Biocontrol of Phytopathogens under Aquaponics Systems
Abstract
:1. Introduction
2. General Description of Aquaponics Systems
3. Plant Disease in Aquaponics Systems
3.1. Source of Inoculum
3.2. Factors Related to Phytopathogen Proliferation
3.3. Most Common Phytopathogens
4. Conventional Protection Against Phytopathogens
4.1. Physical Disinfection Methods
4.2. Chemical Treatments
4.3. Preventive Treatments
5. Biological Control as Alternative Treatment in Aquaponics
6. The Role of Microbial Communities in Phytopathogen Suppression in Aquaponics
7. Future Perspectives
7.1. Biological Control in Soilles Systems
7.2. Mixed Treatment versus Fish-Plant Pathogens
7.3. ‘Omic’ Technologies
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture 2017: Leveraging Food Systems for Inclusive Rural Transformation; Food and Agriculture Organization of the United Nations: Roma, Italy, 2017; ISBN 9251098735. [Google Scholar]
- Lennard, W.; Goddek, S. Aquaponics: The basics. In Aquaponics Food Production Systems; Springer Nature: Cham, Switzerland, 2019; p. 113. [Google Scholar]
- Kummu, M.; De Moel, H.; Porkka, M.; Siebert, S.; Varis, O.; Ward, P.J. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 2012, 438, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Ga, U.N. Transforming our World: The 2030 Agenda for Sustainable Development; Division for Sustainable Development Goals: New York, NY, USA, 2015. [Google Scholar]
- Abusin, S.A.A.; Mandikiana, B.W. Towards sustainable food production systems in Qatar: Assessment of the viability of aquaponics. Glob. Food Sec. 2020, 25, 100349. [Google Scholar] [CrossRef]
- Mori, J.; Smith, R. Transmission of waterborne fish and plant pathogens in aquaponics and their control with physical disinfection and filtration: A systematized review. Aquaculture 2019, 504, 380–395. [Google Scholar] [CrossRef]
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic production of tilapia and basil: Comparing a batch and staggered cropping system. Acta Hortic. 2004, 648, 63–69. [Google Scholar] [CrossRef]
- Martan, E. Polyculture of fishes in aquaponics and recirculating aquaculture. Aquaponics J. 2008, 48, 28–33. [Google Scholar]
- Pantanella, E.; Cardarelli, M.; Colla, G.; Rea, E.; Marcucci, A. Aquaponics vs. hydroponics: Production and quality of lettuce crop. Acta Hortic. 2012, 927, 887–893. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Aquaponics: Closing the cycle on limited water, land and nutrient resources. Aquaponics Food Prod. Syst. 2019, 19, 19–34. [Google Scholar]
- Yang, T.; Kim, H.-J. Characterizing Nutrient Composition and Concentration in Tomato-, Basil-, and Lettuce-Based Aquaponic and Hydroponic Systems. Water 2020, 12, 1259. [Google Scholar] [CrossRef]
- Forchino, A.A.; Lourguioui, H.; Brigolin, D.; Pastres, R. Aquaponics and sustainability: The comparison of two different aquaponic techniques using the Life Cycle Assessment (LCA). Aquac. Eng. 2017, 77, 80–88. [Google Scholar] [CrossRef]
- Junge, R.; König, B.; Villarroel, M.; Komives, T.; Jijakli, M.H. Strategic points in aquaponics 2017. Water 2017, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Danner, R.I.; Mankasingh, U.; Anamthawat-Jonsson, K.; Thorarinsdottir, R.I. Designing aquaponic production systems towards integration into greenhouse farming. Water 2019, 11, 2123. [Google Scholar] [CrossRef] [Green Version]
- Turnsek, M.; Joly, A.; Thorarinsdottir, R.; Junge, R. Challenges of Commercial Aquaponics in Europe: Beyond the Hype. Water 2020, 12, 306. [Google Scholar] [CrossRef] [Green Version]
- Greenfeld, A.; Becker, N.; McIlwain, J.; Fotedar, R.; Bornman, J.F. Economically viable aquaponics? Identifying the gap between potential and current uncertainties. Rev. Aquac. 2019, 11, 848–862. [Google Scholar] [CrossRef]
- Quagrainie, K.K.; Flores, R.M.V.; Kim, H.-J.; McClain, V. Economic analysis of aquaponics and hydroponics production in the US Midwest. J. Appl. Aquac. 2018, 30, 1–14. [Google Scholar] [CrossRef]
- Kyaw, T.Y.; Ng, A.K. Smart aquaponics system for urban farming. Energy Procedia 2017, 143, 342–347. [Google Scholar] [CrossRef]
- Lee, C.; Wang, Y.-J. Development of a cloud-based IoT monitoring system for Fish metabolism and activity in aquaponics. Aquac. Eng. 2020, 90, 102067. [Google Scholar] [CrossRef]
- Baßmann, B.; Harbach, H.; Weißbach, S.; Palm, H.W. Effect of plant density in coupled aquaponics on the welfare status of African catfish, Clarias gariepinus. J. World Aquac. Soc. 2020, 51, 183–199. [Google Scholar] [CrossRef]
- Andriani, Y.; Dhahiyat, Y.; Zahidah, Z.; Zidni, I. The effect of stocking density ratio of fish on water plant productivity in aquaponics culture system. Nusant. Biosci. 2017, 9, 31–35. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, Z.; Zou, Y.; Fan, J.; Wang, Q.; Zhu, Z. Increasing economic and environmental benefits of media-based aquaponics through optimizing aeration pattern. J. Clean. Prod. 2017, 162, 1111–1117. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of pH on nitrogen transformations in media-based aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Kim, H.-J. Effects of hydraulic loading rate on spatial and temporal water quality characteristics and crop growth and yield in aquaponic systems. Horticulturae 2020, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Calone, R.; Pennisi, G.; Morgenstern, R.; Sanyé-Mengual, E.; Lorleberg, W.; Dapprich, P.; Winkler, P.; Orsini, F.; Gianquinto, G. Improving water management in European catfish recirculating aquaculture systems through catfish-lettuce aquaponics. Sci. Total Environ. 2019, 687, 759–767. [Google Scholar] [CrossRef]
- Moriarty, M.J.; Semmens, K.; Bissonnette, G.K.; Jaczynski, J. Inactivation with UV-radiation and internalization assessment of coliforms and Escherichia coli in aquaponically grown lettuce. LWT 2018, 89, 624–630. [Google Scholar] [CrossRef]
- Stouvenakers, G.; Dapprich, P.; Massart, S.; Jijakli, M.H. Plant pathogens and control strategies in aquaponics. In Aquaponics Food Production Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 353–378. [Google Scholar]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H.M. Microbial diversity in different compartments of an aquaponics system. Arch. Microbiol. 2017, 199, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Joyce, A.; Timmons, M.; Goddek, S.; Pentz, T. Bacterial Relationships in Aquaponics: New Research Directions. In Aquaponics Food Production Systems; Springer: Cham, Switzerland, 2019; pp. 145–161. [Google Scholar]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial aquaponics production and profitability: Findings from an international survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Bromage, E.S.; Thomas, A.; Owens, L. Streptococcus iniae, a bacterial infection in barramundi Lates calcarifer. Dis. Aquat. Org. 1999, 36, 177–181. [Google Scholar] [CrossRef]
- Goldberg, N.P.; Stanghellini, M.E.; Rasmussen, S.L. Filtration as a method for controlling Pythium root rot of hydroponically grown cucumbers. Plant Dis. 1992, 76, 777–779. [Google Scholar] [CrossRef]
- Love, D.C.; Uhl, M.S.; Genello, L. Energy and water use of a small-scale raft aquaponics system in Baltimore, Maryland, United States. Aquac. Eng. 2015, 68, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Bartelme, R.P.; Oyserman, B.O.; Blom, J.E.; Sepulveda-Villet, O.J.; Newton, R.J. Stripping away the soil: Plant growth promoting microbiology opportunities in aquaponics. Front. Microbiol. 2018, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-scale aquaponic food production: Integrated fish and plant farming. FAO Fish. Aquac. Tech. Pap. 2014, 589, 1–262. [Google Scholar]
- Wongkiew, S.; Hu, Z.; Chandran, K.; Lee, J.W.; Khanal, S.K. Nitrogen transformations in aquaponic systems: A review. Aquac. Eng. 2017, 76, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Mangmang, J.S.; Deaker, R.; Rogers, G. Inoculation effect of Azospirillum brasilense on basil grown under aquaponics production system. Org. Agric. 2016, 6, 65–74. [Google Scholar] [CrossRef]
- da Silva Cerozi, B.; Fitzsimmons, K. Use of Bacillus spp. to enhance phosphorus availability and serve as a plant growth promoter in aquaponics systems. Sci. Hortic. 2016, 211, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Sirakov, I.; Lutz, M.; Graber, A.; Mathis, A.; Staykov, Y.; Smits, T.H.M.; Junge, R. Potential for combined biocontrol activity against fungal fish and plant pathogens by bacterial isolates from a model aquaponic system. Water 2016, 8, 518. [Google Scholar] [CrossRef]
- McPherson, G.M.; Harriman, M.R.; Pattison, D. The potential for spread of root diseases in recirculating hydroponic systems and their control with disinfection. Meded. Landbouwkd. Univ. Gent 1995, 60, 371–379. [Google Scholar]
- Postma, J.; van Os, E.; Bonants, P.J.M. Pathogen Detection and Management Strategies in Soilless Plant Growing Systems; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Gravel, V.; Dorais, M.; Dey, D.; Vandenberg, G. Fish effluents promote root growth and suppress fungal diseases in tomato transplants. Can. J. Plant Sci. 2015, 95, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Köhl, J.; Kolnaar, R.; Ravensberg, W.J. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front. Plant Sci. 2019, 10, 845. [Google Scholar] [CrossRef] [Green Version]
- Naegel, L.C.A. Combined production of fish and plants in recirculating water. Aquaculture 1977, 10, 17–24. [Google Scholar] [CrossRef]
- Jones, S. Evolution of aquaponics. Aquaponics J. 2002, 6, 14–17. [Google Scholar]
- Yogev, U.; Barnes, A.; Gross, A. Nutrients and energy balance analysis for a conceptual model of a three loops off grid, aquaponics. Water 2016, 8, 589. [Google Scholar] [CrossRef] [Green Version]
- Monsees, H.; Suhl, J.; Paul, M.; Kloas, W.; Dannehl, D.; Würtz, S. Lettuce (Lactuca sativa, variety Salanova) production in decoupled aquaponic systems: Same yield and similar quality as in conventional hydroponic systems but drastically reduced greenhouse gas emissions by saving inorganic fertilizer. PLoS ONE 2019, 14, e0218368. [Google Scholar] [CrossRef] [Green Version]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- van der Esch, S.; ten Brink, B.; Stehfest, E.; Bakkenes, M.; Sewell, A.; Bouwman, A.; Meijer, J.; Westhoek, H.; van den Berg, M.; van den Born, G.J. Exploring future changes in land use and land condition and the impacts on Food, Water, Climate Change and Biodiversity: Scenarios for the UNCCD Global Land Outlook; PBL: Netherlands Environmental Assessment Agency: Den Haag, The Netherlands, 2017. [Google Scholar]
- Mehle, N.; Gutiérrez-Aguirre, I.; Prezelj, N.; Delić, D.; Vidic, U.; Ravnikar, M. Survival and transmission of Potato virus Y, Pepino mosaic virus, and Potato spindle tuber viroid in water. Appl. Environ. Microbiol. 2014, 80, 1455–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.X.; Moorman, G.W. Plant pathogens in irrigation water: Challenges and opportunities. CRC Crit. Rev. Plant Sci. 2005, 24, 189–208. [Google Scholar] [CrossRef]
- Reddy, P.P. Sustainable Crop Protection under Protected Cultivation; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9812879501. [Google Scholar]
- Lee, S.; Lee, J. Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Sci. Hortic. 2015, 195, 206–215. [Google Scholar] [CrossRef]
- Gullino, M.L.; Albajes, R.; Nicot, P.C. Integrated Pest and Disease Management in Greenhouse Crops, 2nd ed.; Springer: Cham, Switzerland, 2020; pp. 55–100. [Google Scholar] [CrossRef]
- Bates, M.L.; Stanghellini, M.E. Root rot of hydroponically grown spinach caused by Pythium aphanidermatum and P. dissotocum. Plant Dis. 1984, 68, 989–991. [Google Scholar] [CrossRef]
- Banniza, S.; Vandenberg, A. The influence of plant injury on development of Mycosphaerella pinodes in field pea. Can. J. Plant Pathol. 2003, 25, 304–311. [Google Scholar] [CrossRef]
- Menzies, J.G.; Ehret, D.L.; Stan, S. Effect of inoculum density of Pythium aphanidermatum on the growth and yield of cucumber plants grown in recirculating nutrient film culture. Can. J. Plant Pathol. 1996, 18, 50–54. [Google Scholar] [CrossRef]
- Park, W.M.; Lee, G.P.; Ryu, K.H.; Park, K.W. Transmission of tobacco mosaic virus in recirculating hydroponic system. Sci. Hortic. 1999, 79, 217–226. [Google Scholar] [CrossRef]
- Agrios, G. Fitopatología de Plantas, 5th ed.; Elsevier: Mexico City, Mexico, 2005; pp. 154–196. [Google Scholar]
- Walker, C.A.; van West, P. Zoospore development in the oomycetes. Fungal Biol. Rev. 2007, 21, 10–18. [Google Scholar] [CrossRef]
- Vallance, J.; Déniel, F.; Le Floch, G.; Guérin-Dubrana, L.; Blancard, D.; Rey, P. Pathogenic and beneficial microorganisms in soilless cultures. In Sustainable Agriculture Volume 2; Springer: Berlin/Heidelberg, Germany, 2011; pp. 711–726. [Google Scholar]
- Villarroel, M.; Junge, R.; Komives, T.; König, B.; Plaza, I.; Bittsánszky, A.; Joly, A. Survey of aquaponics in europe. Water 2016, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, V.; Gopalakrishnan, A. A novel report of phytopathogenic fungi Gilbertella persicaria infection on Penaeus monodon. Aquaculture 2014, 430, 224–229. [Google Scholar] [CrossRef]
- Daughtrey, M.L.; Schippers, P.A. Root death and associated problems. Acta Hortic. 1980, 98, 283–292. [Google Scholar] [CrossRef]
- Khoa, L.V.; Hatai, K.; Aoki, T. Fusarium incarnatum isolated from black tiger shrimp, Penaeus monodon Fabricius, with black gill disease cultured in Vietnam. J. Fish Dis. 2004, 27, 507–515. [Google Scholar] [CrossRef]
- Bittsánszky, A.; Gyulai, G.; Junge, R.; Schmautz, Z.; Komives, T.; Has, C.A.R.; Otto, H. Plant protection in ecocycle-based agricultural systems: Aquaponics as an example. In Proceedings of the International Plant Protection Congress (IPPC), Berlin, Germany, 24–27 August 2015; Volume 2427. [Google Scholar]
- Sholtes, K.A.; Lowe, K.; Walters, G.W.; Sobsey, M.D.; Linden, K.G.; Casanova, L.M. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water. Environ. Technol. 2016, 37, 2183–2188. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, C.; Xu, P.; Wang, X.C. Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: Culturability, membrane permeability, metabolism, and genetic damage. J. Environ. Sci. 2018, 65, 356–366. [Google Scholar] [CrossRef]
- Malayeri, A.H.; Mohseni, M.; Cairns, B.; Bolton, J.R.; Chevrefils, G.; Caron, E.; Barbeau, B.; Wright, H.; Linden, K.G. Fluence (UV dose) required to achieve incremental log inactivation of bacteria, protozoa, viruses and algae. IUVA News 2016, 18, 4–6. [Google Scholar]
- Van Os, E.A.; Bruins, M.; Postma, J.; Willemsen-de Klein, M. Investigations on crop developments and microbial suppressiveness of Pythium aphanidermatum after different disinfection treatments of the circulating nutrient solution. Acta Hortic. 2004, 644, 563–570. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Beerendonk, E.F.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Arndt, R.E.; Wagner, E.J. Filtering Myxobolus cerebralis triactinomyxons from contaminated water using rapid sand filtration. Aquac. Eng. 2003, 29, 77–91. [Google Scholar] [CrossRef]
- Bergstrand, K.-J.; Khalil, S.; Hultberg, M.; Alsanius, B.W. Cross response of slow filters to dual pathogen inoculation in closed hydroponic growing systems. Open Hortic. J. 2011, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Furtner, B.; Bergstrand, K.; Brand, T.; Jung, V.; Alsanius, B.W. Abiotic and biotic factors in slow filters integrated to closed hydroponic systems. Eur. J. Hortic. Sci. 2007, 72, 104. [Google Scholar]
- Lee, E.; Oki, L.R. Slow sand filters effectively reduce Phytophthora after a pathogen switch from Fusarium and a simulated pump failure. Water Res. 2013, 47, 5121–5129. [Google Scholar] [CrossRef] [PubMed]
- Wohanka, W.; Luedtke, H.; Ahlers, H.; Luebke, M. Optimization of slow filtration as a means for disinfecting nutrient solutions. Acta Hort. 1997, 481, 539–544. [Google Scholar] [CrossRef]
- Nyberg, E. Ecological Disinfestation: Physical and Biological Characterization of Filtration Substrates for Removing Zoospores of Phytophthora Nicotianae from Water. Master’s Thesis, Clemson University, Clemson, SC, USA, 2011. [Google Scholar]
- Van Os, E.A.; Bruins, M.; Wohanka, W.; Seidel, R. Slow filtration: A technique to minimise the risks of spreading root-infecting pathogens in closed hydroponic systems. Acta Hortic. 2001, 559, 495–502. [Google Scholar] [CrossRef]
- Runia, W.T.; Amsing, J.J. Disinfection of recirculation water from closed cultivation systems by heat treatment. Acta Hortic. 2001, 548, 215–222. [Google Scholar] [CrossRef]
- Tu, J.C.; Zhang, W.-Z. Comparison of heat, sonication and ultraviolet irradiation in eliminating Pythium aphanidermatum zoospores in recirculating nutrient solution. Acta Hort. 2000, 532, 137–144. [Google Scholar] [CrossRef]
- Rey, P.; Déniel, F.; Vasseur, V.; Tirilly, Y.; Benhamou, N.; Marchand, P.C.E. Evolution of Pythium spp. populations in soilless cultures and their control by active disinfecting methods. Acta Hortic. 2001, 82, 341–348. [Google Scholar] [CrossRef]
- Albright, L.D.; Langhans, R.W.; de Villiers, D.S.; Shelford, T.J.; Rutzke, C.J. Root Disease Treatment Methods for Commercial Production of Hydroponic Spinach; Final Report for the New York State Energy Research and Development Authority; Cornell University: New York, NY, USA, 2007. [Google Scholar]
- Lakeh, A.A.B.; Kloas, W.; Jung, R.; Ariav, R.; Knopf, K. Low frequency ultrasound and UV-C for elimination of pathogens in recirculating aquaculture systems. Ultrason. Sonochem. 2013, 20, 1211–1216. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Van Os, E.; Anseeuw, D.; Van Havermaet, R.; Junge, R. Hydroponic technologies. Aquaponics Food Prod. Syst. 2019, 77, 77–110. [Google Scholar]
- Runia, W.T. A review of possibilities for disinfection of recirculation water from soilless cultures. Acta Hortic. 1994, 382, 221–229. [Google Scholar] [CrossRef]
- Nicoletto, C.; Maucieri, C.; Sambo, P. Effects on water management and quality characteristics of ozone application in chicory forcing process: A pilot system. Agronomy 2017, 7, 29. [Google Scholar] [CrossRef]
- Runia, W.T. Elimination of root-infecting pathogens in recirculation water from closed cultivation systems by ultra-violet radiation. Acta Hortic. 1994, 361, 361–371. [Google Scholar] [CrossRef]
- Le Quillec, S.; Fabre, R.; Lesourd, D. La désinfection par chloration à l’eau de Javel: Phytotoxicité sur tomate et chlorate de sodium. Infos CTIFL 2003, 197, 40–43. [Google Scholar]
- Nemethy, S.; Bittsanszky, A.; Schmautz, Z.; Junge, R.; Komives, T. Protecting plants from pests and diseases in aquaponic systems. Ecol. Footpr. Cent. Eur. Univ. Coll. Tour. Ecol. Press. Sucha Besk. 2016, 4, 1–8. [Google Scholar]
- Baudoin, W.; Nono-Womdim, R.; Lutaladio, N.; Hodder, A.; Castilla, N.; Leonardi, C.; De Pascale, S.; Qaryouti, M.; Duffy, R. Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate areas; Food and Agricultural Organization of the United Nations: New York, NY, USA, 2013. [Google Scholar]
- Rivas-Garcia, T.; Murillo-Amador, B.; Nieto-Garibay, A.; Rincon-Enriquez, G.; Chiquito-Contreras, R.G.; Hernandez-Montiel, L.G. Enhanced biocontrol of fruit rot on muskmelon by combination treatment with marine Debaryomyces hansenii and Stenotrophomonas rhizophila and their potential modes of action. Postharvest Biol. Technol. 2019, 151, 61–67. [Google Scholar] [CrossRef]
- Beneduzi, A.; Ambrosini, A.; Passaglia, L.M.P. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 2012, 35, 1044–1051. [Google Scholar] [CrossRef] [Green Version]
- Narayanasamy, P. Biological Management of Diseases of Crops; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9400763794. [Google Scholar]
- Pérez-García, A.; Romero, D.; De Vicente, A. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 2011, 22, 187–193. [Google Scholar] [CrossRef]
- Thongkamngam, T.; Jaenaksorn, T. Fusarium oxysporum (F221-B) as biocontrol agent against plant pathogenic fungi in vitro and in hydroponics. Plant Prot. Sci. 2017, 53, 85–95. [Google Scholar]
- Nielsen, C.J.; Ferrin, D.M.; Stanghellini, M.E. Efficacy of biosurfactants in the management of Phytophthora capsici on pepper in recirculating hydroponic systems. Can. J. Plant Pathol. 2006, 28, 450–460. [Google Scholar] [CrossRef]
- Hultberg, M.; Holmkvist, A.; Alsanius, B. Strategies for administration of biosurfactant-producing pseudomonads for biocontrol in closed hydroponic systems. Crop. Prot. 2011, 30, 995–999. [Google Scholar] [CrossRef] [Green Version]
- Witkowicz, R.; Biel, W.; Chłopicka, J.; Galanty, A.; Gleń-Karolczyk, K.; Skrzypek, E.; Krupa, M. Biostimulants and Microorganisms Boost the Nutritional Composition of Buckwheat (Fagopyrum esculentum Moench) Sprouts. Agronomy 2019, 9, 469. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Tian, X.; Wang, L. Genetic adaptation of microbial populations present in high-intensity catfish production systems with therapeutic oxytetracycline treatment. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calheiros, C.S.C.; Duque, A.F.; Moura, A.; Henriques, I.S.; Correia, A.; Rangel, A.O.S.S.; Castro, P.M.L. Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour. Technol. 2009, 100, 3228–3235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ke, X.; Wu, L.; Lu, Y. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Syst. Appl. Microbiol. 2009, 32, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yu, X.; Zhang, S.; Gu, L. Comparison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes. Microbiol. Res. 2011, 166, 468–474. [Google Scholar] [CrossRef]
- Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, S. Soil-plant-microbe interactions in stressed agriculture management: A review. Pedosphere 2017, 27, 177–192. [Google Scholar] [CrossRef]
- Srivastava, J.K.; Chandra, H.; Kalra, S.J.S.; Mishra, P.; Khan, H.; Yadav, P. Plant–microbe interaction in aquatic system and their role in the management of water quality: A review. Appl. Water Sci. 2017, 7, 1079–1090. [Google Scholar] [CrossRef] [Green Version]
- Blidariu, F.; Grozea, A. Increasing the economical efficiency and sustainability of indoor fish farming by means of aquaponics-review. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 1–8. [Google Scholar]
- Spadaro, D.; Droby, S. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- de Vries, F.T.; Wallenstein, M.D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 2017, 105, 913–920. [Google Scholar] [CrossRef] [Green Version]
- Carini, P.; Marsden, P.J.; Leff, J.W.; Morgan, E.E.; Strickland, M.S.; Fierer, N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2016, 2, 1–6. [Google Scholar]
- Martin-Laurent, F.; Philippot, L.; Hallet, S.; Chaussod, R.; Germon, J.C.; Soulas, G.; Catroux, G. DNA extraction from soils: Old bias for new microbial diversity analysis methods. Appl. Environ. Microbiol. 2001, 67, 2354–2359. [Google Scholar] [CrossRef] [Green Version]
- Dessaux, Y.; Grandclément, C.; Faure, D. Engineering the rhizosphere. Trends Plant Sci. 2016, 21, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.; McHardy, A.C.; Dangl, J.L.; Knight, R.; Ley, R. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 2015, 17, 603–616. [Google Scholar] [CrossRef] [Green Version]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef] [Green Version]
- Munguia-Fragozo, P.; Alatorre-Jacome, O.; Rico-Garcia, E.; Torres-Pacheco, I.; Cruz-Hernandez, A.; Ocampo-Velazquez, R.V.; Garcia-Trejo, J.F.; Guevara-Gonzalez, R.G. Perspective for aquaponic systems:“omic” technologies for microbial community analysis. Biomed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schreier, H.J.; Mirzoyan, N.; Saito, K. Microbial diversity of biological filters in recirculating aquaculture systems. Curr. Opin. Biotechnol. 2010, 21, 318–325. [Google Scholar] [CrossRef]
- Martínez-Porchas, M.; Vargas-Albores, F. Microbial metagenomics in aquaculture: A potential tool for a deeper insight into the activity. Rev. Aquac. 2017, 9, 42–56. [Google Scholar] [CrossRef]
- Michaud, L.; Lo Giudice, A.; Interdonato, F.; Triplet, S.; Ying, L.; Blancheton, J.P. C/N ratio-induced structural shift of bacterial communities inside lab-scale aquaculture biofilters. Aquac. Eng. 2014, 58, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Michaud, L.; Lo Giudice, A.; Troussellier, M.; Smedile, F.; Bruni, V.; Blancheton, J.-P. Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system. J. Appl. Microbiol. 2009, 107, 1935–1946. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Tirado, P.; Pedersen, P.B.; Pedersen, L.-F. Bacterial activity dynamics in the water phase during start-up of recirculating aquaculture systems. Aquac. Eng. 2017, 78, 24–31. [Google Scholar] [CrossRef]
- Leonard, N.; Blancheton, J.P.; Guiraud, J.P. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquac. Eng. 2000, 22, 109–120. [Google Scholar] [CrossRef]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.-P.; d’Orbcastel, E.R.; Verreth, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef] [Green Version]
Plant Species | Phytopathogens Identified * |
---|---|
Allium schoenoprasum | Pythium sp. (b) |
Beta vulgaris (Swiss chard) | Erysiphe betae(a) |
Cucumis sativus | Podosphaera xanthii(a) |
Fragaria spp. | Botrytis cinerea(a) |
Lactuca sativa | |
Bremia lactucae(a) | |
Fusarium sp. (b) | |
Pythium dissotocum(b) | |
Pythium myriotylum(b) | |
Sclerotinia sp. (a) | |
Mentha spp. | Pythium sp. (b) |
Nasturtium officinale | Aspergillus sp. (a) |
Ocimum basilicum | Alternaria sp. (a) |
Botrytis cinereal(a) | |
Pythium sp. (b) | |
Sclerotinia sp. (a) | |
Pisum sativum | Erysiphe pisi(a) |
Solanum lycopersicum | Pseudomonas solanacearum(a) |
Phytophthora infestans(a) |
Symptoms | Plant Species |
---|---|
Foliar chlorosis | Allium schoenoprasum1, Amaranthus viridis1, Coriandrum sativum1, Cucumis sativus1, Ocimum basilicum6, Lactuca sativa4, Mentha spp.2, Petroselinum crispum 1, Spinacia oleracea 2, Solanum lycopersicum 1, Fragaria spp. 1 |
Foliar necrosis | Mentha spp.2, Ocimum basilicum 1. |
Stem necrosis | Solanum lycopersicum1. |
Collar necrosis | Ocimum basilicum1 |
Foliar mosaic | Cucumis sativus1, Mentha spp.1, Ocimum basilicum 1. |
Foliar wilting | Brassica oleracea1, Lactuca sativa1, Mentha spp.1, Cucumis sativus 1, Ocimum basilicum 1, Solanum lycopersicum 1. |
Foliar, stem and collar mould | Allium schoenoprasum1, Capsicum annum1, Cucumis sativus1, Lactuca sativa2, Mentha spp.1, Ocimum basilicum 4, Solanum lycopersicum 1. |
Foliar spots | Capsicum annum1, Cucumis sativus1, Lactuca sativa2, Mentha spp.1, Ocimum basilicum 5. |
Damping off | Spinacia oleracea1, Ocimum basilicum1, Solanum lycopersicum1. |
Crinkle | Beta vulgaris1, Capsicum annum1, Lactuca sativa1, Ocimum basilicum1. |
Browning or decaying root | Allium schoenoprasum1, Amaranthus viridis1, Beta vulgaris1, Coriandrum sativum1, Lactuca sativa1, Mentha spp.2, Ocimum basilicum 2, Petroselinum crispum 2, Solanum lycopersicum 1, Spinacia oleracea 1. |
Phyla Group | Bacteria | Description |
---|---|---|
Actinobacteria | Frankia spp. Leifsonia spp. Mycobacterium spp. Streptomyces spp. | Gram − N2 Fixing Plant commensals |
Alpha-proteobacteria | Methylobacterium spp. Rhizobium spp. Wolbachia spp. Rickettsia spp. | Gram +/− Degrade organics Plant symbionts |
Beta-proteobacteria | Nitrosomonas spp. Burkholderia spp. | Gram − ammonia oxidizing Pathogenic, organic degrading and metal degrading |
Gamma-proteobacteria | Enterobacter spp. Vibrio spp. Pseudomonas spp. | Gram − Pathogenic |
Firmicutes | Clostridia spp. Bacillus spp. | Gram + Pathogenic |
Bacteriodetes | Flavobacterium spp. Sphingobacterium spp. Cytophaga spp. | Gram − Opportunistic pathogen |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas-García, T.; González-Estrada, R.R.; Chiquito-Contreras, R.G.; Reyes-Pérez, J.J.; González-Salas, U.; Hernández-Montiel, L.G.; Murillo-Amador, B. Biocontrol of Phytopathogens under Aquaponics Systems. Water 2020, 12, 2061. https://doi.org/10.3390/w12072061
Rivas-García T, González-Estrada RR, Chiquito-Contreras RG, Reyes-Pérez JJ, González-Salas U, Hernández-Montiel LG, Murillo-Amador B. Biocontrol of Phytopathogens under Aquaponics Systems. Water. 2020; 12(7):2061. https://doi.org/10.3390/w12072061
Chicago/Turabian StyleRivas-García, Tomás, Ramsés Ramón González-Estrada, Roberto Gregorio Chiquito-Contreras, Juan José Reyes-Pérez, Uriel González-Salas, Luis Guillermo Hernández-Montiel, and Bernardo Murillo-Amador. 2020. "Biocontrol of Phytopathogens under Aquaponics Systems" Water 12, no. 7: 2061. https://doi.org/10.3390/w12072061
APA StyleRivas-García, T., González-Estrada, R. R., Chiquito-Contreras, R. G., Reyes-Pérez, J. J., González-Salas, U., Hernández-Montiel, L. G., & Murillo-Amador, B. (2020). Biocontrol of Phytopathogens under Aquaponics Systems. Water, 12(7), 2061. https://doi.org/10.3390/w12072061