analysis.
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4.3. Evolution of the Concentration Field

In order to investigate the influence of normal deformation and contact area on the spatial
evolution of the solute, the same injected pore volumes (0.25, 0.50, 0.75, and 1.0 PV) in Figures 12 and 13
were chosen for H = 0.65 and 0.50 with ∆u = 0.00, 0.20, and 0.30 mm, respectively. As can be seen in
Figures 12 and 13, the evolution of the concentration field is sensitive to the contact area, especially for
the cases with H = 0.50 (Figure 13). For the case of ∆u = 0.00 mm (Figures 12a and 13a), the spatial
evolution of the solute is mainly affected by the surface roughness and aperture distribution of the
fracture (c = 0). It clearly shows that there were several preferential channels of solute transport along
the longitude direction of the fracture. This phenomenon may be explained by the fact that the flow
velocity within the fracture was heterogeneously distributed due to the variable distribution of the
fracture aperture, as stated in Section 3.1. In addition, the transport process is dominated by advection
within the fracture, i.e., the Pe numbers in the cases are larger than 1.0 (Pe = 3.57 for H = 0.65 and
Pe = 2.81 for H = 0.50). When ∆u increases from 0.00 to 0.20 mm (Figures 12b and 13b), the contact area
increases in the relatively small aperture regions (c = 5.27% for H = 0.50, and c = 0.26% for H = 0.65).
The solute around the zones with contact areas exhibited slower transport than the zones without
contact areas. When ∆u increases from 0.20 to 0.30 mm (Figures 12c and 13c), the solute around the
contact areas is further delayed; however, the fingering type transport disappears gradually compared
to the cases with ∆u = 0.00 mm. This is because of the low Pe numbers in the cases with ∆u = 0.30 mm
(i.e., Pe = 0.21 for H = 0.65 and Pe = 0.04 for H = 0.50), which indicates that the transport is dominated
by diffusion. As a result, the preferential transport caused by the channeling effects is masked by the
diffusion process. Nevertheless, due to the dominance of the diffusion process, the movement of the
solute in the cases with ∆u = 0.30 mm is still faster than in the cases with smaller ∆u.

For all of the cases, based on the analysis in Section 4.2, we conclude that the solute first passes
without penetrating the zones near contacts, then, it invades them due to the diffusion. These contact
areas result in the formation of an immobile region and can provide strong resistance against spreading
and mixing. Consequently, the transport of the solute is significantly delayed by the contact areas,
as shown in the cases of ∆u = 0.30 mm in Figures 12c and 13c.
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4.4. BTCs, First Arrival Times and the Residence Time Distributions (RTDs)

In order to analyze the influence of the contact area ratio and normal deformation on solute
transport, the corresponding flux-weighted BTCs were calculated for different values of H and ∆u,
as shown in Figure 14. The typical early arrival and long tail characteristics were observed in all of
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the BTCs, indicating non-Fickian transport. As was discussed in Sections 4.1 and 4.2, the preferential
transport caused by the complex aperture distribution and contact area was likely responsible for
the ubiquitous non-Fickian transport. In fact, for the cases with ∆u = 0.00 mm, the non-Fickian
characteristics were not obvious. However, the early arrival tends to be enhanced as ∆u increases,
which is directly caused by the enhanced preferential transport and diffusion process within the
fracture, as stated in Sections 4.2 and 4.3.
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Figure 14. Variations of BTCs at the outlets for fractures with different ∆u and H. The inserted figures
show the best-fitted BTCs using the advection–dispersion equation (ADE) and continuous time random
walk–truncated power law (CTRW–TPL) models.

To quantify the relationship between the observed early arrival characteristic and the contact
area ratio c in Figure 14, the normalized first breakthrough time Ts′ of the solute transport was
calculated using

Ts′ =
Ts
Ts0

(23)

where Ts is the first breakthrough time (when C′ equals 1 × 10−5) for ∆u = 0.15, 0.20, 0.25, and 0.30 mm,
and Ts0 is the first breakthrough time for ∆u = 0.00 mm.

Figure 15 shows the relationship between Ts′ and c for all numerical simulation cases. The results
show that as c increases, Ts′ decreases rapidly, and it is less than 0.83 when c ≥ 0.03%. In particular,
when c = 22.04%, Ts′ reaches a minimum value of 0.26, indicating that the contact area ratio significantly
affects the breakthrough time of the solute transport within the fractures.

According to the behaviors of the velocity fields and concentration fields within the fracture domain
(Sections 4.1 and 4.3), the presence and development of the contact areas within the rough-walled
fractures divide the fracture into immobile and mobile regions, which represent the zero-velocity or
low-velocity zone and the relatively high-velocity zone, respectively. This mobile-immobile region
causes solute exchange between the two regions across the fracture aperture because of the solute
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diffusion mechanism. Thus, this phenomenon is most likely responsible for the long tails of the BTCs.
In order to characterize the long tail characteristics of the BTCs, the residence time distributions (RTDs)
were calculated for the solute transport within the fractures under different normal deformations.

In this study, the RTDs were derived from the time derivative of the BTCs, RTDs(t) = dC′(t)
dt . Figure 16

shows the RTDs for solute transport through the fractures for different values of H and ∆u. The tail after
the peak is apparent in the RTDs and follows a power-law drop (especially for large ∆u). The degree
of the power-law drop increases as ∆u increases. This is attributed to the increase in the number of
contact spots cutting off the transport channels, thus increasing the arrival time of the solute at the
fracture outlet.
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Figure 16. Variations of residence time distributions (RTDs) for fractures with different ∆u and H.

4.5. Uniformity of the Concentration Distribution within the Fracture

The numerical simulations revealed the important non-uniform concentration distribution within
the fracture caused by the surface roughness and the contact areas, especially when the contact area



Water 2020, 12, 2049 19 of 25

ratio c increases (see Figures 12 and 13). As can be found in Figures 6, 7, 12 and 13, the solute
concentration in the main flow channel is higher than that in other channels, especially the low velocity
zones. However, this non-uniform concentration distribution tends to be uniform for continuously
injected solute. The evolution from non-uniform to uniform concentration distribution determines the
magnitude of the tails of the BTCs, i.e., the longer the evolution process, the heavier the tail. Here,
the metric of concentration distribution index (CDI) proposed in our previous study [15] is applied to
quantify the properties of the non-uniform concentration distribution. The CDI is defined as the ratio
between the total solute concentration within the full-scale fracture domain at dimensionless time t′ or
PV and the solute concentration of the uniform distribution state, which is mathematically equal to the
volume of the entire fracture. The CDI is given by

CDI =

t
Ω C′(x, y, z, t′)dxdydz

t
Ω C0dxdydz

=

t
Ω C′(x, y, z, t′)dxdydz

VC0
(24)

where Ω is the fracture domain or integral domain, and C′(x, y, z, t′) (kg/m3) is the solute concentration
within the fracture at dimensionless time t′ or PV. It should be noted that the larger the value of
CDI(t′), the more uniform the concentration distribution within the fracture domain.

Figure 17 illustrates the temporal evolution of CDI for H = 0.50, 0.55, 0.60, and 0.65 and ∆u = 0.15,
0.20, 0.25, and 0.30 mm. For all of the cases, CDI was less than 1.0 after one PV, suggesting the presence
of the non-uniform concentration distribution within the fracture. The CDI value at PV = 1.0 was
analyzed to quantify the differences between various rough fractures with different normal deformation
values (Figure 18). As can be seen in Figure 18, the CDI at PV = 1.0 decreased as ∆u increases, suggesting
that increasing the contact area enhances the non-uniform concentration distribution within the fracture
domain. This is likely the reason that the transport channel becomes more complex with increasing
contact area, leading to a longer time for the solute to spread and mix around the contact spots,
thereby delaying the time required to reach a uniform distribution (CDI = 1.0). Therefore, for large ∆u,
heavier tails were observed in the BTCs and RTDs.
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Figure 17. Temporal evolution of the concentration distribution index (CDI) for fractures with different
∆u and H.
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Figure 18. Relationships between the CDI (PV = 1.0) and H or ∆u: (a) CDI versus H; (b) CDI versus ∆u.

Figure 18a,b show the CDI as a function of the roughness parameter H for different normal
deformation levels and as a function of ∆u for different H, respectively. As can be seen in Figure 18a,
the fitted trend lines vary linearly with increasing H for increasing CDI, and CDI is larger than 0.90
when ∆u = 0.00 mm, while it is smaller than 0.8 when ∆u = 0.30 mm, indicating that surface roughness
has an important effect on the spreading and mixing process in solute transport. In contrast, when ∆u
increases, the CDI decreases exponentially (Figure 18b), indicating that the increased c, caused by
the normal deformation, results in a longer time for the solute/contaminant to fill the entire fracture.
Therefore, the contact area within the fracture plays an important role in delaying the solute exchange
between the region around the contact areas and the main flow channel, which directly results in the
tails of BTCs.

4.6. Inverse Model for Non-Fickian BTCs

To further investigate the impact of contact area on the non-Fickian transport behavior, the ADE
and CTRW models were used to fit all of the BTCs in this study. The inserted subfigures in Figure 14
show the best-fit results of the BTCs using the ADE and CTRW models. The root mean square error
(RMSE) was introduced to quantify the goodness-of-fit, which is given as follows:

RMSE =

√∑N

i=1

(
C f it,i −Cmodel,i

)2
/N (25)

where C f it,i and Cmodel,i represent the solute’s concentration at the ith point to be compared with the
fitting results and the numerical results, respectively; N is the number of data points in the BTC.

Figure 19 shows the boxplots of the RMSE of the BTCs between the numerical simulations and the
fitted results for all cases. The boxplots in Figure 19 reveal that the mean, maximum, and minimum
values of the CRTW fitting are smaller than the ADE fitting, and the RMSE of the CTRW fittings is
smaller than 1%, indicating that the best-fit results of the BTCs from the CTRW model are better than
those from the ADE model. This is because the TPL model embedded in the CTRW is capable of
capturing the early arrival and long tail phenomena, while the ADE falls short. Physically, the difference
between these two models is that the TPL–CTRW model uses a transition probability function that
allows for local heterogeneity, so it more accurately models the actual solute transport dynamics,
while the ADE inherently treats heterogeneous fractures as homogeneous media with a flow velocity
and dispersion coefficient that are constant in space and time.

β is the estimated parameter of the CTRW model for the numerical simulation cases, and it is
often applied as a metric for quantifying the degree of non-Fickian transport. Therefore, analyzing β
provides insight into the mechanism of the impact of contact area on non-Fickian transport. As can be
seen in Figure 20, βmostly ranges from 0.8 to 2, indicating a moderate non-Fickian transport regime for
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these cases, as described in Section 3.3.2. As can be seen in Figure 20a, the estimated β is smaller within
the fracture for lower H values, indicating that increased surface roughness enhances the heterogeneity
of the solute transport or non-Fickian transport. In addition, Figure 20b,c show that β decreases
exponential as ∆u and/or c increase, further suggesting that the normal deformation-induced contact
area plays a critical role in non-Fickian transport within the rough-walled fracture. The connections
we established between β and H, ∆u and c allow for the upscaling of the effects of local spreading
and mixing processes around the contact areas within the CTRW framework, at least for 3D single
rough-walled fractures.
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Figure 19. Boxplots of the root mean square error (RMSE) of the BTCs between the numerical
simulations and the fitted results: (a) ADE fitting; (b) CTRW fitting.
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5. Conclusions and Suggestions

In this study, a series of 3D self-affine fractal models were established to study the combined
effects of surface roughness and the contact area on non-Fickian transport. Fractures with different
surface roughnesses (H) were considered. The fracture surfaces were generated using the modified
successive random addition (SRA) method. Normal deformation (∆u) was applied on the upper
surface by fixing the lower surface. The evolutions of the aperture distribution and contact area ratio
(c) within the deformed rough-walled fractures were analyzed. In addition, the flow and transport
problem through the deformed rough-walled fractures was solved. The influence of ∆u and c on
the flow paths, permeability, and non-Fickian transport was estimated. The non-Fickian transport
properties resulting from H, ∆u, and c were systematically investigated. The following conclusions
were drawn from the results of this study:

(1) As ∆u increases, the contact area between the two fracture surfaces increases and more void
spaces are reduced. The streamlines within the rough-walled fractures show that the contact areas
block off the flow and, thus, the streamlines go around the contact areas, resulting in preferential
flow paths and a complex velocity distribution. The spatial evolution of the solute within the
fractures for different c values shows that the transport exhibits a strong channeling effect and
notable fingering type transport paths, indicating that the contact conditions have a crucial effect
on the flow paths and solute transport.

(2) The non-Fickian early arrival and long tail characteristics in all of the BTCs for fractures with
different ∆u and H values were captured. The normalized first breakthrough time (Ts’) at the
outlet for different c values was used to quantify the characteristic of the early arrival of the BTCs.
As c varies from 0% to 22.04%, Ts’ decreases from 0.83 to 0.26, indicating that the breakthrough
time of solute transport is shortened as the contact area ratio increases.

(3) The uniformity of the concentration distribution within the fracture was quantified using the
concept of the concentration–dilution index. The temporal evolution of the dilution index reveals
that the immobile zone around the developing contact areas provides strong resistance to solute
transport and delays the solute exchange with the main flow channel. We conclude that the
dilution index at a given pore volume (PV) can effectively describe the relationship between
the magnitude of the tails of the BTCs and the delayed rate of solute exchange. Although the
solute exchange processes between the main flow channel and the contact area cannot be directly
quantified, our results qualitatively highlight the fact that the tails are caused by the increasing
contact area and surface roughness.

(4) The CTRW–TPL model is quite capable of capturing the effect of contact area ratio on non-Fickian
transport in 3D rough-walled fractures. The estimated β values of the CTRW model decrease from
1.92 to 0.81 as c increases from 0% to 22.04% and H decreases from 0.65 to 0.50, indicating that the
developed contact area and rougher fracture surface increase the magnitude of the non-Fickian
transport. The connections we established between β and ∆u and c allow for the upscaling of the
effects of the local spreading and mixing processes around the contact areas within the CTRW
framework, at least for 3D single rough-walled fractures.

Author Contributions: Conceptualization, W.X. and Y.H.; methodology, Y.H. and Z.Y.; software, Y.H.; validation,
Y.H.; formal analysis, W.X., Y.H. and Z.Y.; investigation, Y.H.; resources, W.X. and Y.H.; data curation, Y.H.;
writing—original draft preparation, Y.H.; writing—review and editing, W.X. and L.Z.; visualization, Y.H.;
supervision, W.X. and L.Z.; project administration, L.Z. and Y.C.; funding acquisition, L.Z. and Y.C. All authors
have read and agreed to the published version of the manuscript.

Funding: The study is financially supported by the National Funds for Distinguished Young Scholars of China
(Grant Nos. 51625805), the National Key Research and Development Project (Grant Nos. 2018YFC1802300) and
the National Natural Science Foundation of China (No. 51988101).

Conflicts of Interest: The authors declare no conflict of interest.



Water 2020, 12, 2049 23 of 25

References

1. Zhou, R.; Zhan, H. Reactive solute transport in an asymmetrical fracture–rock matrix system. Adv. Water Resour.
2018, 112, 224–234. [CrossRef]

2. Wang, L.; Bayani Cardenas, M. Transition from non-Fickian to Fickian longitudinal transport through
3-D rough fractures: Scale-(in)sensitivity and roughness dependence. J. Contam. Hydrol. 2017, 198, 1–10.
[CrossRef]

3. Cvetkovic, V.; Frampton, A. Solute transport and retention in three-dimensional fracture networks.
Water Resour. Res. 2012, 48, 419–420. [CrossRef]

4. Zhao, Z.; Jing, L.; Neretnieks, I.; Moreno, L. Numerical modeling of stress effects on solute transport in
fractured rocks. Comput. Geotech. 2011, 38, 113–126. [CrossRef]

5. Bodin, J.; Delay, F.; de Marsily, G. Solute transport in a single fracture with negligible matrix permeability: 1.
fundamental mechanisms. Hydrogeol. J. 2003, 11, 418–433. [CrossRef]

6. Berkowitz, B. Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour.
2002, 25, 861–884. [CrossRef]

7. Moreno, L.; Neretnieks, I. Fluid flow and solute transport in a network of channels. J. Contam. Hydrol. 1993,
14, 163–192. [CrossRef]

8. Zhou, J.; Wang, L.; Chen, Y.; Cardenas, M.B. Mass Transfer Between Recirculation and Main Flow Zones:
Is Physically Based Parameterization Possible? Water Resour. Res. 2019, 55, 345–362. [CrossRef]

9. Dou, Z.; Sleep, B.; Zhan, H.; Zhou, Z.; Wang, J. Multiscale roughness influence on conservative solute
transport in self-affine fractures. Int. J. Heat Mass Transf. 2019, 133, 606–618. [CrossRef]

10. Zou, L.; Jing, L.; Cvetkovic, V. Modeling of Solute Transport in a 3D Rough-Walled Fracture–Matrix System.
Transp. Porous Media 2017, 116, 1005–1029. [CrossRef]

11. Kang, P.K.; Dentz, M.; Le Borgne, T.; Juanes, R. Anomalous transport on regular fracture networks: Impact of
conductivity heterogeneity and mixing at fracture intersections. Phys. Rev. E 2015, 92, 22148. [CrossRef]
[PubMed]

12. Geiger, S.; Cortis, A.; Birkholzer, J.T. Upscaling solute transport in naturally fractured porous media with the
continuous time random walk method. Water Resour. Res. 2010, 46, 264–278. [CrossRef]

13. Berkowitz, B.; Scher, H. Anomalous Transport in Random Fracture Networks. Phys. Rev. Lett. 1997, 79,
4038–4041. [CrossRef]

14. Chen, Z.; Zhan, H.; Zhao, G.; Huang, Y.; Tan, Y. Effect of Roughness on Conservative Solute Transport
through Synthetic Rough Single Fractures. Water 2017, 9, 656. [CrossRef]

15. Hu, Y.; Xu, W.; Zhan, L.; Li, J.; Chen, Y. Quantitative characterization of solute transport in fractures with
different surface roughness based on ten Barton profiles. Environ. Sci. Pollut. Res. 2020, 27, 13534–13549.
[CrossRef]

16. Carrera, J.; Sánchez-Vila, X.; Benet, I.; Medina, A.; Galarza, G.; Guimerà, J. On matrix diffusion: Formulations,
solution methods and qualitative effects. Hydrogeol. J. 1998, 6, 178–190. [CrossRef]

17. Zhu, Y.; Zhan, H. Quantification of solute penetration in an asymmetric fracture-matrix system. J. Hydrol.
2018, 563, 586–598. [CrossRef]

18. Zou, L.; Jing, L.; Cvetkovic, V. Modeling of flow and mixing in 3D rough-walled rock fracture intersections.
Adv. Water Resour. 2017, 107, 1–9. [CrossRef]

19. Zhu, Y.; Zhan, H.; Jin, M. Analytical solutions of solute transport in a fracture–matrix system with different
reaction rates for fracture and matrix. J. Hydrol. 2016, 539, 447–456. [CrossRef]

20. Becker, M.W.; Shapiro, A.M. Tracer transport in fractured crystalline rock: Evidence of nondiffusive
breakthrough tailing. Water Resour. Res. 2000, 36, 1677–1686. [CrossRef]

21. Silva, J.A.; Kang, P.K.; Yang, Z.; Cueto Felgueroso, L.; Juanes, R. Impact of Confining Stress on Capillary
Pressure Behavior during Drainage through Rough Fractures. Geophys. Res. Lett. 2019, 46, 7424–7436.
[CrossRef]

22. Huo, D.; Benson, S.M. Experimental Investigation of Stress-Dependency of Relative Permeability in Rock
Fractures. Transport. Porous Med. 2016, 113, 567–590. [CrossRef]

23. Watanabe, N.; Sakurai, K.; Ishibashi, T.; Ohsaki, Y.; Tamagawa, T.; Yagi, M.; Tsuchiya, N. Newν-type relative
permeability curves for two-phase flows through subsurface fractures. Water Resour. Res. 2015, 51, 2807–2824.
[CrossRef]

http://dx.doi.org/10.1016/j.advwatres.2017.12.021
http://dx.doi.org/10.1016/j.jconhyd.2017.02.002
http://dx.doi.org/10.1029/2011WR011086
http://dx.doi.org/10.1016/j.compgeo.2010.10.001
http://dx.doi.org/10.1007/s10040-003-0268-2
http://dx.doi.org/10.1016/S0309-1708(02)00042-8
http://dx.doi.org/10.1016/0169-7722(93)90023-L
http://dx.doi.org/10.1029/2018WR023124
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.12.141
http://dx.doi.org/10.1007/s11242-016-0810-z
http://dx.doi.org/10.1103/PhysRevE.92.022148
http://www.ncbi.nlm.nih.gov/pubmed/26382384
http://dx.doi.org/10.1029/2010WR009133
http://dx.doi.org/10.1103/PhysRevLett.79.4038
http://dx.doi.org/10.3390/w9090656
http://dx.doi.org/10.1007/s11356-019-07482-z
http://dx.doi.org/10.1007/s100400050143
http://dx.doi.org/10.1016/j.jhydrol.2018.06.029
http://dx.doi.org/10.1016/j.advwatres.2017.06.003
http://dx.doi.org/10.1016/j.jhydrol.2016.05.056
http://dx.doi.org/10.1029/2000WR900080
http://dx.doi.org/10.1029/2019GL082744
http://dx.doi.org/10.1007/s11242-016-0713-z
http://dx.doi.org/10.1002/2014WR016515


Water 2020, 12, 2049 24 of 25

24. Bertels, S.P.; DiCarlo, D.A.; Blunt, M.J. Measurement of aperture distribution, capillary pressure,
relative permeability, and in situ saturation in a rock fracture using computed tomography scanning.
Water Resour. Res. 2001, 37, 649–662. [CrossRef]

25. Zhou, J.; Hu, S.; Fang, S.; Chen, Y.; Zhou, C. Nonlinear flow behavior at low Reynolds numbers through
rough-walled fractures subjected to normal compressive loading. Int. J. Rock Mech. Min. Sci. 2015, 80,
202–218. [CrossRef]

26. Chen, Y.; Lian, H.; Liang, W.; Yang, J.; Nguyen, V.P.; Bordas, S.P.A. The influence of fracture geometry
variation on non-Darcy flow in fractures under confining stresses. Int. J. Rock Mech. Min. Sci. 2019, 113,
59–71. [CrossRef]

27. Vogler, D.; Settgast, R.R.; Annavarapu, C.; Madonna, C.; Bayer, P.; Amann, F. Experiments and Simulations of
Fully Hydro-Mechanically Coupled Response of Rough Fractures Exposed to High-Pressure Fluid Injection.
J. Geophys. Res. Solid Earth 2018, 123, 1186–1200. [CrossRef]

28. Liu, R.; Huang, N.; Jiang, Y.; Jing, H.; Yu, L. A numerical study of shear-induced evolutions of geometric and
hydraulic properties of self-affine rough-walled rock fractures. Int. J. Rock Mech. Min. Sci. 2020, 127, 104211.
[CrossRef]

29. Jeong, W.; Song, J. Numerical Investigations for Flow and Transport in a Rough Fracture with a
Hydromechanical Effect. Energy Sources 2005, 27, 997–1011. [CrossRef]

30. Koyama, T.; Li, B.; Jiang, Y.; Jing, L. Numerical simulations for the effects of normal loading on particle
transport in rock fractures during shear. Int. J. Rock Mech. Min. Sci. 2008, 45, 1403–1419. [CrossRef]

31. Kang, P.K.; Brown, S.; Juanes, R. Emergence of anomalous transport in stressed rough fractures. Earth Planet.
Sci. Lett. 2016, 454, 46–54. [CrossRef]

32. Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M. Application of a fractional advection-dispersion equation.
Water Resour. Res. 2000, 36, 1403–1412. [CrossRef]

33. Cherubini, C.; Giasi, C.I.; Pastore, N. Evidence of non-Darcy flow and non-Fickian transport in fractured
media at laboratory scale. Hydrol. Earth Syst. Sci. 2013, 17, 2599–2611. [CrossRef]

34. Dou, Z.; Chen, Z.; Zhou, Z.; Wang, J.; Huang, Y. Influence of eddies on conservative solute transport through
a 2D single self-affine fracture. Int. J. Heat Mass Transf. 2018, 121, 597–606. [CrossRef]

35. Haggerty, R.; Gorelick, S.M. Multiple-Rate Mass Transfer for Modeling Diffusion and Surface Reactions in
Media with Pore-Scale Heterogeneity. Water Resour. Res. 1995, 31, 2383–2400. [CrossRef]

36. Wang, L.; Cardenas, M.B. Non-Fickian transport through two-dimensional rough fractures: Assessment and
prediction. Water Resour. Res. 2014, 50, 871–884. [CrossRef]

37. Berkowitz, B.; Cortis, A.; Dentz, M.; Scher, H. Modeling non-Fickian transport in geological formations as a
continuous time random walk. Rev. Geophys. 2006, 44, G2003. [CrossRef]

38. Brown, S.R.; Scholz, C.H. Broad bandwidth study of the topography of natural rock surfaces. J. Geophys. Res.
Solid Earth 1985, 90, 12575–12582. [CrossRef]

39. Mandelbrot, B.B.; Pignoni, R. The Fractal Geometry of Nature; W. H. Freeman and Company: London, UK, 1983.
40. Odling, N.E. Natural fracture profiles, fractal dimension and joint roughness coefficients. Rock Mech. Rock

Eng. 1994, 27, 135–153. [CrossRef]
41. Belem, T.; Homand-Etienne, F.; Souley, M. Fractal analysis of shear joint roughness. Int. J. Rock Mech. Min. Sci.

1997, 34, 130–131. [CrossRef]
42. Bartoli, F.; Burtin, G.; Royer, J.J.; Gury, M.; Gomendy, V.; Philippy, R.; Leviandier, T.; Gafrej, R. Spatial variability

of topsoil characteristics within one silty soil type. Effects on clay migration. Geoderma 1995, 68, 279–300.
[CrossRef]

43. Homand-Etienne, F.; Belem, T.; Sabbadini, S.; Shtuka, A.; Royer, J.J. Analysis of the evolution of rock joints
morphology with 2D autocorrelation (variomaps). In Applications of Statistics and Probability; Lemaire, M.,
Favre, J.L., Mébarki, A., Eds.; Balkema: Rotterdam, Nederland, 1995; pp. 1229–1236.

44. Madadi, M.; Sahimi, M. Lattice Boltzmann simulation of fluid flow in fracture networks with rough,
self-affine surfaces. Phys. Rev. E 2003, 67, 26309. [CrossRef]

45. Voss, R.F. Random Fractal Forgeries; Springer: Berlin/Heidelberg, Germany, 1985.
46. Ye, Z.; Liu, H.; Jiang, Q.; Zhou, C. Two-phase flow properties of a horizontal fracture: The effect of aperture

distribution. Adv. Water Resour. 2015, 76, 43–54. [CrossRef]
47. Liu, H.; Bodvarsson, G.; Lu, S.; Molz, F. A corrected and generalized successive random additions algorithm

for simulating fractional levy motions. Math. Geol. 2004, 36, 361–378. [CrossRef]

http://dx.doi.org/10.1029/2000WR900316
http://dx.doi.org/10.1016/j.ijrmms.2015.09.027
http://dx.doi.org/10.1016/j.ijrmms.2018.11.017
http://dx.doi.org/10.1002/2017JB015057
http://dx.doi.org/10.1016/j.ijrmms.2020.104211
http://dx.doi.org/10.1080/00908310490450827
http://dx.doi.org/10.1016/j.ijrmms.2008.01.018
http://dx.doi.org/10.1016/j.epsl.2016.08.033
http://dx.doi.org/10.1029/2000WR900031
http://dx.doi.org/10.5194/hess-17-2599-2013
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.01.037
http://dx.doi.org/10.1029/95WR10583
http://dx.doi.org/10.1002/2013WR014459
http://dx.doi.org/10.1029/2005RG000178
http://dx.doi.org/10.1029/JB090iB14p12575
http://dx.doi.org/10.1007/BF01020307
http://dx.doi.org/10.1016/S1365-1609(97)80001-9
http://dx.doi.org/10.1016/0016-7061(95)00052-8
http://dx.doi.org/10.1103/PhysRevE.67.026309
http://dx.doi.org/10.1016/j.advwatres.2014.12.001
http://dx.doi.org/10.1023/B:MATG.0000028442.71929.26


Water 2020, 12, 2049 25 of 25

48. Dou, Z.; Zhou, Z.; Sleep, B.E. Influence of wettability on interfacial area during immiscible liquid invasion
into a 3D self-affine rough fracture: Lattice Boltzmann simulations. Adv. Water Resour. 2013, 61, 1–11.
[CrossRef]

49. Huang, N.; Liu, R.; Jiang, Y.; Li, B.; Yu, L. Effects of fracture surface roughness and shear displacement on
geometrical and hydraulic properties of three-dimensional crossed rock fracture models. Adv. Water Resour.
2018, 113, 30–41. [CrossRef]

50. Ye, Z.; Liu, H.; Jiang, Q.; Liu, Y.; Cheng, A. Two-phase flow properties in aperture-based fractures under
normal deformation conditions: Analytical approach and numerical simulation. J. Hydrol. 2017, 545, 72–87.
[CrossRef]

51. Wang, M.; Chen, Y.; Ma, G.; Zhou, J.; Zhou, C. Influence of surface roughness on nonlinear flow behaviors
in 3D self-affine rough fractures: Lattice Boltzmann simulations. Adv. Water Resour. 2016, 96, 373–388.
[CrossRef]

52. Molz, F.J.; Liu, H.H.; Szulga, J. Fractional Brownian motion and fractional Gaussian noise in subsurface
hydrology: A review, presentation of fundamental properties, and extensions. Water Resour. Res. 1997, 33,
2273–2286. [CrossRef]

53. Family, F.; Vicsek, T. Dynamics of Fractal Surfaces. World Sci. 1991. [CrossRef]
54. Babadagli, T.; Ren, X.; Develi, K. Effects of fractal surface roughness and lithology on single and multiphase

flow in a single fracture: An experimental investigation. Int. J. Multiphase Flow 2015, 68, 40–58. [CrossRef]
55. Zou, L.; Jing, L.; Cvetkovic, V. Roughness decomposition and nonlinear fluid flow in a single rock fracture.

Int. J. Rock Mech. Mech. Min. Sci. 2015, 75, 102–118. [CrossRef]
56. Walsh, R.; McDermott, C.; Kolditz, O. Numerical modeling of stress-permeability coupling in rough fractures.

Hydrogeol. J. 2008, 16, 613–627. [CrossRef]
57. Montemagno, C.D.; Pyrak-Nolte, L.J. Fracture network versus single fractures: Measurement of fracture

geometry with X-ray tomography. Phys. Chem. Earth Part. A Solid Earth Geod. 1999, 24, 575–579. [CrossRef]
58. Li, Y.; Chen, Y.; Zhou, C. Hydraulic properties of partially saturated rock fractures subjected to mechanical

loading. Eng. Geol. 2014, 179, 24–31. [CrossRef]
59. Wang, J.S.Y.; Narasimhan, T.N.; Scholz, C.H. Aperture correlation of a fractal fracture. J. Geophys. Res.

Solid Earth 1988, 93, 2216–2224. [CrossRef]
60. Oron, A.P.; Berkowitz, B. Flow in rock fractures: The local cubic law assumption reexamined. Water Resour. Res.

1998, 34, 2811–2825. [CrossRef]
61. Cvetkovic, V.; Selroos, J.O.; Cheng, H. Transport of reactive tracers in rock fractures. J. Fluid Mech. 1999, 378,

335–356. [CrossRef]
62. Neretnieks, I. Diffusion in the rock matrix: An important factor in radionuclide retardation? J. Geophys. Res.

1980, 85, 4379–4397. [CrossRef]
63. Bodin, J.; Delay, F.; de Marsily, G. Solute transport in a single fracture with negligible matrix permeability: 2.

mathematical formalism. Hydrogeol. J. 2003, 11, 434–454. [CrossRef]
64. Li, Y.H.; Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Ac 1974,

38, 703–714.
65. COMSOL Multiphysics. The AC/DC Module User’s Guide. V. 5.4.; COMSOL AB: Stockholm, Sweden, 2019;

pp. 75–84.
66. Dentz, M.; Cortis, A.; Scher, H.; Berkowitz, B. Time behavior of solute transport in heterogeneous media:

Transition from anomalous to normal transport. Adv. Water Resour. 2004, 27, 155–173. [CrossRef]
67. Cortis, A.; Berkowitz, B. Computing “Anomalous” Contaminant Transport in Porous Media: The CTRW

MATLAB Toolbox. Groundwater 2005, 43, 947–950. [CrossRef] [PubMed]
68. Fried, J.J.; Combarnous, M.A. Dispersion in Porous Media; Academic Press: New York, NY, USA, 1971;

Volume 7.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.advwatres.2013.08.007
http://dx.doi.org/10.1016/j.advwatres.2018.01.005
http://dx.doi.org/10.1016/j.jhydrol.2016.12.017
http://dx.doi.org/10.1016/j.advwatres.2016.08.006
http://dx.doi.org/10.1029/97WR01982
http://dx.doi.org/10.1142/1452
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.10.004
http://dx.doi.org/10.1016/j.ijrmms.2015.01.016
http://dx.doi.org/10.1007/s10040-007-0254-1
http://dx.doi.org/10.1016/S1464-1895(99)00082-4
http://dx.doi.org/10.1016/j.enggeo.2014.06.019
http://dx.doi.org/10.1029/JB093iB03p02216
http://dx.doi.org/10.1029/98WR02285
http://dx.doi.org/10.1017/S0022112098003450
http://dx.doi.org/10.1029/JB085iB08p04379
http://dx.doi.org/10.1007/s10040-003-0269-1
http://dx.doi.org/10.1016/j.advwatres.2003.11.002
http://dx.doi.org/10.1111/j.1745-6584.2005.00045.x
http://www.ncbi.nlm.nih.gov/pubmed/16324017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Fracture Model 
	Fracture Generation 
	The Relationship between the Aperture Distribution, Contact Area Ratio, and Normal Deformation 

	Direct Simulation of Conservative Solute Transport 
	Physical Considerations and Governing Equations 
	Direct Numerical Modeling Settings 
	Inverse Modeling Using Breakthrough Curves 
	1D Advection–Dispersion Equation (ADE) Model 
	Continuous Time Random Walk 


	Results and Discussion 
	Flow Field in the Fracture 
	Importance of Diffusion within the Fracture 
	Evolution of the Concentration Field 
	BTCs, First Arrival Times and the Residence Time Distributions (RTDs) 
	Uniformity of the Concentration Distribution within the Fracture 
	Inverse Model for Non-Fickian BTCs 

	Conclusions and Suggestions 
	References

