Lagoon Resident Fish Species of Conservation Interest According to the Habitat Directive (92/43/CEE): A Review on Their Potential Use as Ecological Indicator Species
Abstract
:1. Introduction
2. Aphanius Fasciatus (Valenciennes, 1821)—Order Cyprinodontiformes
2.1. Biology and Distribution
2.2. Conservation Status
- in freshwaters, especially, competition with the invasive species G. holbrooki, which is particularly aggressive at low salinity values [42,44]. Despite the fact that G. holbrooki can be found also at high salinity, as for example in Mar Menor (Spain; [46]) and in some French lagoons [47], its metabolism is particularly affected by the necessity to maintain the osmotic equilibrium. The effects on the community structure are evident due to an increase of sex ratio (M/F): females have a lower survival rate being larger than male and having higher reproductive investment [41]; moreover, Alcaraz et al. [48] demonstrated that, at salinity 25, its behaviour is less aggressive and its predation capacity slower than that of A. fasciatus;
- in hyperhaline systems, the heavy hydromorphological modifications related to the salt production and extraction and/or the lack of maintenance leading to habitat degradation and significant genetic loss [25];
2.3. Management
- (i)
- actions aimed at decreasing the probability of habitat recolonization by Gambusia spp. from nearby locations, to avoid a rapid return of the species and, hence, the wastefulness of resources [52]. As an example, in the case of artificial, man-regulated habitats, the management of the water salinity could favour the autochthonous species survival and proliferation.
- (ii)
- non-invasive eradication methods, although, to date, the only proven, cost-efficient eradication method is poisoning [52], but attention must be paid to the effect on native and non-target organisms. In any case, the eradication has to be scrupulously planned, because it can be more effective if it is carried out in area with limited probabilities of Gambusia’s recolonization [52];
- (iii)
- actions aimed at increasing the intra-guild predation. It was found that adults of some native species can prey on Gambusia’s eggs and larvae [53]. Therefore, strengthening the native populations with the introduction of adult specimens may reduce Gambusia’s density.
3. Aphanius iberus (Valenciennes, 1846)—Order Cyprinodontiformes
3.1. Biology and Distribution
3.2. Conservation Status
3.3. Management
4. Knipowitschia panizzae (Verga, 1841)—Order Gobiiformes
4.1. Biology and Distribution
4.2. Conservation Status
4.3. Management
5. Ninnigobius canestrinii (Ninni, 1883)—Order Gobiiformes
5.1. Biology and Distribution
5.2. Conservation Status
5.3. Management
6. Valencia spp.—Order Cyprinodontiformes
6.1. Valencia hispanica (Valenciennes, 1846)
6.1.1. Biology and Distribution
6.1.2. Conservation Status
6.1.3. Management
6.2. Valencia letourneuxi (Sauvage, 1880)
6.2.1. Biology and Distribution
6.2.2. Conservation Status
6.2.3. Management
7. Discussion
7.1. Cyprinodontiformes (Aphaniidae and Valenciidae)
7.2. Gobiiformes, Gobionellidae
7.3. Conservation Management Issues
- (1)
- At the European level, few management actions have been undertaken since the issue of the HD. Despite the attention of European Union towards habitat conservation status, in the period from 1992 to 2018, 1691 projects were co-financed through the LIFE Financial Programme (Sub-Programme Environment—Nature and biodiversity). These projects were specifically dedicated to promoting conservation efforts of Natura 2000 Network sites and/or of Community interest species listed in Annex II of the Habitat Directive. Among the 1691 projects, 682 were carried out by the Member States which have coasts bordering the Mediterranean Sea and 60 to the priority habitat 1150*. Excluding the Atlantic lagoons of France and Spain, there were 52 projects left for Mediterranean lagoons and only 10 explicitly stated the objective of improving environmental conditions in relation to fish species of Community interest and especially those of the Aphanius species. From this information, it is not possible to understand if few proposals were submitted by Member States or if they were not targeting the LIFE Financial Programme aims, and, thus, were not financed, but the number sounds very low. Therefore, more attention towards the here-discussed species has to be paid in light of their role as potential indicators of ecosystem conservation status.
- (2)
- At the national level, some interventions were dedicated to the Spanish endemisms A. iberus and V. hispanica, but with poor success.
- (3)
- In the European Union, the regulation 1143/2014 [125] entered into force on 1 January 2015, to set common rules that allow the Member States to coordinate actions with the aims of preventing, early detecting, rapidly eradicating and managing invasive species. The core of Regulation (EU) 1143/2014 is the list of Invasive Alien Species (IAS) of Union concern, which includes four fish species (three freshwaters and one marine species), subject to restrictions and measures for the early detection and rapid eradication. None of these species are of concern for coastal lagoon habitats, but, as an example, Gambusia holbrookii, that was demonstrated to be aggressive and competitive towards Aphanius spp. and Valencia spp. in oligohaline waters, is not in the list. G. holbrooki already drove the A. fasciatus population to extinction in some Italian inland waters [33] and V. hispanica is seriously at risk. Being among the 100 most invasive species at the international level [126] and demonstrating its aggressiveness, Gambusia should be included in the European list of IAS. At the moment, efficient solutions to the eradications of G. holbrooki are poorly documented, but efforts should be addressed to avoid further introduction.
- (4)
- In the European basin of the Mediterranean Sea, some areas of particular importance for the conservation of species are: western Greece, the Acheloos Delta, along the Balkan coast, the Neretve Delta, along the northwest coast of the Adriatic Sea, the system of coastal lagoons from Grado-Marano to the Po Delta, along the coast of Mediterranean Spain, the Ebro Delta [127].
- (5)
- The species discussed here are strongly related to local environmental features. Therefore, absolute density values indicating the limit between healthy condition and local extinction are difficult to be set at the Mediterranean basin level. The most important issue to be addressed is the local monitoring activity. The use of species included in the national and international regulations, as in the case here presented, could make their use as indicators more efficient, because:
- data collection is compulsory, and in the case of Natura 2000, started in the mid-1990s and for all Member States, allowing the assessment of long-term trends on a large spatial scale;
- data are comparable;
- the access to funding can be facilitated.
8. Conclusions
- (1)
- The complex of species Aphanius + Valencia could be used as indicator of habitat alterations in coastal lagoons, focusing, in particular, on salt marsh complexity, habitat connectivity within the lagoon or among adjacent lagoon systems and the presence of a system of artificial habitats, such as salt-works and man-made creeks. The presence and abundance of these species indicate, in fact, a mosaic of isolated and closed habitats, with respect to the open lagoons. The complex system of small creeks and pools has a significant role, not only for lagoon residents, but also for many other fish fauna species, also of commercial interest, such as marine migrants, of which juveniles exploit the trophic resource in saltmarsh areas. Together with A. fasciatus, K. panizzae, N. canestrinii, it is possible to find A. boyeri, Sparus aurata (L.) and some species of the genus Chelon and of the family Sygnathidae [49]. V. hispanica was found in the same sampling site as Anguilla anguilla (L.), Mugil cephalus (L.), Pomatoschistus microps (Krøyer) and A. boyeri [55]. The lagoon residents are more sensible to local habitat alterations than marine migrants [101], therefore, the species belonging to Aphanius + Valencia genera can be considered umbrella species, through which protection and broader conservation objectives could be achieved also for other species [113], even of economic interest. Their decrease, as a consequence of habitat degradation due to sea level rise, excavations of canals and infrastructure development, can be recorded earlier than that of other guilds. Mainly A. fasciatus responds to the definition of umbrella species, being highly detectable and correlating with species diversity [15].
- (2)
- A decrease in the presence and abundance of the two small gobies, K. panizzae and N. canestrinii, could partially indicate the same alterations in terms of habitat complexity and connectivity as Aphanius + Valencia, but they also provide information on the structural changes of the lagoon substrate that they use for nesting. Moreover, N. canestrinii selects a salinity range between 2 and 20 and could be useful as an indicator of oligohaline habitats, that could be threatened by significant rise of sea influence on coastal lagoon hydrodynamism.
- (3)
- Beyond the morphological alterations, Aphanius + Valencia species could be used, also, as ecological indicators in relation to the distribution, occurrence and abundance of the invasive Gambusia complex or of other alien species compromising the coastal lagoon biological community.
- (4)
- Mainly A. fasciatus was demonstrated to be particularly sensible to heavy metal contamination.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Interpretation Manual of European Union Habitats; EUR 28. E. C.; DG ENVIRONMENT: Bruxelles, Belgium, 2013; p. 144.
- Cataudella, S.; Crosetti, D.; Massa, F. Mediterranean Coastal Lagoons: Sustainable Management and Interactions among Aquaculture, Capture Fisheries and the Environment; Studies and Reviews. General Fisheries Commission for the Mediterranean. No 95; FAO: Rome, Italy, 2015; p. 278.
- Natura 2000 Network Viewer. Available online: https://natura2000.eea.europa.eu/ (accessed on 4 December 2019).
- European Environment Agency. European Topic Centre on Biological Diversity—Report under the Article 17 of the Habitats Directive Period 2007–2012. Available online: https://nature-art17.eionet.europa.eu/article17/reports2012/ (accessed on 14 May 2020).
- Newton, A.; Icely, J.; Cristina, S.; Brito, A.; Cardoso, A.C.; Colijn, F.; Riva, S.D.; Gertz, F.; Hansen, J.W.; Holmer, M.; et al. An overview of ecological status, vulnerability and future perspectives of European large shallow, semi-enclosed coastal systems, lagoons and transitional waters. Estuar. Coast. Shelf Sci. 2014, 140, 95–122. [Google Scholar] [CrossRef]
- Kara, H.M.; Quignard, J.-P. Fishes in Lagoons and Estuaries in the Mediterranean 1: Diversity, Bioecology and Exploitation; John Wiley & Sons: Hoboken, NJ, USA, 2018; p. 265. [Google Scholar]
- Elliott, M.; Whitfield, A.; Potter, I.C.; Blaber, S.J.M.; Cyrus, D.P.; Nordlie, F.G.; Harrison, T.D. The guild approach to categorizing estuarine fish assemblages: A global review. Fish Fish. 2007, 8, 241–268. [Google Scholar] [CrossRef]
- Franco, A.; Elliott, M.; Franzoi, P.; Torricelli, P. Life strategies of fishes in European estuaries: The functional guild approach. Mar. Ecol. Prog. Ser. 2008, 354, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Potter, I.C.; Tweedley, J.R.; Elliott, M.; Whitfield, A. The ways in which fish use estuaries: A refinement and expansion of the guild approach. Fish Fish. 2013, 16, 230–239. [Google Scholar] [CrossRef] [Green Version]
- World Register of Marine Species (WORMS). Available online: www.marinespecies.org (accessed on 4 December 2019).
- Bianco, P.G.; Ketmaier, V. A revision of the Rutilus complex from Mediterranean Europe with description of a new genus, Sarmarutilus, and a new species, Rutilus stoumboudae (Teleostei: Cyprinidae). Zootaxa 2014, 3841, 379–402. [Google Scholar] [CrossRef] [Green Version]
- Thacker, C.E.; Gkenas, C.; Triantafyllidis, A.; Malavasi, S.; Leonardos, I. Phylogeny, systematics and biogeography of the European sand gobies (Gobiiformes: Gobionellidae). Zoöl. J. Linn. Soc. 2018, 185, 212–225. [Google Scholar] [CrossRef]
- International Union for Conservation of Nature. 2006 IUCN Red List of Threatened Species. 2006. Available online: http://www.iucnredlist.org/ (accessed on 1 March 2008).
- European Environmental Agency. European Nature Information System. Available online: https://eunis.eea.europa.eu/ (accessed on 4 December 2019).
- Gilby, B.L.; Olds, A.D.; Connolly, R.M.; Yabsley, N.A.; Maxwell, P.S.; Tibbetts, I.; Schoeman, D.S.; Schlacher, T.A. Umbrellas can work under water: Using threatened species as indicator and management surrogates can improve coastal conservation. Estuar. Coast. Shelf Sci. 2017, 199, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Bortone, S.A.; Dunson, W.A.; Greenawalt, J.M. Fishes as Estuarine Indicators. In Estuar. Indicators; CRC Press: Boca Raton, FL, USA, 2005; pp. 381–389. [Google Scholar]
- Nelson, J.S.; Grande, T.C.; Wilson, M.V.H. Fishes of the World; Wiley: Hoboken, NJ, USA, 2016; p. 707. [Google Scholar]
- Kara, H.M.; Quignard, J.-P. Fishes in Lagoons and Estuaries in the Mediterranean 2; Wiley: Hoboken, NJ, USA, 2019; p. 39. [Google Scholar]
- Leonardos, I.; Sinis, A. Reproductive strategy of Aphanius fasciatus Nardo, 1827 (Pisces: Cyprinodontidae) in the Mesolongi and Etolikon lagoons (W. Greece). Fish. Res. 1998, 35, 171–181. [Google Scholar] [CrossRef]
- Ferrito, V.; Pappalardo, A.M.; Canapa, A.; Barucca, M.; Doadrio, I.; Olmo, E.; Tigano, C. Mitochondrial phylogeography of the killifish Aphanius fasciatus (Teleostei, Cyprinodontidae) reveals highly divergent Mediterranean populations. Mar. Boil. 2013, 160, 3193–3208. [Google Scholar] [CrossRef]
- Leonardos, I.; Sinis, A. Population age and sex structure of Apahnius fasciatus Nardo, 1827 (Pisces: Cyprinodontidae) in the Mesologi and Etolikon lagoons (W. Greece). Fish. Res. 1999, 40, 227–235. [Google Scholar] [CrossRef]
- Cavraro, F.; Georgalas, V.; Malavasi, S.; Franzoi, P.; Torricelli, P. Population Structure and Reproductive Ecology of the Mediterranean Killifish Aphanius fasciatus (Nardo, 1827) in the Venice Lagoon. In Proceedings of the 4th European Conference on Coastal Lagoon Research, Montpellier, France, 14–18 December 2009; p. 279. [Google Scholar]
- Leonardos, I. The feeding ecology of Apahnius fasciatus (Valenciennes, 1821) in the lagoonal system of Mesolongi (Western Greece). Sci. Mar. 2008, 72, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Maltagliati, F. Genetic divergence in natural populations of the Mediterranean brackish-water killifish Aphanius fasciatus. Mar. Ecol. Prog. Ser. 1999, 179, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Angeletti, D.; Cimmaruta, R.; Nascetti, G. Genetic diversity of the killifish Aphanius fasciatus paralleling the environmental changes of Tarquinia salterns habitat. Genetica 2010, 138, 1011–1021. [Google Scholar] [CrossRef]
- Cavraro, F.; Varin, C.; Malavasi, S. Lunar-induced reproductive patterns in transitional habitats: Insights from a Mediterranean killifish inhabiting northern Adriatic saltmarshes. Estuar. Coast. Shelf Sci. 2014, 139, 60–66. [Google Scholar] [CrossRef]
- Cavraro, F.; Torricelli, P.; Malavasi, S. Quantitative Ethogram of Male Reproductive Behavior in the South European Toothcarp Aphanius fasciatus. Boil. Bull. 2013, 225, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Cavraro, F.; Daouti, I.; Leonardos, I.; Torricelli, P.; Malavasi, S. Linking habitat structure to life history strategy: Insights from a Mediterranean killifish. J. Sea Res. 2014, 85, 205–213. [Google Scholar] [CrossRef]
- Ćaleta, M.; Buj, I.; Miočić-Stošić, J.; Marčić, Z.; Mustafić, P.; Zanella, D.; Mrakovčić, M.; Mihinjač, T. Population genetic structure and demographic history of Aphanius fasciatus (Cyprinodontidae: Cyprinodontiformes) from hypersaline habitats in the eastern Adriatic. Sci. Mar. 2015, 79, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Ferrito, V.; Mannino, M.C.; Pappalardo, A.M.; Tigano, C. Morphological variation among populations of Aphanius fasciatus Nardo, 1827 (Teleostei, Cyprinodontidae) from the Mediterranean. J. Fish Boil. 2007, 70, 1–20. [Google Scholar] [CrossRef]
- Maltagliati, F. Genetic monitoring of brackish-water populations: The Mediterranean toothcarp Aphanius fasciatus (Cyprinodontidae) as a model. Mar. Ecol. Prog. Ser. 2002, 235, 257–262. [Google Scholar] [CrossRef]
- Cimmaruta, R.; Scialanca, F.; Luccioli, F.; Nascetti, G. Genetic diversity and environmental stress in Italian populations of the cyprinodont fish Aphanius fasciatus. Oceanol. Acta 2003, 26, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Valdesalici, S.; Langeneck, J.; Barbieri, M.; Castelli, A.; Maltagliati, F. Distribution of natural populations of the killifish Aphanius fasciatus (Valenciennes, 1821) (Teleostei: Cyprinodontidae) in Italy: Past and current status, and future trends. Ital. J. Zoöl. 2015, 82, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Deidun, A.; Diacono, I.; Tigano, C.; Schembri, P. Present distribution of the threatened killifish Aphanius fasciatus (Actinopterygii, Cyprinodonitdae) in the Maltese Islands. Cent. Mediterr. Naturalist. 2002, 3, 177–180. [Google Scholar]
- Zammit Mangion, M.; Deidun, A.; Vassallo-Agius, R.; Magri, M. Management of threatened Aphanius fasciatus at Il-Maghluq, Malta. In Proceedings of the Tenth International Conference on the Mediterranean Coastal Environment, MEDCOAST 11, Rhodes, Greece, 25–29 October 2011. [Google Scholar]
- Valdesalici, S.; Brahimi, A.; Freyhof, J. First record of Aphanius almiriensis from Italy and notes on the distribution of Aphanius fasciatus (Teleostei: Aphaniidae). J. Appl. Ichthyol. 2019, 35, 541–550. [Google Scholar] [CrossRef]
- Mediterranean Toothcarp—Aphanius fasciatus (Valenciennes, 1821). Available online: https://eunis.eea.europa.eu/species/430 (accessed on 14 May 2020).
- Bertoli, M.; Giulianini, P.G.; Chiti, J.; De Luca, M.; Pastorino, P.; Prearo, M.; Pizzul, E. Distribution and Biology of Aphanius fasciatus (Actinopterygii, Cyprinodontidae) in The Isonzo River Mouth (Friuli Venezia Giulia, Northeast Italy). Turk. J. Fish. Aquat. Sci. 2019, 20, 279–290. [Google Scholar] [CrossRef]
- Gandolfi, G.; Zerunian, S.; Torricelli, P.; Marconato, A. I Pesci Delle Acque Interne Italiane; Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 1991; p. 617. [Google Scholar]
- Basset, A.; Barbone, E.; Elliott, M.; Li, B.-L.; Jorgensen, S.E.; Lucena-Moya, P.; Pardo, I.; Mouillot, D. A unifying approach to understanding transitional waters: Fundamental properties emerging from ecotone ecosystems. Estuar. Coast. Shelf Sci. 2013, 132, 5–16. [Google Scholar] [CrossRef]
- Alcaraz, C.; García-Berthou, E. Life history variation of invasive mosquitofish (Gambusia holbrooki) along a salinity gradient. Boil. Conserv. 2007, 139, 83–92. [Google Scholar] [CrossRef]
- Alcaraz, C.; Pou-Rovira, Q.; García-Berthou, E. Use of a flooded salt marsh habitat by an endangered cyprinodontid fish (Aphanius iberus). Hydrobiologia 2007, 600, 177–185. [Google Scholar] [CrossRef]
- Koutrakis, E.T.; Kamidis, N.I.; Leonardos, I.D. Age, growth and mortality of a semi-isolated lagoon population of sand smelt, Atherina boyeri (Risso, 1810) (Pisces: Atherinidae) in an estuarine system of northern Greece. J. Appl. Ichthyol. 2004, 20, 382–388. [Google Scholar] [CrossRef]
- Zogaris, S. Conservation Study of the Mediterranean Killifish Aphanius fasciatus in Akrotiri Marsh, (Akrotiri SBA, Cyprus)—Final Report. Darwin Project DPLUS034 “Akrotiri Marsh Restoration: A Flagship Wetland in the Cyprus SBAs BirdLife Cyprus”; Nicosia, Cyprus. Unpublished final report. 2017; 64. [Google Scholar]
- Buj, I.; Zanella, D.; Marčić, Z.; Ćaleta, M.; Mustafić, P.; Mihinjač, T.; Mrakovčić, M. New Records of Aphanius fasciatus (Valenciennes, 1821) along the Eastern Coast of the Adriatic Sea in Croatia. Croat. J. Fish. 2015, 73, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Franco, A.; Pérez-Ruzafa, Á.; Drouineau, H.; Franzoi, P.; Koutrakis, E.; Lepage, M.; Verdiell-Cubedo, D.; Bouchoucha, M.; López-Capel, A.; Riccato, F.; et al. Assessment of fish assemblages in coastal lagoon habitats: Effect of sampling method. Estuar. Coast. Shelf Sci. 2012, 112, 115–125. [Google Scholar] [CrossRef]
- Keith, P.; Persat, H.; Feunteun, É.; Allardi, J. Les Poissons D’eau Douce de France; Muséum National d’Histoire Naturelle: Paris, France, 2011; p. 552. [Google Scholar]
- Alcaraz, C.; Bisazza, A.; García-Berthou, E. Salinity mediates the competitive interactions between invasive mosquitofish and an endangered fish. Oecologia 2007, 155, 205–213. [Google Scholar] [CrossRef]
- Cavraro, F.; Zucchetta, M.; Malavasi, S.; Franzoi, P. Small creeks in a big lagoon: The importance of marginal habitats for fish populations. Ecol. Eng. 2017, 99, 228–237. [Google Scholar] [CrossRef]
- Annabi, A.; Saïd, K.; Messaoudi, I. Heavy metal levels in gonad and liver tissues—Effects on the reproductive parameters of natural populations of Aphanius facsiatus. Environ. Sci. Pollut. Res. 2013, 20, 7309–7319. [Google Scholar] [CrossRef] [PubMed]
- Kessabi, K.; Navarro, A.; Casado, M.; Said, K.; Messaoudi, I.; Piña, B. Evaluation of environmental impact on natural populations of the Mediterranean killifish Aphanius fasciatus by quantitative RNA biomarkers. Mar. Environ. Res. 2010, 70, 327–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, S.; Sabbadin, R.; Peyrard, N.; Chadès, I. Finding the best management policy to eradicate invasive species from spatial ecological networks with simultaneous actions. J. Appl. Ecol. 2017, 54, 1989–1999. [Google Scholar] [CrossRef] [Green Version]
- Henkanaththegedara, S.M.; Stockwell, C.A. Intraguild predation may facilitate coexistence of native and non-native fish. J. Appl. Ecol. 2014, 51, 1057–1065. [Google Scholar] [CrossRef] [Green Version]
- Prado, P.; Alcaraz, C.; Jornet, L.; Caiola, N.; Ibanez, C. Effects of enhanced hydrological connectivity on Mediterranean salt marsh fish assemblages with emphasis on the endangered Spanish toothcarp (Aphanius iberus). PeerJ 2017, 5, e3009. [Google Scholar] [CrossRef] [Green Version]
- Caiola, N.; Vargas, M.J.; De Sostoa, A. Feeding ecology of the endangered Valencia toothcarp, Valencia hispanica (Actinopterygii: Valenciidae). Hydrobiologia 2001, 448, 97–105. [Google Scholar] [CrossRef]
- Alcaraz, C.; García-Berthou, E. Food of an endangered cyprinodont (Aphanius iberus): Ontogenetic diet shift and prey electivity. Environ. Boil. Fishes 2006, 78, 193–207. [Google Scholar] [CrossRef]
- Oliva-Paterna, F.J.; Torralva, M.; Fernández-Delgado, C. Threatened Fishes of the World: Aphanius iberus (Cuvier & Valenciennes, 1846) (Cyprinodontidae). Environ. Boil. Fishes 2006, 75, 307–309. [Google Scholar] [CrossRef]
- Oliva-Paterna, F.J.; Ruiz-Navarro, A.; Torralva, M.; Fernández-Delgado, C. Biology of the endangered cyprinodontid Aphanius iberus in a saline wetland (SE Iberian Peninsula). Ital. J. Zoöl. 2009, 76, 316–329. [Google Scholar] [CrossRef]
- Araguas, R.M.; Roldán, M.I.; García-Marín, J.-L.; Pla, C. Management of gene diversity in the endemic killifish Aphanius iberus: Revising Operational Conservation Units. Ecol. Freshw. Fish 2007, 16, 257–266. [Google Scholar] [CrossRef]
- Rincón, P. Interaction between the introduced eastern mosquitofish and two autochthonous Spanish toothcarps. J. Fish Boil. 2002, 61, 1560–1585. [Google Scholar] [CrossRef]
- Spanish Cyprinodont—Aphanius iberus (Valenciennes, 1846). Available online: https://eunis.eea.europa.eu/species/431#protected (accessed on 14 May 2020).
- LIFE96 NAT/E/003118. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=117&docType=pdf (accessed on 4 December 2019).
- LIFE99 NAT/E/006386. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=562&docType=pdf (accessed on 4 December 2019).
- LIFE09 NAT/ES/000520. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=3845 (accessed on 4 December 2019).
- Bernardi, G.; Fernández-Delgado, C.; Gomez-Chiarri, M.; Powers, D.A. Origin of a Spanish population of Fundulus heteroclitus inferred by cytochrome b sequence analysis. J. Fish Boil. 1995, 47, 737–740. [Google Scholar] [CrossRef]
- Oltra, R.; Todoli, R. Reproduction of the endangered killifish Apanius iberus at different salinities. Environ. Biol. Fish 2000, 57, 113–115. [Google Scholar] [CrossRef]
- Lanzoni, M.; Gavioli, A.; Aschonitis, V.; Merighi, M.; Fano, E.A.; Castaldelli, G. Length-weight relationships of three estuarine species in the Comacchio Lagoon, Po River delta, Italy. J. Appl. Ichthyol. 2016, 32, 1284–1285. [Google Scholar] [CrossRef]
- Haedrich, R.L. Fishes of the North-Eastern Atlantic and the Mediterranean; Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J., Tortonese, E., Eds.; Unesco: London, UK, 1986; pp. 1019–1085. [Google Scholar]
- Franco, A.; Franzoi, P.; Malavasi, S.; Zucchetta, M.; Torricelli, P. Population and habitat status of two endemic sand gobies in lagoon marshes – Implications for conservation. Estuar. Coast. Shelf Sci. 2012, 114, 31–40. [Google Scholar] [CrossRef]
- Spinelli, A.; De Matteo, S.; Costagliola, A.; Giacobbe, S.; Kovačić, M. First record from Sicily of the Adriatic dwarf goby, Knipowitschia panizzae (Osteichthyes, Gobiidae), a threatened species or a threat for conservation? Mar. Biodivers. 2016, 47, 237–242. [Google Scholar] [CrossRef]
- Franzoi, P.; Ceccherelli, V.U.; Rossi, R. Differenze di abitudini alimentari tra novellame e specie ittiche residenti in una laguna del Delta del Po. Oebalia Suppl. 1992, 17, 181–186. [Google Scholar]
- Ceccherelli, V.U.; Mistri, M.; Franzoi, P. Predation Impact on the Meiobenthic Harpacticoid Canuella perplexa in a Lagoon of the Po River Delta, Italy. Estuaries 1994, 17, 283. [Google Scholar] [CrossRef]
- Franzoi, P.; Marchetti, C. Regime alimentare di due specie di piccoli ghiozzi (Pisces, Gobiidae) in un ambiente salmastro del Delta del Po. In Proceedings of the Atti del VI Convegno Nazionale dell’Associazione Italiana Ittiologi Acque Dolci, Varese Ligure, Italia, 6–8 June 1996; pp. 128–142. [Google Scholar]
- Marzano, F.N.; Gandolfi, G. Active cannibalism among adults of Knipowitschia panizzae (Pisces Gobiidae) induced by starvation and reproduction. Ethol. Ecol. Evol. 2001, 13, 385–391. [Google Scholar] [CrossRef]
- Maccagnani, R.; Carrieri, A.; Franzoi, P.; Rossi, R. Osservazioni sulla struttura di popolazione ed il ruolo trofico di tre specie di gobidi (Kinpowitschia panizzae, Pomatoschistus marmoratus, Pomatoschistus canestrinii) in un ambiente del Delta del Po. Nova Thalassia 1985, 7, 373–378. [Google Scholar]
- Miller, P.J. The tokology of gobioid fishes. In Fish Reproduction: Strategies and Tactics; Potts, G.W., Wooton, R.J., Eds.; Academic Press: London, UK, 1984; pp. 119–152. [Google Scholar]
- Lugli, M.; Torricelli, P. Prespawning sound production in mediterranean sand-gobies. J. Fish Boil. 1999, 54, 691–694. [Google Scholar] [CrossRef]
- Massironi, M.; Rasotto, M.B.; Mazzoldi, C. A reliable indicator of female fecundity: The case of the yellow belly in Knipowitschia panizzae (Teleostei: Gobiidae). Mar. Boil. 2005, 147, 71–76. [Google Scholar] [CrossRef]
- Pizzolon, M.; Rasotto, M.B.; Mazzoldi, C. Male lagoon gobies, Knipowitschia panizzae, prefer more ornamented to larger females. Behav. Ecol. Sociobiol. 2007, 62, 521–528. [Google Scholar] [CrossRef]
- Malavasi, S.; Franco, A.; Fiorin, R.; Franzoi, P.; Torricelli, P.; Mainardi, D. The shallow water gobiid assemblage of the Venice Lagoon: Abundance, seasonal variation and habitat partitioning. J. Fish Boil. 2005, 67, 146–165. [Google Scholar] [CrossRef]
- Painzza’s Goby—Knipowitschia panizzae (Verga, 1841). Available online: https://eunis.eea.europa.eu/species/518 (accessed on 14 May 2020).
- Ćaleta, M.; Marčić, Z.; Buj, I.; Zanella, D.; Mustafić, P.; Duplić, A.; Horvatić, S. A Review of Extant Croatian Freshwater Fish and Lampreys. Croat. J. Fish. 2019, 77, 137–234. [Google Scholar] [CrossRef] [Green Version]
- Zerunian, S. Pesci delle acque interne d’Italia. In Quad. Cons. Natura, Min. Ambiente; Ist. Naz. Fauna Selvatica: Roma, Italia, 2004; Volume 20, p. 257. [Google Scholar]
- LIFE10 NAT/IT/000256. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4065 (accessed on 4 December 2019).
- LIFE12 NAT/IT/000331. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=4838 (accessed on 4 December 2019).
- LIFE13 NAT/IT/000115. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=5057 (accessed on 4 December 2019).
- Franco, A.; Fiorin, R.; Franzoi, P.; Torricelli, P. Threatened fishes of the world: Pomatoschistus canestrinii Ninni, 1883 (Gobiidae). Environ. Boil. Fishes 2005, 72, 32. [Google Scholar] [CrossRef]
- Malavasi, S.; Gkenas, C.; Leonardos, I.; Torricelli, P.; McLennan, D.A. The phylogeny of a reduced ‘sand goby’ group based on behavioural and life history characters. Zoöl. J. Linn. Soc. 2012, 165, 916–924. [Google Scholar] [CrossRef] [Green Version]
- Scapin, L.; Zucchetta, M.; Bonometto, A.; Feola, A.; Brusà, R.B.; Sfriso, A.; Franzoi, P. Expected Shifts in Nekton Community Following Salinity Reduction: Insights into Restoration and Management of Transitional Water Habitats. Water 2019, 11, 1354. [Google Scholar] [CrossRef] [Green Version]
- Malavasi, S.; Valerio, C.; Torricelli, P. Courtship sounds and associated behaviours in the Canestrini’s goby Pomatoschistus canestrinii. J. Fish Boil. 2009, 75, 1883–1887. [Google Scholar] [CrossRef] [PubMed]
- Malavasi, S.; Fiorin, R.; Franco, A.; Franzoi, P.; Granzotto, A.; Riccato, F.; Mainardi, D. Fish assemblages of Venice Lagoon shallow waters: An analysis based on species, families and functional guilds. J. Mar. Syst. 2004, 51, 19–31. [Google Scholar] [CrossRef]
- Freyhof, J. First record of Pomatoschistus canestrinii (Ninni, 1883) in lake Trasimeno. Riverine Idrobiol. 1998, 37, 107–108. [Google Scholar]
- Jelić, D.; Špelić, I.; Žutinić, P. Introduced species community over-dominates endemic ichthyofauna of High Lika Plateau (Central Croatia) over a 100 year period. Acta Zoöl. Acad. Sci. Hung. 2016, 62, 191–216. [Google Scholar] [CrossRef]
- Tutman, P.; Sanda, R.; Glamuzina, B.; Dulčić, J. First confirmed record of Pomatoschistus canestrinii (Ninni, 1883) (Gobiidae) from Bosnia and Herzegovina. J. Appl. Ichthyol. 2013, 29, 937–939. [Google Scholar] [CrossRef]
- Ahnelt, H.; Konecny, R.; Gabriel, A.; Bauer, A.; Pompei, L.; Lorenzoni, M.; Sattmann, H. First report of the parasitic copepod Lernaea cyprinacea (Copepoda: Lernaeidae) on gobioid fishes (Teleostei: Gobonellidae) in southern Europe. Knowl. Manag. Aquat. Ecosyst. 2018, 419, 34. [Google Scholar] [CrossRef] [Green Version]
- Canestrini’s Goby—Pomatoschistus canestrinii (Ninni, 1883). Available online: https://eunis.eea.europa.eu/species/578 (accessed on 13 May 2020).
- LIFE16 NAT/IT/000663. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=6223 (accessed on 4 December 2019).
- Raicevich, S.; Granzotto, A.; Pastres, R.; Giovanardi, O.; Pranovi, F.; Libralato, S. Mechanical clam dredging in Venice lagoon: Ecosystem effects evaluated with a trophic mass-balance model. Mar. Boil. 2003, 143, 393–403. [Google Scholar] [CrossRef]
- Sfriso, A.; Facca, C.; Marcomini, A. Sedimentation rates and erosion processes in the lagoon of Venice. Environ. Int. 2005, 31, 983–992. [Google Scholar] [CrossRef]
- Oliva-Paterna, F.J.; Caiola, N.; Torralva, M. Threatened fishes of the world: Valencia hispanica (Valenciennes, 1846) (Valenciidae). Environ. Boil. Fishes 2009, 85, 275–276. [Google Scholar] [CrossRef]
- Valencia Tooth-Carp—Valencia hispanica (Valenciennes, 1846). Available online: https://eunis.eea.europa.eu/species/624 (accessed on 13 May 2020).
- LIFE04 NAT/ES/000048. Available online: http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=2609 (accessed on 4 December 2019).
- Perdikaris, C.; Paschos, I.; Gouva, E.; Giakoumi, S.; Pappas, E.; Kalogianni, E. Rapid population collapse of the critically endangered Valencia letourneuxi in Kalamas basin of Northwest Greece. AACL Bioflux 2010, 3, 69–76. [Google Scholar]
- Economidis, P. Endangered freshwater fishes of Greece. Boil. Conserv. 1995, 72, 201–211. [Google Scholar] [CrossRef]
- Valencia letourneuxi (Sauvage, 1880). Available online: https://eunis.eea.europa.eu/species/12498 (accessed on 13 May 2020).
- Pérez-Ruzafa, Á.; Marcos, C.; Perez-Ruzafa, I.M.; Pérez-Marcos, M. Coastal lagoons: “transitional ecosystems” between transitional and coastal waters. J. Coast. Conserv. 2010, 15, 369–392. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, Á.; Mompeán, M.C.; Marcos, C. Hydrographic, geomorphologic and fish assemblage relationships in coastal lagoons. Hydrobiologia 2007, 577, 107–125. [Google Scholar] [CrossRef]
- Franco, A.; Franzoi, P.; Torricelli, P. Structure and functioning of Mediterranean lagoon fish assemblages: A key for the identification of water body types. Estuar. Coast. Shelf Sci. 2008, 79, 549–558. [Google Scholar] [CrossRef]
- Scapin, L.; Zucchetta, M.; Sfriso, A.; Franzoi, P. Local Habitat and Seascape Structure Influence Seagrass Fish Assemblages in the Venice Lagoon: The Importance of Conservation at Multiple Spatial Scales. Chesap. Sci. 2018, 41, 2410–2425. [Google Scholar] [CrossRef]
- Ramsar Convention. Available online: https://www.ramsar.org/sites/default/files/documents/library/info2007-01-e.pdf (accessed on 19 June 2020).
- Wolanski, E.; Elliott, M. Estuar. Ecohydrology—An Introduction, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; p. 321. [Google Scholar]
- Zedler, J.B.; Bonin, C.L.; Larkin, D.J.; Varty, A. Salt marshes. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Elsevier, B.V. Radarweg: Amsterdam, The Netherlands, 2008; Volume 29, pp. 3132–3141. [Google Scholar]
- Siddig, A.A.; Ellison, A.M.; Ochs, A.; Villar-Leeman, C.; Lau, M.K. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol. Indic. 2016, 60, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Franco, A.; Franzoi, P.; Malavasi, S.; Riccato, F.; Torricelli, P.; Mainardi, D. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 2006, 66, 67–83. [Google Scholar] [CrossRef]
- Scapin, L.; Zucchetta, M.; Facca, C.; Sfriso, A.; Franzoi, P. Using fish assemblage to identify success criteria for seagrass habitat restoration. Web Ecol. 2016, 16, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Scapin, L.; Redolfi Bristol, S.; Cavraro, F.; Zucchetta, M.; Franzoi, P. Fish fauna in the Venice lagoon: Updating the species list and reviewing the functional classification. Ital. J. Freshw. Ichthyol. 2019, 5, 271–277. [Google Scholar]
- Zucchetta, M.; Scapin, L.; Cavraro, F.; Pranovi, F.; Franco, A.; Franzoi, P. Can the Effects of Anthropogenic Pressures and Environmental Variability on Nekton Fauna Be Detected in Fishery Data? Insights from the Monitoring of the Artisanal Fishery Within the Venice Lagoon. Chesap. Sci. 2016, 39, 1164–1182. [Google Scholar] [CrossRef]
- Cavraro, F.; Bettoso, N.; Zucchetta, M.; D’Aietti, A.; Faresi, L.; Franzoi, P. Body condition in fish as a tool to detect the effects of anthropogenic pressures in transitional waters. Aquat. Ecol. 2019, 53, 21–35. [Google Scholar] [CrossRef]
- Franzoi, P.; Franco, A.; Torricelli, P. Fish assemblage diversity and dynamics in the Venice lagoon. Rend. Lincei 2010, 21, 269–281. [Google Scholar] [CrossRef]
- Mosesso, P.; Angeletti, D.; Pepe, G.; Pretti, C.; Nascetti, G.; Bellacima, R.; Cimmaruta, R.; Jha, A.N. The use of cyprinodont fish, Aphanius fasciatus, as a sentinel organism to detect complex genotoxic mixtures in the coastal lagoon ecosystem. Mutat. Res. Toxicol. Environ. Mutagen. 2012, 742, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Kessabi, K.; Annabi, A.; Navarro, A.; Casado, M.; Hwas, Z.; Said, K.; Messaoudi, I.; Piña, B. Structural and molecular analysis of pollution-linked deformities in a natural Aphanius fasciatus (Valenciennes, 1821) population from the Tunisian coast. J. Environ. Monit. 2012, 14, 2254. [Google Scholar] [CrossRef]
- García-Oliva, M.; Marcos, C.; Umgiesser, G.; McKiver, W.; Ghezzo, M.; De Pascalis, F.; Pérez-Ruzafa, A. Modelling the impact of dredging inlets on the salinity and temperature regimes in coastal lagoons. Ocean Coast. Manag. 2019, 180, 104913. [Google Scholar] [CrossRef]
- Ferrarin, C.; Ghezzo, M.; Umgiesser, G.; Tagliapietra, D.; Camatti, E.; Zaggia, L.; Sarretta, A. Assessing hydrological effects of human interventions on coastal systems: Numerical applications to the Venice Lagoon. Hydrol. Earth Syst. Sci. 2013, 17, 1733–1748. [Google Scholar] [CrossRef] [Green Version]
- Lloret, J.; Marín, A.; Marín-Guirao, L. Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuar. Coast. Shelf Sci. 2008, 78, 403–412. [Google Scholar] [CrossRef]
- Regulation (EU) 1143/2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1483614313362&uri=CELEX:32014R1143 (accessed on 13 May 2020).
- Global Invasive Species Database. Available online: http://www.iucngisd.org/gisd/100_worst.php (accessed on 4 December 2019).
- Facca, C. Specie ittiche di interesse comunitario (allegato II della Direttiva 92/43/CEE) dell’habitat prioritario 1150* “Lagune costiere” del Mar Mediterraneo: Biologia, Gestione e Conservazione. In Proceedings of the 1st Level Professional Master in Wildlife Management, Venice, Italy, 4 December 2019. (In Italian). [Google Scholar]
EU Member State in Mediterranean Region | Number of Natura 2000 Sites as Coastal Lagoon (HD Code 1150*) |
---|---|
Republic of Cyprus (CY) | 1 |
Croatia (HR) | 21 |
France (FR) | 34 |
Greece (GR) | 41 |
Italy (IT) | 147 |
Malta (MT) | 4 |
Slovenia (SI) | 2 |
Spain (ES) | 62 |
TOTAL | 312 |
Code | Activity | Pressures | Threats |
---|---|---|---|
J02 | Changes in water bodies conditions | 21 | 22 |
H01 | Pollution to surface waters | 16 | 9 |
E03 | Discharges (household/industrial) | 7 | 7 |
F02 | Fishing and harvesting aquatic resources | 7 | 7 |
A08 | Fertilisation in agriculture | 5 | 5 |
H02 | Pollution to groundwater | 5 | 5 |
K02 | Vegetation succession/Biocenotic evolution | 5 | 7 |
A02 | Modification of cultivation practices | 4 | |
E01 | Urbanisation and human habitation | 4 | 7 |
H03 | Pollution to marine waters | 4 | |
L07 | Storm, cyclone | 5 | |
D03 | Shipping lanes and ports | 4 |
Name of the Species in Annex II | Name of the Species Currently Accepted | Functional Group | IUCN | Conservation Status | CY | ES | FR | GR | HR | IT | MT | SI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PETROMYZONTIFORMES | |||||||||||||
Petromyzontidae | |||||||||||||
Lampetra fluviatilis (V) | Lampetra fluviatilis (V) | Anadromous | LC | U2 | 2 | 2 | 4 | ||||||
Petromyzon marinus (o) | Petromyzon marinus (o) | Anadromous | LC | U2 | 1 | 4 | 1 | 9 | 15 | ||||
ACIPENSERIFORMES | |||||||||||||
Acipenseridae | |||||||||||||
* Acipenser naccarii | *Acipenser naccarii | Anadromous | CR | XX | 5 | 5 | |||||||
* Acipenser sturio | *Acipenser sturio | Anadromous | CR | U2 | 1 | 1 | |||||||
CLUPEIFORMES | |||||||||||||
Clupeidae | |||||||||||||
Alosa fallax (V) | Alosa fallax (V) | Anadromous | LC | U2 | 2 | 6 | 7 | 1 | 30 | 46 | |||
Alosa vistonica (V) | Alosa vistonica (V) | Freshwater | CR | U2 | 1 | 1 | |||||||
SALMONIFORMES | |||||||||||||
Salmonidae | |||||||||||||
Salmo marmoratus (o) | Salmo marmoratus (o) | Freshwater | LC | U2 | 1 | 1 | |||||||
CYPRINIFORMES | |||||||||||||
Cyprinidae | |||||||||||||
Alburnus albidus (o) | Alburnus albidus (o) | Freshwater | VU | U2 | 1 | 2 | 3 | ||||||
Aspius aspius (V) | Leuciscus aspius (V) | Freshwater | NA | XX | 2 | 2 | |||||||
Barbus meridionalis (V) | Barbus meridionalis (V) | Freshwater | NT | U1 | 1 | 2 | 3 | ||||||
Barbus plebejus (V) | Barbus plebejus (V) | Freshwater | LC | XX | 2 | 2 | |||||||
Chalcalburnus chalcoides (o) | Alburnus chalcoides (o) | Freshwater | LC | XX | 1 | 1 | |||||||
Chondrostoma soetta (o) | Chondrostoma soetta (o) | Freshwater | EN | XX | 2 | 2 | |||||||
Rhodeus sericeus amarus (o) | Rhodeus amarus (o) | Freshwater | LC | XX | 2 | 2 | |||||||
Rutilus pigus (V) | Rutilus pigus (V) | Freshwater | LC | XX | 2 | 2 | |||||||
Rutilus rubilio (o) | Sarmarutilus rubilio (o) | Freshwater | NT | U1 | 2 | 2 | |||||||
Cobitidae | |||||||||||||
Cobitis taenia (o) | Cobitis taenia (o) | Freshwater | LC | XX | 9 | 1 | 10 | ||||||
Cobitis trichonica (o) | Cobitis trichonica (o) | Freshwater | EN | FV | 1 | 1 | |||||||
SILURIFORMES | |||||||||||||
Siluridae | |||||||||||||
Silurus aristotelis (V) | Silurus aristotelis (V) | Freshwater | DD | FV | 1 | 1 | |||||||
SCORPAENIFORMES | |||||||||||||
Cottidae | |||||||||||||
Cottus gobio (o) | Cottus gobio (o) | Freshwater | LC | U1 | 1 | 1 | |||||||
In directive annexes listed as ATHERINIFORMES, but currently accepted as CYPRINODONTIFORMES | |||||||||||||
In directive annexes listed as Cyprinodontidae, but currently accepted as Aphaniidae | |||||||||||||
Aphanius iberus (o) | Aphanius iberus (o) | Lagoon resident | EN | U1 | 29 | 29 | |||||||
Aphanius fasciatus (o) | Aphanius fasciatus (o) | Lagoon resident | LC | U1 | 10 | 20 | 1 | 72 | 4 | 2 | 109 | ||
In directive annexes listed as Cyprinodontidae, but currently accepted as Valenciidae | |||||||||||||
* Valencia hispanica | *Valencia hispanica | Freshwater | CR | U2 | 13 | 13 | |||||||
* Valencia letourneuxi | *Valencia letourneuxi | Freshwater | CR | U1 | 2 | 2 | |||||||
In directive annexes listed as PERCIFORMES, but currently accepted as GOBIIFORMES | |||||||||||||
In directive annexes listed as Gobiidae, but currently accepted as Gobionellidae | |||||||||||||
Knipowitschia panizzae (o) | Knipowitschia panizzae (o) | Lagoon resident | LC | FV | 3 | 22 | 25 | ||||||
Pomatoschistus canestrinii (o) | Ninnigobius canestrinii (o) | Lagoon resident | LC | FV | 2 | 18 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facca, C.; Cavraro, F.; Franzoi, P.; Malavasi, S. Lagoon Resident Fish Species of Conservation Interest According to the Habitat Directive (92/43/CEE): A Review on Their Potential Use as Ecological Indicator Species. Water 2020, 12, 2059. https://doi.org/10.3390/w12072059
Facca C, Cavraro F, Franzoi P, Malavasi S. Lagoon Resident Fish Species of Conservation Interest According to the Habitat Directive (92/43/CEE): A Review on Their Potential Use as Ecological Indicator Species. Water. 2020; 12(7):2059. https://doi.org/10.3390/w12072059
Chicago/Turabian StyleFacca, Chiara, Francesco Cavraro, Piero Franzoi, and Stefano Malavasi. 2020. "Lagoon Resident Fish Species of Conservation Interest According to the Habitat Directive (92/43/CEE): A Review on Their Potential Use as Ecological Indicator Species" Water 12, no. 7: 2059. https://doi.org/10.3390/w12072059
APA StyleFacca, C., Cavraro, F., Franzoi, P., & Malavasi, S. (2020). Lagoon Resident Fish Species of Conservation Interest According to the Habitat Directive (92/43/CEE): A Review on Their Potential Use as Ecological Indicator Species. Water, 12(7), 2059. https://doi.org/10.3390/w12072059