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Abstract: Debris flow events often pose significant damage and are a threat to infrastructure and
even livelihoods. Recent studies have mainly focused on determining the susceptibility of debris
flow using deterministic or heuristic/probabilistic models. However, each type of model has its own
significant advantages with some irreparable disadvantages. The random forest model, which is
sensitive to the region where the terrain conditions are suitable for the occurrence of debris flow,
was applied along with the steady-state infinite slope method, which is capable of describing the
initiation mechanism of debris flow. In this manner, a random-forest-based steady-state infinite
slope method was used to conduct susceptibility assessment of debris-flow at Changbai mountain
area. Results showed that the assessment accuracy of the proposed random-forest-based steady-state
infinite slope method reached 90.88%; however, the accuracy of just the random forest model or
steady-state infinite slope method was only 88.48% or 60.45%, respectively. Compared with the
single-model assessment results, the assessment accuracy of the proposed method improved by
2.4% and 30.43%, respectively. Meanwhile, the debris-flow-prone area of the proposed method
was reduced. The random-forest-based steady-state infinite slope method inherited the excellent
diagnostic performance of the random-forest models in the region where the debris flow disaster
already occurred; meanwhile, this method further refined the debris-flow-prone area from the suitable
terrain area based on physico-mechanical properties; thus, the performance of this method was better
than those of the other two models.

Keywords: debris flow susceptibility assessment; random forest model; steady state infinite slope
method; random forest model based steady state infinite slope method

1. Introduction

As one of the most widespread natural process in mountainous environments, the occurrence of
debris flow events often poses significant damage and a threat to infrastructure, urban development,
and the livelihood of humans, even potentially resulting in loss of life [1–3]. With rapid socio-economic
development, this situation tends to be more critical, particularly if it is not well handled. In this case,
relevant studies in these popular research areas have been the focus of many researchers. However,
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owing to the predisposing and triggering factors of this natural phenomenon, the total control of
debris flow events is always difficult, transforming the focus of contemporary studies from reducing
the occurrence of debris flow to predicting its spatial and temporal occurrence. With the advanced
prediction of this hazard, the damage and threat caused by this phenomenon may easily be mitigated
and/or avoided completely.

Currently, many studies focus on thoroughly determining the susceptibility to representing the
likelihood of debris flow occurrence. In these studies, the heuristic and probabilistic models are widely
used. The main postulation of these models is on the thought adopted from the principle that “the past
and present are keys to the future” [4], i.e., the area where debris flow has occurred in the past is most
likely to be affected by the same event in the future. It also means that areas with conditions similar to
those that have already been affected by debris flow are more prone to further debris flow events [5–7].
These models estimate the probability of debris flow occurrence by analyzing the relationship between
debris flow incidents and existing geo-environmental factors [8,9]. For instance, a study by Kritikos
and Davies [10] applied a data-driven fuzzy membership model to assess the susceptibility of debris
flow in the Southern Alps in southwestern New Zealand. Cama and Lombardo [11] adopted a binary
logistic regression model to estimate the susceptibility of debris flow in Messina, Italy. Furthermore,
a considerable number of studies have been performed using heuristic or probabilistic models to assess
the susceptibility of debris flow [12–14]. Despite the differences in the approach used, each model
requires an accurate, reasonable, and complete catalog of historical debris flow events [15], and the
support of detailed and sufficient environmental data to make the results relatively objective and
reproducible. Consequently, these models are commonly considered to constitute the most appropriate
approach at large or medium scales [16,17]. However, one of the greatest limitations of these models is
that acquiring accurate and complete historical records and detailed data, which is the key to suitable
susceptibility assessment, is often difficult to obtain [18–20]. In addition, the heuristic/probabilistic
models neglect the influence of physico-mechanical properties of upslope deposit materials [21].

Meanwhile, deterministic models are used to measure the slope stability in the form of an infinite
slope or factor-of-safety (FS) equation by considering the physico-mechanical properties, and providing
the most optimal quantitative results on debris flow susceptibility [16,22]. Deterministic models
not only take into account the influence of parameters such as cohesion, internal friction angle,
hydraulic conductivity, and pore water pressure but also consider specific triggering factors, such as
rainfall or floods, which influence the debris flow initiation [15]. Various studies [23–25] have used
deterministic models, including the transient rainfall infiltration and grid-based regional slope-stability
(TRIGRS) model, shallow landsliding stability (SHALSTAB) model, Systeme Hydrologique Européen
Transport model (SHETRAN), and stability index mapping model (SINMAP) to measure the slope
stability and assess the susceptibility level [26]. All these models are based on an infinite slope condition.
For instance, the TRIGRS model is based on a simplification of the Richards equation [27]. It enables
the assessment of the debris flow susceptibility through a determination of its initial characteristics and
run-off dynamics, such as location, volume, distance, and pathway [28–30]. Meanwhile, the SHALSTAB
model has also been used to assess the debris flow susceptibility in many studies like that of Mead
and Magill [31] which combined the SHALSTAB model with a surface erosion model to conduct
susceptibility assessment. As in the case of heuristic/probabilistic models, deterministic models
have their own limitations as well. Owing to the uniqueness of triggering and environment factors,
it tends to be hard for determining the properties of debris flow occurrence region [1]. Meanwhile,
most deterministic models require experiments at the laboratory scale, or in a more regular channel.
However, experiments conducted in a controlled environment always differs from the occurrence of
the event in the field, making it difficult to apply the results to real conditions [32].

Debris flow is a class of mass flows, containing a mixture of water and debris formed as
a consequence of the presence of four controlling factors: (1) water, (2) easily entrained debris,
(3) steep slope, and (4) a triggering mechanism [27,33,34]. In deterministic models, debris flow
susceptibility is measured by considering the influence of these four controlling factors. However,
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given that the actual terrain is extremely complex, because the physico-mechanical properties varied
strongly in a spatial sense. So, it is difficult to obtain accurate physico-mechanical properties data at
medium/large scale. Only the precision of the slope factor (obtained from the high-precision digital
elevation model) is qualified at regional scale. But it is impossible to replace and reflect the influence
of the actual terrain (i.e., steep and confined pathways) to debris flow hazard only depending on
the slope gradient. But for heuristic/probabilistic models, the debris flow susceptibility is primarily
assessed by considering the abundance of the background information (including factors such as slope,
curvature, elevation, and terrain complexity). Thus, these heuristic/probabilistic models can clearly
reflect the influence of complex terrain on the debris flow hazard. But these types of models mainly
consider the susceptibility from the perspective of debris flow pathways; meanwhile, the influences of
the other three controlling factors are neglected. Such problems are responsible for the uncertainties
in susceptibility assessment when using heuristic/probabilistic or deterministic models, and it is
important to solve them to improve the assessment accuracy. Although, either the deterministic or
heuristic/probabilistic models are all appropriate for medium or large-scale debris flow susceptibility
assessment [16]. But the deterministic models are difficult to obtain the necessary intensive and
reliable field survey data and heuristic/probabilistic models have a lack of consideration for initiation
mechanisms and physico-mechanical properties. Thus, determining the optimum model for debris
flow susceptibility assessment remains a difficult task.

To overcome such a problem, the current study proposes a methodology that combines the results
of deterministic models with those of heuristic/probabilistic models for susceptibility assessment.
The method calculates susceptibility based on the influences of abundant background information
(i.e., steep and confined pathways) and takes the four controlling factors (i.e., water, easily entrained
debris, steep slope, and triggering mechanism) into consideration. Therefore, this study uses a
new perspective, providing a different train of thought and approach to dealing with debris flow
susceptibility assessment, and rendering the results somewhat different from those of previous studies.
To demonstrate the feasibility of the proposed method, multi-source data are used to the extent possible
to characterize the terrain and physico-mechanical conditions of debris-flow occurrence. The aim is to
conduct debris flow susceptibility assessment using the proposed method and verify the accuracy of
the result, after that compare with the random forest model (representing the heuristic/probabilistic
model) and steady-state infinite slope method (representing the deterministic model) to determine the
optimal model.

2. Study Area

Changbai Mountain is the most likely active volcano to erupt in China, with the most recent
eruption occurring in 1900 [35,36]. This area is one of the most famous scenic areas in the world,
well-known by the spectacular scenery and by TianChi Lake, which lies in a volcano. With the further
development of the scenic nature of the mountainous landscape and TianChi Lake, the popularity of
this area for domestic and international tourism has increased tremendously, leading to a significant
increase in the likelihood of being affected by a hazard. The study area is located on the north side
of Changbai Mountain (128◦2′48” E to 128◦3′28” E and 42◦3′30” N to 42◦1′20” N) of Jilin Province,
China (Figure 1). The area size is approximately 10 km2, and the main part of the scenic area is located in
this region, including several well-known scenic spots, such as Changbai Waterfall, Changbai Mountain,
TianChi, and Yuehua Square, containing well-developed tourism infrastructure. The elevations of
the study area range from 1755 m to 2655 m a.s.l., with a mean value of 2170 m a.s.l., whereas the
slopes range from 0◦ to 83◦, with a mean value of 25.53◦. Thus, the terrain of the study area was
extremely complex. Owing to the occurrence of several eruptions in the past 5000 years [37], the entire
area is covered by different thicknesses of pyroclastic debris, with the thicknesses ranging from 0 to
10 m. Because of this characteristic, abundant source material was available for debris flow disasters.
Therefore, with the stimulation of the appropriate triggering factor, this area is extremely prone to
debris flow disaster. The annual precipitation (one of the potential triggering factors) range from
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1300 mm to 1400 mm, and extreme precipitation event often occur in this area [38]. In addition,
the water capacity of TianChi Lake is approximately 2040 km3, and the lake level may uplift rapidly
when affected by some triggering event (e.g., collapse or eruption). By observing Figure 1, we can
note that the topography of this region leads to the lake water draining only from the north side,
causing debris flow disaster.

Figure 1. Location of the study area.

3. Materials and Methods

This research conducted debris flow susceptibility assessment using proposed random forest-based
steady-state infinite slope method (RF-SSIS), random forest (RF) mode, steady-state infinite slope
(SSIS) method, and verified the accuracy of results respectively. To find out the most optimum model.
The framework of whole study is shown in Figure 2.

First, through the topographic map, nine terrain parameters (i.e., slope, elevation, curvature,
plane-curvature, profile-curvature, topographic wetness index (TWI), terrain ruggedness index (TRI),
slope gradient, slope length index (SLI), and distance to rivers) were obtained, which were used in
RF model. The ten physico-mechanical parameters (i.e., cohesion, internal friction angle, hydraulic
conductivity, slope gradient, thickness of the loose sediments, cumulative drainage area, length of
cumulative drainage, specific weight of water, specific weight of saturated loose sediments, and net
rainfall) used in SSIS method were obtained from high resolution image, source material thickness
(thickness of the loose sediments) map, and geological map.

Second, the terrain parameters were divided into training and testing data. The training data was
used to train the RF model and calculate the susceptibility of study area. The ten physico-mechanical
parameters were used to calculate the factor of safety value (susceptibility value) through SSIS method.

Third, all nineteen parameters were assigned to the RF-SSIS method to calculate the debris flow
susceptibility of the study area.
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Finally, the prediction accuracies of the three models were calculated and the most optimum
model was obtained.

The probabilistic model was used to measure the likelihood of debris flow occurring in the terrain
of the study area. Thus, only parameters that represent the complexity of the terrain were selected
for computational purposes. With the help of GIS tools, the 1-m resolution digital elevation model
(DEM) was obtained from a topographic map with a 1:5000 scale, as provided by the Jilin Institute of
Geological Environment Monitoring (JIGEM). In the same DEM, nine parameters (Figure 3a,b) were
identified and used in the models to calculate the susceptibility of the debris flow. Such parameters
include the slope, elevation, curvature, plane-curvature, profile-curvature, topographic wetness index
(TWI), terrain ruggedness index (TRI), slope gradient, slope length index (SLI), and distance to rivers.
For successful debris flow susceptibility assessment, it is important to focus on accuracy and a reasonably
complete disaster inventory [39]. Thus, the debris flow inventory of the study area was provided
by JIGEM while recording the details, including the occurrence location, time, intensity, source area,
pathways, accumulative area, and the triggering factors—time and intensity—of eight investigated
debris flow events. According to Cama [11] the debris flows can be described as rapid gravity-induced
mass movements controlled by topography, which are usually triggered as a consequence of storm
rainfall. Therefore, the prone area should be the source area and pathways; meanwhile, the pixels inside
the accumulative area should not be included in the sample data. In this study, there are 101,830 pixels
within the source area and pathways that belong to the sample data, of which 80% were selected as the
training data to train the model, while the remaining 20% was used to verify the accuracy of the results.
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Figure 3. Nine parameters used in the heuristic/probabilistic model: (a) elevation; (b) slope;
(c) topographic wetness index (TWI); (d) curvature; (e) plan-curvature; (f) profile-curvature;
(g) terrain ruggedness index (TRI); (h) slope gradient, slope length index (SLI); (i) distance to rivers.

From the deterministic models used in this study, four main parameters were needed, namely,
(1) internal friction angle, (2) cohesion, (3) thickness of the soil, and (4) hydraulic conductivity.
Internal friction angle is the shear strength index of soil, it reveals the friction properties; cohesion is the
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attraction between homogeneous substance. These two parameters indicate the strength of soil stability,
the higher the value means the soil is more stability. Soil is the most important component of debris
flow, the thickness of soil directly affects occurrence probability and intensity of debris flow. When the
thickness is equal to 0 or very small, it only can cause flood instead of debris flow. Hydraulic conductivity
is the index that measures the infiltration speed and volume of water; it affects the internal balance of
soil. When the internal balance breaks, the soil becomes unstable. For accuracy and an appropriate
definition of the soil’s physico-mechanical properties for the given region, lab tests should be conducted.
However, owing to the spatial variability of these parameters, the values of the parameters tend to
vary strongly spatially, even in small areas, and thus significantly more in a medium-scale area such as
the study area. Thus, on a regional scale, defining the properties of the soil through a lab test is not
feasible. Therefore, some studies defined the properties of the soil based on soil maps and the support
of expert criteria [40]. They assumed that the unique physico-mechanical properties of each soil classes
were homogeneous, did not vary spatially. Thus, the different physico-mechanical properties could be
assigned to each soil classes with the help of experts with professional knowledge of the geological,
geomorphological, and geotechnical characteristics of the study area. Notably, the correct procedure to
discriminate the different physico-mechanical characteristics of the homogeneous region should be
based on the soil maps; however, sometimes, the soil map was not available at the regional scale [41].
Another way to define soil properties was to extrapolate them from geological and land coverage maps
that are more ordinary. In this way, the homogeneous regions could be reclassified as a portion of
the territories with the same geology formation and/or the same land coverage features. This study
based on the thoughts presented by Bregoli [40], to differentiate homogeneous soil classes based on the
land coverage and geology maps (Tables 1 and 2, respectively). The use of such assigned values in
this study is supported by various local and international studies [40,42–44]. In this study, the critical
net rainfall threshold used was provided by the Jilin Meteorological Service, and the land coverage
map was obtained from a high-resolution satellite image−Airbus with a 0.89 m spatial resolution,
providing different soil classes as shown in Figure 4. Geological and source material thickness spatial
distribution maps at 1:10,000 scale was provided by the JIGEM (Figures 5 and 6).

Table 1. Reclassification of land coverage map and assignation of cohesion and internal friction angle.

Land Coverage Classes Description C (KPa) ϕ (◦)

1 Dense and spares woods 13 c 26 c

2 Subshrubs, grasslands, and meadow 13 c 26 c

3 Rocks 6.21 b 50.43 b

4 Screes 2.92 b 40.02 b

5 Continental water bodies 0 0
6 Slit 5 a 20.3 a

7 Urban areas and transportation infrastructures 50 a 42.9 a

a Bregoli et al. [40]; b Hui et al. [42]; c Yan [43], (ND means No data).

Table 2. Hydraulic conductivity values per geological classes.

Short Description K (mm/Day)

Dolostone, pelite and limestone, calcarenite, marl, ophitic diabase, quartz diorite,
granite, leucocratic granite, granodiorite, slate 1900 d

Silt and pebble, block and clay 4223 d

Conglomerate, coal 8681 d

rock mass ND
Urban areas, transportation infrastructures ND

Continental water bodies ND
d Wenfei [44] (ND means no data).
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After data preparation, the obtained parameter was assigned to three models to conduct debris

flow susceptibility assessment. The details of three models used in this paper are shown below.

3.1. Random Forest Regression Model

As a highly flexible machine learning algorithm rising in popularity, random forest (RF) is
a classifier that contains several decision trees by considering an ensemble, i.e., forest of n trees,
to multiply the efficiency and predictive capability accordingly [45]. Initially, the RF model was
applied in marketing or insurance; nowadays, it is used in many probabilistic models to assess disaster
susceptibility. The model has been commonly used and is well-known as an excellent means of
prediction performance through a reliable processing procedure [46,47]. In addition, it has great
tolerance for outliers and data noise and not easy to over-fit. The RF model was conducted in
the following steps: (1) Bootstrap aggregation (bagging) was used to randomly extract N distinct
samples from the original training sample dataset K times, and K decision trees were built based
on these samples; (2) for each conditioning parameter with L attribute variables (in this case there
are 9,657,550 variables in each parameter), a random constant I was assigned, and I variables were
selected from L, in which I << L, because if I is higher than L, it will create a lot of null value, leading to
the invalid results; (3) each node was split according to step 2 until splitting could no longer occur;
(4) steps 1–3 were repeated K times to build the random forest. For classification, voting was performed
to obtain the optimum result. For regression, the mean value of all trees was used, resulting in the
optimum prediction result. Unselected data are referred to as out-of-bag (OOB) data, which were
used to calculate the error of the model (i.e., OOB error) and are equal to the standard deviation
error between the predicted and observed values. The random forest regression model was used
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to assess the probability of debris flow occurrence for each pixel by considering a combination of
nine parameters, including curvature, TRI, and distance to the river. In the training of the RF model,
the debris flow existed regions were recorded as 1, whereas the non-debris flow regions were recorded
as 0. After recording, a regression was performed, and the resulting values ranged from 0 to 1.
Through the different combination of these parameters, the complexity of the real terrain was explained.
The area is said to have a high likelihood of debris flow occurrence if the combinations are more similar
to the area where the debris flow of other similar events has already occurred. Nevertheless, in this
study, the RF model was still unable to express the initiation mechanism of the debris flow disaster.

3.2. Steady-State Infinite Slope Method

As a traditional approach, SSIS method is able to estimate the factor of safety value to measure
the slope stability. According to the conservation of mass and Darcy’s law, for a given cell of region
with a cumulative drainage area a and length b, the steady-state condition can be expressed as

a(p− PE) − q = 0, f or h ≤ z, (1)

q = bhK sinα cosα, (2)

where α is the slope gradient of a given cell, h is the water table depth, z is the thickness of the loose
sediments, K is the hydraulic conductivity, q is the groundwater outflow, p is the amount of rainfall,
and PE is the potential evapotranspiration. This leads to the value (p− PE) as the net rainfall.

Another main assumption of this method is that the infiltration capacity of the soil considered far
exceeds the net rainfall. Hence, over-land water can infiltrate to water instantly which can lead to the
negligence of the over-land flow, in which only the groundwater flow is considered.

Combining Equations (1) and (2), the ratio between the water table depth and thickness of loose
sediment/s can be derived by the following equation, as postulated by Montgomery and Dietrich [48]:

h
z
=

I
Kz

a
b

1
sinα cosα

, (3)

where, I = (p− PE). The stability of a completely saturated loose sediment layer can be computed
based on the method proposed by Skempton and DeLory [49] and expressed as the FS:

FS =
c′ + zγw cos2 α tanϕ

zγs sinα cosα
−
γw tanϕ
γs tanα

(
h
z

)
, (4)

where, ϕ is the internal friction angle c′ is cohesion, γw and γs are the specific weight of water and
saturated loose sediments, respectively.

The initiation of rainfall-triggered debris flow was due to the high-pore-pressure reducing ratio
between the resisting and acting stresses. The condition is that, when the ratio is lower than 1, the loose
sediment layer becomes unstable, initiating the debris flow disaster. The behavior is described by
the common Mohr-Coulomb failure approach to the infinite slope stability [50]. But, when the soil
thickness was greater than the length and width of source materials, this assumption no longer holds
up. Despite the thickness of pyroclastic debris in this study ranging from 0 to 10 m, it was still far
from its length and width. In this case, the steady-state infinite slope (SSIS) method was adopted to
measure the FS of the study area. The SSIS method measures the slope stability through a simplified
way to calculate the water pore pressure [51,52]. At first, the method assumed the study area to have
rainfall of constant intensity with an indefinite duration, causing the water table to reach steady-state
conditions. The slope meets the limit equilibrium condition when FS equals to 1, and if FS ≥ 1, the slope
is recognized as unstable.

There are two limit cases that complicates the assessment based on Equation (4). These are the
unconditionally unstable case (UUC) and unconditionally stable case (USC), respectively. While UUC
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represents the unstable slope found in a dry condition, such as a steep slope, USC represents the stable
slope found in a completely saturated condition, such as that of a flat area. The two cases are indicated
based on Equations (5) and (6). In this study, any region falling under these two conditions was not
considered, and hence, removed from the general calculation. Generally, regions with a slope higher
than 45◦ were eliminated along with flat regions.

tanα ≥
tanϕ

1− c′
zγs sinα cosα

, (5)

tanα <
tanϕ

(
1− γw

γs

)
1− c′

zγs sinα cosα

, (6)

The SSIS method used ten parameters including cohesion, internal friction angle, and water
conductivity to calculate the FS value of the slope. The FS value can also indicate the susceptibility of
debris flow. In this analysis, a higher FS means that the pixel was more prone to debris flow occurrence.

3.3. Random Forest Model-Based Steady-State Infinite Slope Method

Despite the good performance exhibited by the RF model and SSIS method in debris flow
susceptibility assessment, the two are not without some significant limitations, hindering the suitability
of assessment performance. During susceptibility assessment, the RF model considers an abundance of
background information i.e., topographical information for calculations, making it somewhat sensitive
to terrain prone to debris flow occurrence. However, it did not consider the initiation mechanism
of debris flow during calculation; thus, physico-mechanical parameters were not considered in the
calculation. On other hand, the SSIS method was used to measure the slope stability by considering
the parameters such as cohesion, internal friction angle, source material et al., which is closer to the
real debris flow initiation mechanism. However, owing to the spatial variability of physico-mechanical
parameters, it is hard to obtain the values of these parameters. But, because the cumulated drainage
area and the slope factors were obtained from the high-precision DEM, so only these data were
precisely enough for indicating the influence of real terrain conditions on debris flow. In this study,
the remaining physico-mechanical parameters were assigned based on the land coverage and geological
map. Thus, the precision of remaining parameters was not enough to indicate the influence of real
terrain conditions on debris flow, making incomplete and inappropriate results with respect to the
actual situation. It is because of such drawbacks that the study uses a random forest model-based
steady-state infinite slope method (RF-SSIS) to calculate the debris flow susceptibility, producing an
entire new way of thinking, as shown in Figure 7.

First, the RF model (model 1) and SSIS (model 2) method are used to successfully conduct the
susceptibility assessment in the study area, in addition, neglecting the use of Equations (5) and (6) to
eliminate the unqualified area of model 2.

Second, the results from Model 1 and Model 2 were overlapped, and two results (FS value and
RF results) were assigned to each pixel.

In this case, a threshold of 0.5 was set, and filtering was performed to retain the pixels with RF
values greater than or equal to 0.5. This allowed to eliminate pixels with no-suitable terrain condition.

Third, only the FS value was retained and the RF result value was deleted. In this case, only the
region with the terrain condition suitable for debris flow occurrence has the FS value, and the FS
value of other regions was 0. After that, centered as 1 and normalization was performed of the FS
result obtained from step 2. Normalization matches the quantized range of FS with the RF result.
Furthermore, the slope reached a critical condition at FS = 1.
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Finally, results obtained from step 3 were overlapped with the RF results obtained from step 1.
In this way, each pixel had two values again. Then, the mean of these two values was taken, and a
result was obtained with values ranging from 1 to 0. The closer this value is to 1, the more this pixel
represent an area prone to debris flow.

This method through Step 2 was used to remove the regions where the terrain conditions were
not suitable for debris flow occurrence. This is because the RF model was considered for the abundant
background information (i.e., terrain information); thus, its result can reveal the influence of the actual
terrain on the debris flow more objectively. After elimination, the terrain conditions of the remaining
regions (RF > 0.5) were considered debris-flow-prone areas. The final mean value indicates both the
influence of physico-mechanical properties and the terrain conditions of the occurring debris flow.

3.4. Receiver Operating Characteristic Curve

The performance of the prediction accuracy for debris flow susceptibility can be assessed using the
receiver operating characteristic (ROC) curve method, which plots the true positives rate (i.e., sensitivity)
versus the false positives rate (i.e., 1-specificity), which was used to measure the goodness-of-fit of
the model prediction. The true positives rate is the ration between number of true positives pixels
(TP) and number of positives pixels (P). The false positives rate is the ration between number of false
positives pixels (FP) and number of negative pixels (N). TP means the pixels classified as debris-flow
prone by model, and belongs to the pixels where the debris-flow actually occurred before classification
as well. FP means the pixels classified as debris-flow prone by model, but belongs to the pixels where
the debris-flow does not occur before classification. P means all the pixels inside the actually occurred
debris-flow. N means all the pixels outside the actually occurred debris-flow. P is the sum of TP and
FN (false negative). N is the sum of FP and TN (true negative). FN means the pixels classified as
debris-flow non-prone by model, but belongs to the pixels where the debris-flow actually occurred
before classification. TN means the pixels classified as debris-flow non-prone by model, and belongs to
the pixels where the debris-flow does not occur before classification as well. The area under the curve
(AUC) value represents the area under the ROC curve, which is utilized to quantitatively show the
results of the ROC. The AUC varies from 0.5 (diagonal line) to 1, with higher values indicating better
predictive capability of the model.
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4. Results

Susceptibility assessment results of the RF model and SSIS method are shown in Figure 8a,b,
respectively. The regions of the RF results with values greater than 0.5 account for 33.84% of the
entire study area (Figure 8a), mainly distributed around the major gullies. The regions with FS values
(SSIS results) greater than 1 account for 30.99% of the entire surveyed area (Figure 8b), mainly distributed
in the regions with slope ranging from 5◦ to 40◦. When assessing the OOB error, after establishing
100 trees, the error rate of the RF model reached a minimum with the tendency of becoming stable.
Thus, this study used an RF model with 300 trees and conducted a debris flow susceptibility assessment;
as such the results are comparatively credible.

Water 2020, 12, x FOR PEER REVIEW 14 of 21 

 

  
(a) (b) 

Figure 8. Results of RF and SSIS: (a) Result of RF model; (b) result of SSIS method. 

The result of the RF-SSIS is shown in Figure 9; in this result, the debris-flow-prone region, i.e., 
the region with pixel values higher than 0.5, accounted for 26.01% of the entire study area (Figure 10). 
The elimination of the region was conducted based on the result of Model 1 (RF model); thus, the 
distribution of the debris-flow-prone area of the RF-SSIS was generally similar, even though the area 
decreased by 7.83% (Figure 10). After the debris flow susceptibility assessment was conducted, the 
remaining 20% of the sample data was used to verify the accuracy of the result. It shows that the 
prediction accuracy (AUC) of Model 1 (RF model) was 88.48%, and that of Model 2 (SSIS method) 
was 60.45% (Figure 11). Thus, we noticed that the gap in the prediction accuracy of these two models 
was significant. Furthermore, the prediction accuracy (AUC) of the RF-SSIS method reached 90.88%, 
with the AUC value improving by 2.4% and 30.43% (Figure 11), compared with the RF model and 
SSIS method, respectively. For the RF model, the proposed RF-SSIS method not only improved the 
prediction accuracy but also reduced the area of the debris-flow-prone region. This is due to the fact 
that the method identifies and eliminates some regions that are unsuitable for the occurrence of debris 
flow in terms of the mechanism or physico-mechanical properties. Then, as opposed to the SSIS 
method, the RF-SSIS method determined the favorable terrain for the occurrence of debris flow based 
on the abundant background information, with better performance than that provided by the 
elimination of the unfitted area based on Equations (5) and (6). Afterwards, the susceptibility 
assessment through the aspect of mechanism and terrain conditions and the result was more reliable 
and accurate. 

Figure 8. Results of RF and SSIS: (a) Result of RF model; (b) result of SSIS method.

The result of the RF-SSIS is shown in Figure 9; in this result, the debris-flow-prone region, i.e.,
the region with pixel values higher than 0.5, accounted for 26.01% of the entire study area (Figure 10).
The elimination of the region was conducted based on the result of Model 1 (RF model); thus,
the distribution of the debris-flow-prone area of the RF-SSIS was generally similar, even though the
area decreased by 7.83% (Figure 10). After the debris flow susceptibility assessment was conducted,
the remaining 20% of the sample data was used to verify the accuracy of the result. It shows that the
prediction accuracy (AUC) of Model 1 (RF model) was 88.48%, and that of Model 2 (SSIS method)
was 60.45% (Figure 11). Thus, we noticed that the gap in the prediction accuracy of these two models
was significant. Furthermore, the prediction accuracy (AUC) of the RF-SSIS method reached 90.88%,
with the AUC value improving by 2.4% and 30.43% (Figure 11), compared with the RF model and
SSIS method, respectively. For the RF model, the proposed RF-SSIS method not only improved the
prediction accuracy but also reduced the area of the debris-flow-prone region. This is due to the
fact that the method identifies and eliminates some regions that are unsuitable for the occurrence
of debris flow in terms of the mechanism or physico-mechanical properties. Then, as opposed to
the SSIS method, the RF-SSIS method determined the favorable terrain for the occurrence of debris
flow based on the abundant background information, with better performance than that provided
by the elimination of the unfitted area based on Equations (5) and (6). Afterwards, the susceptibility
assessment through the aspect of mechanism and terrain conditions and the result was more reliable
and accurate.
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5. Discussion

On the basis of multi-source data, RS, and the GIS technique, the debris flow susceptibility
assessment of the study area was implemented using three different models (RF, SSIS, RF-SSIS). The RF
model and SSIS method used in this research represented the heuristic/probabilistic and deterministic
models, respectively. The SSIS method (i.e., deterministic model) predicted the future according the
current situation [53–55] and the RF model (i.e., heuristic/probabilistic model) predicted the future
based on the past and present [56–60]. Each of these methods has a robust theoretical basis and
practical support; however, each has outstanding advantages and also some irreparable disadvantages.
The SSIS method, couples a Mohr-Coulomb failure mechanism with a steady state lateral flow to
calculate susceptibility. When using SSIS method at a regional scale for assessment, the disadvantages
of this method still caused a lower prediction performance. Meanwhile, the SSIS method assumed that
each of the pixels inside the study area was an independent infinite slope. So, the pixel interconnection
was neglected. [40,61]. However, in actuality, the terrain condition of the source area and pathway of
debris flow was extremely complex, meanwhile, every pixels were interacted with the neighboring
eight pixels, also affected by them; for instance, it was assumed that before the occurrence of debris
flow, each of the pixels inside the region had a slope gradient that differed from others. Owing to the
fact that the slope of some pixels may approach 0◦ or be higher than 45◦, these pixels were considered
as non-prone by SSIS method. But owing to these pixels inside the source area or pathway region,
they actually belong to debris-flow prone in reality. In addition, Figure 8b shows that many plain slope
regions were recognized as debris-flow-prone areas. As for every single pixel inside these regions,
the parameters of each pixels supported them to classified as debris-flow prone; however, from the
regional perspective, the terrain condition of these regions cannot support this classification. For the
RF model, owing to the accessibility of high-precision data, it can fix the disadvantage of SSIS method
in obtaining accurate and reliable physico-mechanical parameters. The parameters like LSI, TWI,
and TRI can reflect the interconnection of pixels. Thus, one of the great advantages is that this model
can effectively determine the regions with the terrain condition suitable for the occurrence of debris
flow under the support of sufficient disaster inventory and geo-information data. But this is also its
biggest weakness, because the RF model was limited to just locating the appropriate regions; yet,
there was a lack of consideration of starting mechanism or physico-mechanical properties, causing
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some regions with suitable terrains to be considered as debris-flow-prone regions, but because of the
restrictions on the physico-mechanical properties such as hydraulic conductivity or thickness of the
loose sediment, these regions are hard to become debris-flow-prone regions in reality. Even if one tries
to assign physico-mechanical properties parameters to the RF model, the lack of the actual values
before debris flow made it impossible to achieve.

The main thought of the RF-SSIS method proposed by this research was to integrate the strong
points of SSIS and RF models to improve the prediction accuracy of the debris flow susceptibility
assessment from entirely different perspectives. The strong point of the RF model was to seek terrain
prone to debris flow [47], with the result value ranging from 0 to 1 and 0.5 as the critical point.
Regions with values higher than 0.5 were classified as debris-flow-prone regions, whereas the closer
this value is to 1 signifies regions more prone to debris flow. Therefore, filtering was conducted,
eliminating the non-conforming regions in the SSIS result based on the condition that the pixel RF
value was equal or greater than 0.5. After the elimination, the terrain conditions of the remaining
regions was considered as prone to debris flow. Meanwhile, the FS value of the pixel further quantified
the likelihood of debris flow occurrence (i.e., the susceptibility) from the aspect of physico-mechanical
properties and initiation mechanism [62]. Even if the eliminated regions had a higher FS value but the
basic terrain conditions were unsuitable, these regions still did not belong to the debris-flow-prone
area. After the remaining SSIS result was overlapped with the result of RF model, the mean value
of these two were taken, the RF-SSIS models result was obtained with value ranging from 0 to 1.
The RF-SSIS models not only evaluated the debris flow susceptibility from the perspective of the
deterministic model but also evaluated the debris flow susceptibility from the perspective of the
heuristic/probabilistic model. In addition, when the RF-SSIS result was higher than 0.5, it must have
meant that these pixels were prone to debris flow, and there were several situations that lead to
the values greater than 0.5. First, these pixels were suitable for the occurrence of debris flow both
from the terrain condition and the physico-mechanical properties (both the values RF and SF were
higher than 0.5); thus, the final susceptibility values were higher than 0.5. Second, in the case in
which one condition was very suitable for debris flow, e.g., the very suitable region terrain conditions
(RF value higher than 0.7) with unsuitable physico-mechanical properties (SF value between 0.3 to 0.4),
synthetical considerations determined this region as debris-flow-prone regions (final value higher
than 0.5). If both conditions were not suitable (both lower than 0.5) or one condition was extremely
unsuitable (equal to 0), this region must not be the debris-flow-prone area because the final value was
lower than 0.5.

As shown in Figure 11, when comparing the proposed method with the RF model,
the determination of true-positive pixels was improved slightly, but the determination of false-positive
pixels was improved significantly. From Figures 8 and 9 we can notice the pattern mentioned before,
the reduction of the prone area outside the debris-flow-existed region was significant; however, the status
inside the debris-flow-existed region was basically unchanged. This is due to the proposed RF-SSIS
method inheriting the excellent diagnostic performance of the RF model (i.e., heuristic/probabilistic
model) for the region where a debris flow disaster already existed [63]; meanwhile, this method
further refined the debris-flow-prone area from the suitable area terrain condition based on the
physico-mechanical properties. This is the reason why the proposed RF-SSIS method had better
predicting performance than the RF model; however, the prediction accuracy did not improve very well,
because under the support of historical data, the RF model exhibited very high prediction accuracy
for debris-flow exist areas [14]; so the space for improvement was limited and difficult to further
refine. Therefore, even though the determination of FP was improved significantly, the RF-SSIS
method classified just 758 more TP pixels than did the RF model; the determination on TP was less
improved, causing an insignificant improvement in the prediction accuracy. However, as the most
representative model of heuristic/probabilistic model, the RF model showed excellent performance in
previous debris flow susceptibility assessment [64,65], despite the prediction accuracy of the proposed
RF-SSIS method improved slightly compared to the RF model; nevertheless, the assessment method
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was still shown to have been improved. For the SSIS method, an assessment was conducted based
on the triggering mechanism and physico-mechanical properties, and when this method was used in
regional assessment, it also demonstrated good performance [66,67]. Through Figure 11 the prediction
accuracy of proposed RF-SSIS method is shown to improve significantly as that of the SSIS method,
as the SSIS method was a prediction method that calculates the susceptibility based on the current
data. Thus, the prediction performance on existing debris flow regions was relatively lower. However,
the final result of the RF-SSIS method not only indicated the influence of the terrain on the debris flow
but also the influence of the physico-mechanical properties on the debris flow; thus, the prediction
accuracy for the region where the debris flow disaster already exist was significantly higher than that
for the SSIS model. Meanwhile, this method inherited the performance of SSIS models in determining
the area where debris flow would not occur; thus, the false-positive pixel determination was improved
significantly compared to that of the RF model. Thus, these situations resulted in an improvement in
the prediction accuracy performance.

6. Conclusions

This study aims to use the proposed random-forest-based steady-state infinite slope method to
analyze debris flow susceptibility of Changbai mountain area. The Changbai mountain is located
in the east of Jilin Province, where the debris flow disasters caused by the extreme rainfall events
were widely present. Meanwhile, as a most famous active volcano in China, if there is an eruption
in the future, it may cause collapse or flood events, which will trigger the debris flow disasters. So,
it is crucial to assess the debris flow susceptibility of this area, for disaster prevention and mitigation.
The RF-SSIS method integrates the random forest model with steady-state infinite slope method,
using the advantage of the RF model (i.e., sensitive to the regions where the terrain conditions
are prone to debris flow) and the advantage of the SSIS method (i.e., measure the slope stability
through the aspects of physico-mechanical properties and initiation mechanism) to further refine
the assessment result. The prediction accuracy of RF-SSIS method reached 90.88%, improving the
prediction accuracy by approximately 2.4% and 30.43%, compared with the RF model and SSIS
method, respectively. According to the results, the debris-flow-prone area of the RF-SSIS result was the
smallest among the models. Thus, the results have the characteristics of both the deterministic and
heuristic/probabilistic models, and the accuracy was higher than those of these models. Therefore,
the RF-SSIS method provides a different perspective to the research of debris flow susceptibility
assessment. However, further improvement is still needed. The difficulty of obtaining the value of
physico-mechanical properties and assigning these values appropriately on a spatial scale provided
the challenge. Meanwhile, this research offered a different perspective, which integrated two distinct
methods to conduct susceptibility assessment; however, how to combine them organically was the key
point to further improve prediction accuracy. Therefore, the current study presented this as a challenge
requiring attention and proposed it as a point of future study to improve the prediction accuracy in the
comprehensive study on debris flow and other similar natural disaster management.
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