The Synthesis of PbS NPs and Biosorption of Pb(II) by Shinella Zoogloeoides PQ7 in Aqueous Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Culture Conditions
2.2. Growth of Shinella Zoogloeoides PQ7 in the Presence of Lead Ions
2.3. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy (SEM–EDS) Analysis
2.4. X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) Analysis
2.5. Biosorption Experiments
2.6. Kinetic and Biosorption Isotherm Studies
2.7. SEM–EDS, Fourier Transform Infrared (FTIR) and XRD Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Shinella Zoogloeoides PQ7 Turned Black in the Presence of Lead Ions
3.2. PbS Nanoparticles Were Synthesized by PQ7
3.3. Batch Biosorption Experiments
3.3.1. Effect of pH
3.3.2. Effect of Contact Time
3.3.3. Effect of Biosorbent Dosage
3.3.4. Effect of Initial Pb(II) Concentration
3.4. Isotherm and Kinetic Modeling of the Biosorption of Pb(II)
3.5. SEM–EDS, FTIR and XRD Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiao, X.; Liu, Q.Y.; Lu, X.R.; Li, T.T.; Feng, X.L.; Li, Q.; Liu, Z.Y.; Feng, Y.J. Self-assembly of complex hollow CuS nano/micro shell by an electrochemically active bacterium Shewanella oneidensis MR-1. Int. Biodeterior. Biodegrad. 2017, 116, 10–16. [Google Scholar] [CrossRef]
- Satapute, P.; Paidi, M.K.; Kurjogi, M.; Jogaiah, S. Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environ. Pollut. 2019, 251, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Toxic metals in the environment: The role of surfaces. Elements 2005, 1, 193–197. [Google Scholar] [CrossRef]
- Amaral, A.F.S.; Arruda, M.; Cabral, S.; Rodrigues, A.S. Essential and non-essential trace metals in scalp hair of men chronically exposed to volcanogenic metals in the Azores, Portugal. Environ. Int. 2008, 34, 1104–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, S.V.S. Metals and apoptosis: Recent developments. J. Trace Elem. Med. Biol. 2008, 22, 262–284. [Google Scholar] [CrossRef]
- Farooq, U.; Kozinski, J.A.; Khan, M.A.; Athar, M. Biosorption of heavy metal ions using wheat based biosorbents—A review of the recent literature. Bioresour. Technol. 2010, 101, 5043–5053. [Google Scholar] [CrossRef] [PubMed]
- Zanardini, E.; Andreoni, V.; Borin, S.; Cappitelli, F.; Daffonchio, D.; Talotta, P.; Sorlini, C.; Ranalli, G.; Bruni, S.; Cariati, F. Lead-resistant microorganisms from red stains of marble of the Certosa of Pavia, Italy and use of nucleic acid-based techniques for their detection. Int. Biodeterior. Biodegrad. 1997, 40, 171–182. [Google Scholar] [CrossRef]
- Templeton, A.S.; Trainor, T.P.; Spormann, A.M.; Newville, M.; Sutton, S.R.; Dohnalkova, A.; Gorby, Y.; Brown, G.E. Sorption versus biomineralization of Pb(II) within Burkholderia cepacia biofilms. Environ. Sci. Technol. 2003, 37, 300–307. [Google Scholar] [CrossRef]
- Karnachuk, O.V.; Kurochkina, S.Y.; Tuovinen, O.H. Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Appl. Microbiol. Biotechnol. 2002, 58, 482–486. [Google Scholar] [CrossRef]
- Naik, M.M.; Pandey, A.; Dubey, S.K. Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotox. Environ. Safe. 2012, 79, 129–133. [Google Scholar] [CrossRef]
- Seshadri, S.; Saranya, K.; Kowshik, M. Green Synthesis of Lead Sulfide Nanoparticles by the Lead Resistant Marine Yeast, Rhodosporidium diobovatum. Biotechnol. Prog. 2011, 27, 1464–1469. [Google Scholar] [CrossRef] [PubMed]
- Priyanka, U.; Gowda, A.K.M.; Elisha, M.G.; Teja, S.B.; Nitish, N.; Mohan, R.B. Biologically synthesized PbS nanoparticles for the detection of arsenic in water. Int. Biodeterior. Biodegrad. 2017, 119, 78–86. [Google Scholar]
- Kowshik, M.; Vogel, W.; Urban, J.; Kulkarni, S.K.; Paknikar, K.M. Microbial synthesis of semiconductor PbS nanocrystallites. Adv. Mater. 2002, 14, 815–818. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, Z.M.; Bai, H.J.; Yang, G.E. Microbiological synthesis of nanophase PbS by Desulfotomaculum sp. Sci. China Ser. E-Technol. Sci. 2007, 50, 302–307. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Sarvi, M.N. Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Mater. Sci. Semicond. Process 2015, 40, 293–301. [Google Scholar] [CrossRef]
- Suganya, M.; Balu, A.R. PbS nanopowder—Synthesis, characterization and antimicrobial activity. Mater. Sci. 2017, 35, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Zeng, Y.H.; Yu, Z.L.; Zhang, J.; Feng, H.; Lin, X.C. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems—A potential broad application on bioremediation. Bioresour. Technol. 2013, 148, 311–316. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, Y.; Qiu, J.G.; Wen, R.T.; Hong, J.; Liu, W.P. Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. Appl. Microbiol. Biotechnol. 2014, 98, 2625–2636. [Google Scholar] [CrossRef]
- Biala, S.; Chadha, P.; Saini, H.S. Biodegradation of 4-aminobenzenesulfonate by indigenous isolate Shinella yambaruensis SA1 and its validation by genotoxic analysis. Biotechnol. Bioprocess Eng. 2014, 19, 1034–1041. [Google Scholar] [CrossRef]
- Wu, S.J.; Li, T.F.; Xia, X.; Zhou, Z.J.; Zheng, S.X.; Wang, G.J. Reduction of tellurite in Shinella sp. WSJ-2 and adsorption removal of multiple dyes and metals by biogenic tellurium nanorods. Int. Biodeterior. Biodegrad. 2019, 144, 10. [Google Scholar] [CrossRef]
- Jeong, S.W.; Kim, H.K.; Yang, J.E.; Choi, Y.J. Removal of Pb(II) by Pellicle-Like Biofilm-Producing Methylobacterium hispanicum EM2 Strain from Aqueous Media. Water 2019, 11, 2081. [Google Scholar] [CrossRef] [Green Version]
- Li, H.F.; Lin, Y.B.; Guan, W.M.; Chang, J.L.; Xu, L.; Guo, J.K.; Wei, G.H. Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus Strain CCNWHX 72-14. J. Hazard. Mater. 2010, 179, 151–159. [Google Scholar] [CrossRef]
- Yuvaraja, G.; Zheng, N.C.; Pang, Y.X.; Su, M.H.; Chen, D.Y.; Kong, L.J.; Mehmood, S.; Subbaiah, M.V.; Wen, J.C. Removal of U(VI) from aqueous and polluted water solutions using magnetic Arachis hypogaea leaves powder impregnated into chitosan macromolecule. Int. J. Biol. Macromol. 2020, 148, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Rodriguez-Tirado, V.; Green-Ruiz, C.; Gomez-Gil, B. Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: Kinetic and equilibrium studies. Chem. Eng. J. 2012, 181, 352–359. [Google Scholar] [CrossRef]
- Langmuir, I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Concerning adsorption in solutions. Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre 1906, 57, 385–470. [Google Scholar]
- Tanzil, A.H.; Sultana, S.T.; Saunders, S.R.; Shi, L.; Marsili, E.; Beyenal, H. Biological synthesis of nanoparticles in biofilms. Enzyme Microb. Technol. 2016, 95, 4–12. [Google Scholar] [CrossRef]
- Bai, H.J.; Zhang, Z.M.; Guo, Y.; Yang, G.E. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloid Surf. B-Biointerfaces 2009, 70, 142–146. [Google Scholar] [CrossRef]
- Shi, B.Z.; Qi, Y.; Tian, L.C.; Liu, L. The enhanced photoelectrochemical performance of PbS/ZnS quantum dots co-sensitized CdSe nanorods array heterostructure. Mater. Sci. Semicond. Process 2019, 98, 7–12. [Google Scholar] [CrossRef]
- Ettema, A.; Haas, C. AN X-RAY PHOTOEMISSION SPECTROSCOPY STUDY OF INTERLAYER CHARGE-TRANSFER IN SOME MISFIT LAYER COMPOUNDS. J. Phys.-Condes. Matter 1993, 5, 3817–3826. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, A.; Kirrolia, A.; Kumar, R.; Yadav, N.; Bishnoi, N.R.; Lohchab, R.K. Removal of sulphate, COD and Cr(VI) in simulated and real wastewater by sulphate reducing bacteria enrichment in small bioreactor and FTIR study. Bioresour. Technol. 2011, 102, 677–682. [Google Scholar] [CrossRef]
- Da Costa, J.P.; Girao, A.V.; Lourenco, J.P.; Monteiro, O.C.; Trindade, T.; Costa, M.C. Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy 2012, 117, 57–63. [Google Scholar] [CrossRef]
- Li, X.; Lan, S.M.; Zhu, Z.P.; Zhang, C.; Zeng, G.M.; Livu, Y.G.; Cao, W.C.; Song, B.; Yang, H.; Wang, S.F.; et al. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Ecotox. Environ. Safe. 2018, 158, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Yu, S.M.; Teng, C.Y.; Song, T.; Dong, L.Y.; Liang, J.S.; Bai, X.; Xu, X.H.; Qu, J.J. Biosorption characteristic of Alcaligenes sp BAPb.1 for removal of lead(II) from aqueous solution. 3 Biotech 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, C.E.; Quesada, A.; Rodriguez, E. Nickel biosorption by Acinetobacter baumannii and Pseudomonas aeruginosa isolated from industrial wastewater. Braz. J. Microbiol. 2006, 37, 465–467. [Google Scholar] [CrossRef]
- Onundi, Y.B.; Mamun, A.A.; Al Khatib, M.F.; Ahmed, Y.M. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Technol. 2010, 7, 751–758. [Google Scholar] [CrossRef] [Green Version]
- Lan, T.; Ding, C.C.; Liao, J.L.; Li, X.L.; Li, X.L.; Zhang, J.; Zhang, D.; Yang, J.J.; Luo, S.Z.; An, Z.; et al. Biosorption behavior and mechanism of thorium on Bacillus sp dwc-2 isolated from soil. Nucl. Sci. Tech. 2015, 26, 11. [Google Scholar]
- Yetis, U.; Ozcengiz, G.; Dilek, F.B.; Ergen, N.; Dolek, A. Heavy metal biosorption by white-rot fungi. Water Sci. Technol. 1998, 38, 323–330. [Google Scholar] [CrossRef]
- El-Sayed, M.T. Removal of lead(II) by Saccharomyces cerevisiae AUMC 3875. Ann. Microbiol. 2013, 63, 1459–1470. [Google Scholar] [CrossRef]
- Masoudzadeh, N.; Zakeri, F.; Lotfabad, T.B.; Sharafi, H.; Masoomi, F.; Zahiri, H.S.; Ahmadian, G.; Noghabi, K.A. Biosorption of cadmium by Brevundimonas sp ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. J. Hazard. Mater. 2011, 197, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Khadivinia, E.; Sharafi, H.; Hadi, F.; Zahiri, H.S.; Modiri, S.; Tohidi, A.; Mousavi, A.; Salmanian, A.H.; Noghabi, K.A. Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils. J. Ind. Eng. Chem. 2014, 20, 4304–4310. [Google Scholar] [CrossRef]
- SalehA, T.A.; Gupta, V.K.; Al-Saadi, A.A. Adsorption of lead ions from aqueous solution using porous carbon derived from rubber tires: Experimental and computational study. J. Colloid Interface Sci. 2013, 396, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Yun, Y.S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef] [PubMed]
- Sobhanardakani, S.; Jafari, A.; Zandipak, R.; Meidanchi, A. Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Saf. Environ. Protect. 2018, 120, 348–357. [Google Scholar] [CrossRef]
- Rodrigues, E.; Almeida, O.; Brasil, H.; Moraes, D.; dos Reis, M.A.L. Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study. Appl. Clay Sci. 2019, 172, 57–64. [Google Scholar] [CrossRef]
- Zafar, M.N.; Nadeem, R.; Hanif, M.A. Biosorption of nickel from protonated rice bran. J. Hazard. Mater. 2007, 143, 478–485. [Google Scholar] [CrossRef]
- Tunali, S.; Cabuk, A.; Akar, T. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chem. Eng. J. 2006, 115, 203–211. [Google Scholar] [CrossRef]
- Chatterjee, S.K.; Bhattacharjee, I.; Chandra, G. Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. J. Hazard. Mater. 2010, 175, 117–125. [Google Scholar] [CrossRef]
- Pan, J.H.; Liu, R.X.; Tang, H.X. Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J. Environ. Sci. 2007, 19, 403–408. [Google Scholar] [CrossRef]
- Wierzba, S.; Latala, A. Biosorption lead(II) and nikel(II) from an aqueous solution by bacterial biomass. Pol. J. Chem. Technol. 2010, 12, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.Q.; Yao, J.; Yuan, Z.M.; Zhao, Y.; Wang, F.; Chen, H.L. Isolation of lead-resistant Arthrobactor strain GQ-9 and its biosorption mechanism. Environ. Sci. Pollut. Res. 2018, 25, 3527–3538. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.M.; Jin, Y.; Zhang, C.M.; Gu, H.D.; Qu, J.J. Characteristics of Bacillus sp PZ-1 and its biosorption to Pb(II). Ecotox. Environ. Safe. 2015, 117, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Rastogi, A. Biosorption of lead from aqueous solutions by green algae Spirogyra species: Kinetics and equilibrium studies. J. Hazard. Mater. 2008, 152, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.; Yeo, I.W.; Roh, Y.; Lee, K.K.; Jung, M.C. Arsenic reduction and precipitation by shewanella sp.: Batch and column tests. Geosci. J. 2008, 12, 151–157. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Castro, P.M.L.; Malcata, F.X. Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ. Chem. Lett. 2011, 9, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Li, X.P.; Liu, D.Y.; Xu, C.L.; Ai, Y.W.; Sun, X.M.; Zhang, M.; Gao, Y.; Zhang, Y.C.; Yang, T.; et al. A Novel Pb-Resistant Bacillus subtilis Bacterium Isolate for Co-Biosorption of Hazardous Sb(III) and Pb(II): Thermodynamics and Application Strategy. Int. J. Environ. Res. Public Health 2018, 15, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aravindhan, R.; Madhan, B.; Rao, J.R.; Nair, B.U.; Ramasami, T. Bioaccumulation of chromium from tannery wastewater: An approach for chrome recovery and reuse. Environ. Sci. Technol. 2004, 38, 300–306. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, V.; Guzman-Moreno, J.; Rodriguez-Gonzalez, V.; Flores-de La Torre, J.; Ramirez-Santoyo, R.M.; Vidales-Rodriguez, L.E. Biosorption of lead phosphates by lead-tolerant bacteria as a mechanism for lead immobilization. World J. Microbiol. Biotechnol. 2017, 33, 11. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Z.L.; Zhou, J.X.; Li, C.Z.; Yang, Z.H.; Ruan, M.; Li, H.; Zhang, X.; Wu, Z.J.; Qin, X.L.; et al. Enhancement of heavy metals removal by microbial flocculant produced by Paenibacillus polymyxa combined with an insufficient hydroxide precipitation. Chem. Eng. J. 2019, 374, 880–894. [Google Scholar] [CrossRef]
Pseudo-First-Order | Pseudo-Second-Order | ||||
qe1 (mg/g) | K1 (L/min) | R2 | qe2 (mg/g) | K2 (g/mg/min) | R2 |
130.98 | 0.065 | 0.962 | 139.91 | 0.000695 | 0.977 |
Langmuir Isotherm | Freundlich Isotherm | ||||
Qmax (mg/g) | KL (L/mg) | R2 | KF (L/g) | n | R2 |
222.22 | 0.022 | 0.978 | 38.49 | 3.65 | 0.986 |
Bacteria | qmax (mg/g) | Conditions | Reference |
---|---|---|---|
Bacillus sp. ATS-1 | 92.3 | pH 5, 25 °C | [48] |
Geobacillus thermodenitrificans | 32.26 | pH 4.5, 35 °C | [49] |
Pseudomonas aeruginosa PU21 | 110 | pH 7, 37.5 °C | [48] |
Alcaligenes sp. BAPb.1 | 66.7 | pH 5, 30 °C | [35] |
Bacillus cereus | 36.7 | pH 5.5, 30 °C | [50] |
Pseudomonas fluorescens | 77.6 | pH 6, 30 °C | [51] |
Bacillus pumilus | 91.4 | pH 6, 30 °C | [51] |
Arthrobactor GQ-9 | 17.56 | pH 5.5, 35 °C | [52] |
Geobacillus thermodenitrificans | 32.26 | pH 4.5, 65 °C | [49] |
Bacillus thioparans U3 | 210.1 | pH 5, 30 °C | [25] |
Alcaligenes sp. | 56.8 | pH 5, 35 °C | [35] |
Bacillus sp. PZ-1 | 15.38 | pH 5, 15 °C | [53] |
Methylobacterium hispanicum EM2 | 79.84 | pH 7, 30 °C | [21] |
Pseudomonas stutzeri KCCM 34719 | 142 | pH 6, 30 °C | [54] |
Shinellazoogloeoides PQ7 | 222.22 | pH 5, 30 °C | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Huang, Y. The Synthesis of PbS NPs and Biosorption of Pb(II) by Shinella Zoogloeoides PQ7 in Aqueous Conditions. Water 2020, 12, 2065. https://doi.org/10.3390/w12072065
Zhang W, Huang Y. The Synthesis of PbS NPs and Biosorption of Pb(II) by Shinella Zoogloeoides PQ7 in Aqueous Conditions. Water. 2020; 12(7):2065. https://doi.org/10.3390/w12072065
Chicago/Turabian StyleZhang, Wei, and Yili Huang. 2020. "The Synthesis of PbS NPs and Biosorption of Pb(II) by Shinella Zoogloeoides PQ7 in Aqueous Conditions" Water 12, no. 7: 2065. https://doi.org/10.3390/w12072065
APA StyleZhang, W., & Huang, Y. (2020). The Synthesis of PbS NPs and Biosorption of Pb(II) by Shinella Zoogloeoides PQ7 in Aqueous Conditions. Water, 12(7), 2065. https://doi.org/10.3390/w12072065