Shift Detection in Hydrological Regimes and Pluriannual Low-Frequency Streamflow Forecasting Using the Hidden Markov Model
Abstract
:1. Introduction
2. Study Area and Data
3. Materials and Methods
3.1. Time Series Decomposition Using Wavelet Transform
3.2. Regime Shift Detection
3.2.1. SRI
3.2.2. PELT Algorithm
3.2.3. BFAST
3.2.4. HMM
3.2.5. HMM for Projection
3.2.6. Model Performance Metrics
4. Results
4.1. Time Series Decomposition
4.2. Low-Frequency Streamflow Shift Detection
4.3. Projection of the Low-Frequency Streamflow with the HMM
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, F.; Zhao, G.; Mu, X.; Gao, P.; Sun, W. Regime Shift Identification of Runoff and Sediment Loads in the Yellow River Basin, China. Water 2014, 6, 3012–3032. [Google Scholar] [CrossRef] [Green Version]
- IPCC, Intergovernmental Panel on Climate Change. In Climate Chang. 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2007.
- Zhao, G.; Li, E.; Mu, X.; Rayburg, S.; Tian, P. Changing Trends and Regime Shift of Streamflow in the Yellow River Basin. Stoch Environ. Res. Risk Assess. 2015, 29, 1331–1343. [Google Scholar] [CrossRef]
- Barreto, I.D.C.; Xavier Junior, S.F.A.; Stosic, T. Long-Term Correlations in São Francisco River Flow: The Influence of Sobradinho Dam. Rev. Bras. Meteorol. 2019, 34, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.-H.; Lall, U.; Khalil, A.F. Stochastic Simulation Model for Nonstationary Time Series Using an Autoregressive Wavelet Decomposition: Applications to Rainfall and Temperature. Water Resour. Res. 2007, 43, 5662–5675. [Google Scholar] [CrossRef]
- Cheng, L.; AghaKouchak, A. Nonstationary Precipitation Intensity-Duration-Frequency Curves for Infrastructure Design in a Changing Climate. Sci. Rep. 2015, 4, 7093. [Google Scholar] [CrossRef] [Green Version]
- Erkyihun, S.; Zagona, E.; Rajagopalan, B. Wavelet and Hidden Markov-Based Stochastic Simulation Methods Comparison on Colorado River Streamflow. J. Hydrol. Eng. 2017, 22, 04017033. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Salas, J.D.; Obeysekera, J. Revisiting the Concepts of Return Period and Risk for Nonstationary Hydrologic Extreme Events. J. Hydrol. Eng. 2014, 19, 554–568. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-Day South American Climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- Hodson, D.L.R.; Sutton, R.T.; Cassou, C.; Keenlyside, N.; Okumura, Y.; Zhou, T. Climate Impacts of Recent Multidecadal Changes in Atlantic Ocean Sea Surface Temperature: A Multimodel Comparison. Clim. Dyn. 2010, 34, 1041–1058. [Google Scholar] [CrossRef] [Green Version]
- Burn, D.H.; Hag Elnur, M.A. Detection of Hydrologic Trends and Variability. J. Hydrol. 2002, 255, 107–122. [Google Scholar] [CrossRef]
- da Silva Silveira, C.; Alexandre, A.M.B.; de Souza Filho, F.d.A.; Vasconcelos Junior, F.d.C.V.; Cabral, S.L. Monthly Streamflow Forecast for National Interconnected System (NIS) using Periodic Auto-Regressive Endogenous Models (PAR) and Exogenous (PARX) with Climate Information. RBRH 2017, 22, e30. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Oki, T.; Dai, A. Historical and Future Changes in Streamflow and Continental Runoff. In Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts; American Geophysical Union: Hoboken, NJ, USA, 2016; pp. 17–37. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Uvo, C.R. Trends in Streamflow and Rainfall in Tropical South America: Amazonia, Eastern Brazil, and Northwestern Peru. J. Geophys. Res. Atmos. 1998, 103, 1775–1783. [Google Scholar] [CrossRef]
- Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global Pattern of Trends in Streamflow and Water Availability in a Changing Climate. Nature 2005, 438, 347–350. [Google Scholar] [CrossRef]
- Grimm, A.M.; Saboia, J.P.J. Interdecadal Variability of the South American Precipitation in the Monsoon Season. J. Clim. 2015, 28, 755–775. [Google Scholar] [CrossRef]
- Jain, S.; Lall, U. Magnitude and Timing of Annual Maximum Floods: Trends and Large-Scale Climatic Associations for the Blacksmith Fork River, Utah. Water Resour. Res. 2000, 36, 3641–3651. [Google Scholar] [CrossRef]
- Oliveira, V.G.; LIMA, C.H.R. Multiscale Streamflow Forecasts for the Brazilian Hydropower System using Bayesian Model Averaging (BMA). RBRH 2016, 21, 618–635. [Google Scholar] [CrossRef] [Green Version]
- Stosic, T.; Telesca, L.; Ferreira, D.V.S.; Stosic, B. Investigating Anthropically Induced Effects in Streamflow Dynamics by using Permutation Entropy and Statistical Complexity Analysis: A Case Study. J. Hydrol. 2016, 540, 1136–1145. [Google Scholar] [CrossRef]
- Luiz Silva, W.; Xavier, L.N.R.; Maceira, M.E.P.; Rotunno, O.C. Climatological and Hydrological Patterns and Verified Trends in precipitation and Streamflow in the Basins of Brazilian Hydroelectric Plants. Theor. Appl. Climatol. 2019, 137, 353–371. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, J.; Li, F. Hybrid Models Combining EMD/EEMD and ARIMA for Long-Term Streamflow Forecasting. Water 2018, 10, 853. [Google Scholar] [CrossRef] [Green Version]
- ANA. Plano de Recursos Hídricos da Bacia do Rio São Francisco. 2016. Available online: https://cbhsaofrancisco.org.br/plano-de-recursos-hidricos-da-bacia-hidrografica-do-rio-sao-francisco/ (accessed on 13 January 2020).
- Mendes, L.A.; de Barros, M.T.L.; Zambon, R.C.; Yeh, W.W.-G. Trade-Off Analysis among Multiple Water Uses in a Hydropower System: Case of São Francisco River Basin, Brazil. J. Water Resour. Plan. Manag. 2015, 141, 04015014. [Google Scholar] [CrossRef]
- ANA. Conjuntura dos recursos hídricos no Brasil: Regiões hidrográficas do Brasil. 2013. Available online: https://goo.gl/P87Msi (accessed on 13 January 2020).
- R Development Core Team. R: A Language and Environment for Statistical Computing. R Version 3.5.2 (2018); R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org/.
- Bracken, C.; Rajagopalan, B.; Zagona, E. A Hidden Markov Model Combined with Climate Indices for Multidecadal Streamflow Simulation. Water Resour. Res. 2014, 50, 7836–7846. [Google Scholar] [CrossRef]
- Labat, D. Recent Advances in Wavelet Analyses: Part 1. A Review of Concepts. J. Hydrol. 2005, 314, 275–288. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Gebremichael, M. Using Self-Organizing Maps and Wavelet Transforms for Space–Time Pre-Processing of Satellite Precipitation and Runoff Data in neural Network Based Rainfall–Runoff Modeling. J. Hydrol. 2013, 476, 228–243. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Huo, X.; Lei, L.; Liu, Z.; Hao, Y.; Hu, B.X.; Zhan, H. Application of Wavelet Coherence Method to Investigate Karst Spring Discharge Response to Climate Teleconnection Patterns. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 1281–1296. [Google Scholar] [CrossRef]
- Nalley, D.; Adamowski, J.; Khalil, B.; Biswas, A. Inter-Annual to Inter-Decadal Streamflow Variability in Quebec and Ontario in Relation to Dominant Large-Scale Climate Indices. J. Hydrol. 2016, 536, 426–446. [Google Scholar] [CrossRef]
- Rosch, A.; Schmidbauer, H. WaveletComp 1.1: A Guided Tour through the R Package. 2016. Available online: https://CRAN.R-project.org/package=WaveletComp (accessed on 18 February 2020).
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology; American Meteorological Society: Boston, MA, USA, 1993; pp. 179–183. [Google Scholar]
- Shukla, S.; Wood, A.W. Use of a Standardized Runoff Index for Characterizing Hydrologic Drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal Detection of Changepoints with a Linear Computational Cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Killick, R.; Eckley, I.A. Changepoint: An R Package for Changepoint Analysis. J. Stat. Softw. 2014, 58. [Google Scholar] [CrossRef] [Green Version]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting Trend and Seasonal Changes in Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Bai, J.S.; Perron, P. Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica 1998, 66, 47–78. [Google Scholar] [CrossRef]
- Bai, J.S.; Perron, P. Computation and Analysis of Multiple Structural Change Models. JAE 2003, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Rabiner, L.R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
- Mallya, G.; Tripathi, S.; Kirshner, S.; Govindaraju, R.S. Probabilistic Assessment of Drought Characteristics Using Hidden Markov Model. J. Hydrol. Eng. 2013, 18, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Zucchini, W.; MacDonald, I.L.; Langrock, R. Hidden Markov Models for Time Series, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2016. [Google Scholar]
- Liu, Y.; Ye, L.; Qin, H.; Hong, X.; Ye, J.; Yin, X. Monthly Streamflow Forecasting Based on Hidden Markov Model and Gaussian Mixture Regression. J. Hydrol. 2018, 561, 146–159. [Google Scholar] [CrossRef]
- Visser, I. Seven Things to Remember about Hidden Markov Models: A Tutorial on Markovian Models for Time Series. J. Math. Psychol. 2011, 55, 403–415. [Google Scholar] [CrossRef]
- Lystig, T.C.; Hughes, J.P. Exact Computation of the Observed Information Matrix for Hidden Markov Models. J. Comput. Graph. Stat. 2002, 11, 678–689. [Google Scholar] [CrossRef]
- Baum, L.E.; Petrie, T. Statistical Inference for Probabilistic Functions of Finite State Markov Chains. Ann. Math. Stat. 1966, 37, 1554–1563. [Google Scholar] [CrossRef]
- Hassan, M.R.; Nath, B. Stock Market Forecasting using Hidden Markov Model: A New Approach. In Proceedings of the 5th International Conference on Intelligent Systems Design and Applications (ISDA’05), Warsaw, Poland, 8–10 September 2005; pp. 192–196. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate Computation of a Streamflow Drought Index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Santos, H.D.A.; dos Santos, P.P.; Kenji, D.O.L. Changes in the Flood Regime of São Francisco River (Brazil) from 1940 to 2006. Reg. Environ. Change 2012, 12, 123–132. [Google Scholar] [CrossRef]
- De Jong, P.; Tanajura, C.A.S.; Sánchez, A.S.; Dargaville, R.; Kiperstok, A.; Torres, E.A. Hydroelectric Production from Brazil’s São Francisco River Could Cease Due to Climate Change and Inter-Annual Variability. Sci. Total Environ. 2018, 634, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Valverde, M.C. Caracterização do Clima no Século XX e Cenário de Mudanças de Clima para o Brasil no Século XXI Usando os Modelos do IPCC-AR4. Rev. Multiciência 2007, 8, 5–28. [Google Scholar]
- Alves, B.C.C.; Souza Filho, F.A.; Silveira, C.S. Análise de Tendências e Padrões de Variação das séries Históricas de Vazões do Operador Nacional do Sistema (ONS). RBRH 2013, 18, 19–34. [Google Scholar] [CrossRef]
- Kayano, M.T.; Andreoli, R.V. Relations of South American Summer Rainfall Interannual Variations with the Pacific Decadal Oscillation. Int. J. Climatol. 2007, 27, 531–540. [Google Scholar] [CrossRef]
- Knight, J.R.; Folland, C.K.; Scaife, A.A. Climate Impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 2006, 33, 1610–1625. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Tanajura, C.A.S.; Genz, F.; Araújo, H.A. Mudanças Climáticas e Recursos Hídricos na Bahia: Validação da Simulação do Clima Presente do HadRM3P e Comparação com os Cenários A2 e B2 para 2070–2100. Rev. Bras. Meteor. 2010, 25, 345–358. [Google Scholar] [CrossRef] [Green Version]
Projection Period | RMSE | MAE | R |
---|---|---|---|
5 years | 647.24 | 647.18 | 0.99 |
10 years | 722.57 | 721.35 | 0.99 |
15 years | 599.83 | 545.08 | 0.36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolim, L.Z.R.; de Souza Filho, F.d.A. Shift Detection in Hydrological Regimes and Pluriannual Low-Frequency Streamflow Forecasting Using the Hidden Markov Model. Water 2020, 12, 2058. https://doi.org/10.3390/w12072058
Rolim LZR, de Souza Filho FdA. Shift Detection in Hydrological Regimes and Pluriannual Low-Frequency Streamflow Forecasting Using the Hidden Markov Model. Water. 2020; 12(7):2058. https://doi.org/10.3390/w12072058
Chicago/Turabian StyleRolim, Larissa Zaira Rafael, and Francisco de Assis de Souza Filho. 2020. "Shift Detection in Hydrological Regimes and Pluriannual Low-Frequency Streamflow Forecasting Using the Hidden Markov Model" Water 12, no. 7: 2058. https://doi.org/10.3390/w12072058
APA StyleRolim, L. Z. R., & de Souza Filho, F. d. A. (2020). Shift Detection in Hydrological Regimes and Pluriannual Low-Frequency Streamflow Forecasting Using the Hidden Markov Model. Water, 12(7), 2058. https://doi.org/10.3390/w12072058