Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Raw Aquaculture Wastewater
2.2. The Algal-Bacterial Biofilm Batch Reactor (ABBR)
2.3. Cultivation of Algal-Bacterial Biofilm for Inoculation
2.4. Batch Experiments for Bioremediation
2.5. Sampling and Sample Analysis
3. Results
3.1. The Growth of Algal-Bacterial Biofilm on Different Carriers
3.2. The Contaminants Removal of the Bioremediation Test with Different Biofilm Carriers
3.3. Effluent Quality under Different IWLR and HRT
3.4. The Elemental Composition of the Harvested Algal-Bacterial Biofilm
4. Discussion
4.1. Impacts of Carrier Types on the Growth of Algal-Bacterial Biofilm and Contaminants Removal
4.2. The Removal of Nitrogen and Phosphorous by Algal-Bacterial Biofilm
4.3. The Removal of Selenium by Algal-Bacterial Biofilm
4.4. Effects of IWLR and HRT on the Bioremediation of Aquaculture Wastewater
4.5. The Potential of Algal–Bacterial Biofilms for Se-Enriched Biofertilizer
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture. 2018. Available online: http://www.fao.org/3/i9540en/I9540EN.pdf (accessed on 1 June 2020).
- Xiang, J. Mariculture-Related Environmental Concerns in the People’s Republic of China. In Ecological and Genetic Implications of Aquaculture Activities; Springer: Dordrecht, The Netherlands, 2007; pp. 219–228. [Google Scholar]
- Liu, D.; Keesing, J.K.; Xing, Q.; Shi, P. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 2009, 58, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Steele, J.C.; Meng, X. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Huggett, D.B.; Schlenk, D.; Griffin, B.R. Toxicity of copper in an oxic stream sediment receiving aquaculture effluent. Chemosphere 2001, 44, 361–367. [Google Scholar] [CrossRef]
- Cao, J.S.; Wang, C.; Fang, F.; Lin, J.X. Removal of heavy metal Cu(II) in simulated aquaculture wastewater by modified palygorskite. Environ. Pollut. 2016, 219, 924–931. [Google Scholar] [CrossRef]
- Gobi, N.; Vaseeharan, B.; Rekha, R.; Vijayakumar, S.; Faggio, C. Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol. Environ. Saf. 2018, 162, 147–159. [Google Scholar] [CrossRef]
- Pacitti, D.; Lawan, M.M.; Feldmann, J.; Sweetman, J.; Wang, T.Y.; Martin, S.A.M.; Secombes, C. Impact of selenium supplementation on fish antiviral responses: A whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex. BMC Genom. 2016, 17, 116. [Google Scholar] [CrossRef] [Green Version]
- Dawood, M.A.O.; Koshio, S.; Zaineldin, A.I.; Van Doan, H.; Ahmed, H.A.; Elsabagh, M.; Abdeldaim, M.M. An evaluation of dietary selenium nanoparticles for red sea bream (Pagrus major) aquaculture: Growth, tissue bioaccumulation, and antioxidative responses. Environ. Sci. Pollut. Res. 2019, 26, 30876–30884. [Google Scholar] [CrossRef]
- Huang, J.; Ren, F.; Jiang, Y.; Xiao, C.; Lei, X.G. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling. Free Radic. Biol. Med. 2015, 83, 129–138. [Google Scholar] [CrossRef]
- Zheng, S.; Zhao, J.; Xing, H.; Xu, S. Oxidative stress, inflammation, and glycometabolism disorder-induced erythrocyte hemolysis in selenium-deficient exudative diathesis broilers. J. Cell. Physiol. 2019, 234, 16328–16337. [Google Scholar] [CrossRef]
- Watanabe, T.; Kiron, V.; Satoh, S. Trace minerals in fish nutrition. Aquaculture 1997, 151, 185–207. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium. Ecotoxicol. Environ. Saf. 2014, 104, 96–102. [Google Scholar] [CrossRef]
- Lemly, A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004, 59, 44–56. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Commission, E. COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off. J. Eur. Communities L 1998, 330, 32–54. [Google Scholar]
- NHCPRC. Sanitary Standard for Drinking Water (GB5749-2006). National Health Commission of the People’s Republic of China. 2006. Available online: http://www.nhc.gov.cn/xxgk/pages/viewdocument (accessed on 2 June 2020).
- USEPA. National Primary Drinking Water Regulations, List of Contaminants and Their (MCLs); EPA 816-F-09-0004; United States Environmental Protection Agency: Washington, DC, USA, 2009.
- USEPA. External Peer Review Draft—Aquatic Life Ambient Water Quality Criterion for Selenium—Freshwater 2014, EPA-820-F−14-005 2014; United States Environmental Protection Agency: Washington, DC, USA, 2014.
- Li, S.; Zhang, S.; Ye, C.; Lin, W.; Zhang, M.; Chen, L.; Li, J.; Yu, X. Biofilm processes in treating mariculture wastewater may be a reservoir of antibiotic resistance genes. Mar. Pollut. Bull. 2017, 118, 289–296. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Jie, M.; Zhang, K.; Qian, Y.; Ma, J. Performance and microbial communities of different biofilm membrane bioreactors with pre-anoxic tanks treating mariculture wastewater. Bioresour. Technol. 2020, 295, 122302. [Google Scholar] [CrossRef]
- Natrah, F.M.I.; Bossier, P.; Sorgeloos, P.; Yusoff, F.M.; Defoirdt, T. Significance of microalgal–bacterial interactions for aquaculture. Rev. Aquacult. 2014, 6, 48–61. [Google Scholar] [CrossRef]
- Eding, E.H.; Kamstra, A.; Verreth, J.A.J.; Huisman, E.A.; Klapwijk, A. Design and operation of nitrifying trickling filters in recirculating aquaculture: A review. Aquacult. Eng. 2006, 34, 234–260. [Google Scholar] [CrossRef]
- Barnharst, T.J.; Rajendran, A.; Hu, B. Bioremediation of synthetic intensive aquaculture wastewater by a novel feed-grade composite biofilm. Int. Biodeterior. Biodegrad. 2018, 126, 131–142. [Google Scholar] [CrossRef]
- Tan, L.C.; Espinosaortiz, E.J.; Nancharaiah, Y.V.; Van Hullebusch, E.D.; Gerlach, R.; Lens, P.N.L. Selenate removal in biofilm systems: Effect of nitrate and sulfate on selenium removal efficiency, biofilm structure, and microbial community. J. Chem. Technol. Biotechnol. 2018, 93, 2380–2389. [Google Scholar] [CrossRef] [Green Version]
- Staicu, L.C.; Hullebusch, E.D.V.; Rittmann, B.E.; Lens, P.N.L. Industrial selenium pollution: Sources and biological treatment technologies. In Bioremediation of Selenium Contaminated Wastewater; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Broadley, M.R.; Alcock, J.; Alford, J.; Cartwright, P.; Foot, I.; Fairweathertait, S.J.; Hart, D.J.; Hurst, R.; Knott, P.; Mcgrath, S.P. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 2010, 332, 5–18. [Google Scholar] [CrossRef]
- MARAPRC. Standard for Organic Fertilizer (NY 525-2012). Ministry of Agriculture and Rural Affairs of the People’s Republic of China. 2012. Available online: http://www.moa.gov.cn/was5/web/search?searchword=ny+525-2012&channelid=233424&orderby=-DOCRELTIME (accessed on 28 May 2020).
- Renner, L.D.; Weibel, D.B. Physicochemical regulation of biofilm formation. MRS Bull. 2011, 36, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Christenson, L.; Sims, R.C. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 2012, 109, 1674–1684. [Google Scholar] [CrossRef]
- Mantzorou, A.; Ververidis, F. Microalgal biofilms: A further step over current microalgal cultivation techniques. Sci. Total Environ. 2019, 651, 3187–3201. [Google Scholar] [CrossRef]
- Kang, S.; Choi, H. Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly (styrene-ran-sulfonic acid) random copolymers. Colloids Surf. B 2005, 46, 70–77. [Google Scholar] [CrossRef]
- Chavant, P.; Martinie, B.; Meylheuc, T.; Bellonfontaine, M.; Hebraud, M. Listeria monocytogenes LO28: Surface Physicochemical Properties and Ability to form Biofilms at Different Temperatures and Growth Phases. Appl. Environ. Microbiol. 2002, 68, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Cheng, Y.; Wang, S.Y.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: How small is small enough? Npj Biofilms Microbiomes 2015, 1, 15022. [Google Scholar] [CrossRef]
- Feng, L.; Chen, K.; Han, D.; Zhao, J.; Lu, Y.; Yang, G.; Mu, J.; Zhao, X. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers. Bioresour. Technol. 2017, 224, 236–245. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Jia, H.; Yong, X.; Zhang, L.; Zhou, J.; Cao, Z.; Kruse, A.; Wei, P. Effects of different biofilm carriers on biogas production during anaerobic digestion of corn straw. Bioresour. Technol. 2017, 244, 445–451. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Q.; Song, H.; Gu, T.; Xia, M. Selection and application of agricultural wastes as solid carbon sources and biofilm carriers in MBR. J. Hazard. Mater. 2015, 283, 186–192. [Google Scholar] [CrossRef]
- Reyesalvarado, L.C.; Camarillogamboa, A.; Rustrian, E.; Rene, E.R.; Esposito, G.; Lens, P.N.L.; Houbron, E. Lignocellulosic biowastes as carrier material and slow release electron donor for sulphidogenesis of wastewater in an inverse fluidized bed bioreactor. Environ. Sci. Pollut. Res. 2018, 25, 5115–5128. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, Q. Surface modification of carbon fiber support by ferrous oxalate for biofilm wastewater treatment system. J. Clean. Prod. 2018, 194, 416–424. [Google Scholar] [CrossRef]
- Zhang, W.; Ruan, X.; Bai, Y.; Yin, L. The characteristics and performance of sustainable-releasing compound carbon source material applied on groundwater nitrate in-situ remediation. Chemosphere 2018, 205, 635–642. [Google Scholar] [CrossRef]
- Lowe, R.L. Periphyton Patterns in Lakes. Algal Ecol. 1996, 12, 57–76. [Google Scholar]
- Godos, I.D.; González, C.; Becares, E.; García-Encina, P.A.; MuOz, R. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl. Microbiol. Biotechnol. 2009, 82, 187–194. [Google Scholar] [CrossRef]
- Pizarro, C.; Kebede-Westhead, E.; Mulbry, W.W. Nitrogen and phosphorus removal rates using small algal turfs grown with dairy manure. J. Appl. Phycol. 2002, 14, 469–473. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res. 2011, 45, 3351–3358. [Google Scholar] [CrossRef]
- Wei, Q.; Hu, Z.; Li, G.; Xiao, B.; Sun, H. Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Front. Environ. Sci. Eng. China 2008, 2, 446–451. [Google Scholar] [CrossRef]
- Boelee, N.C.; Temmink, H.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res. 2011, 45, 5925–5933. [Google Scholar] [CrossRef] [PubMed]
- Kebedewesthead, E.; Pizarro, C.; Mulbry, W.; Wilkie, A.C. Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy manure. J. Phycol. 2003, 39, 1275–1282. [Google Scholar] [CrossRef]
- Wilkie, A.C.; Mulbry, W. Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour. Technol. 2002, 84, 81–91. [Google Scholar] [CrossRef]
- Andrahennadi, R.; Wayland, M.; Pickering, I.J. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy. Environ. Sci. Technol. 2007, 41, 7683–7687. [Google Scholar] [CrossRef] [PubMed]
- Muscatello, J.R.; Belknap, A.M.; Janz, D.M. Accumulation of selenium in aquatic systems downstream of a uranium mining operation in northern Saskatchewan, Canada. Environ. Pollut. 2008, 156, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Orr, P.L.; Guiguer, K.R.; Russel, C.K. Food chain transfer of selenium in lentic and lotic habitats of a western Canadian watershed. Ecotoxicol. Environ. Saf. 2006, 63, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.M.; Teh, S.J.; Hinton, D.E.; Higashi, R.M. Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. Aquat. Toxicol. 2002, 57, 65–84. [Google Scholar] [CrossRef]
- Markwart, B.; Liber, K.; Xie, Y.; Raes, K.; Hecker, M.; Janz, D.M.; Doig, L.E. Selenium oxyanion bioconcentration in natural freshwater periphyton. Ecotoxicol. Environ. Saf. 2019, 180, 693–704. [Google Scholar] [CrossRef]
- Baines, S.B.; Fisher, N.S. Interspecific differences in the bioconcentration of selenite by phytoplankton and their ecological implications. Mar. Ecol. Prog. Ser. 2001, 213, 1–12. [Google Scholar] [CrossRef]
- Stewart, R.; Grosell, M.; Buchwalter, D.; Fisher, N.; Wang, W.-X. Bioaccumulation and trophic transfer of selenium. In Ecological Assessment of Selenium in the Aquatic Environment; CRC Press: Boca Raton, FL, USA, 2010; pp. 93–139. [Google Scholar]
- Wallschläger, D.; Feldmann, J. Formation, occurrence, significance, and analysis of organoselenium and organotellurium compounds in the environment. Met. Ions Life Sci. 2010, 7, 319–364. [Google Scholar] [PubMed]
- Fisher, N.S.; Wente, M. The release of trace elements by dying marine phytoplankton. Deep Sea Res. Part I 1993, 40, 671–694. [Google Scholar] [CrossRef]
- Lo, B.P.; Elphick, J.R.; Bailey, H.C.; Baker, J.A.; Kennedy, C.J. The effect of sulfate on selenate bioaccumulation in two freshwater primary producers: A duckweed (Lemna minor) and a green alga (Pseudokirchneriella subcapitata). Environ. Toxicol. Chem. 2016, 34, 2841–2845. [Google Scholar] [CrossRef] [PubMed]
- Hopper, J.L.; Parker, D.R. Plant availability of selenite and selenate as influenced by the competing ions phosphate and sulfate. Plant Soil 1999, 210, 199–207. [Google Scholar] [CrossRef]
- Maher, W.; Roach, A.; Doblin, M.; Fan, T.; Wallschlager, D. Environmental Sources, Speciation, and Partitioning of Selenium. In Ecological Assessment of Selenium in the Aquatic Environment; CRC Press: Boca Raton, FL, USA, 2010; pp. 47–92. [Google Scholar]
- MEEPRC. Sea Water Quality Standard (GB 3097–1997). Ministry of Ecology and Environment of the People’s Republic of China. 1997. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/199807/t19980701_66499.shtml (accessed on 26 May 2020).
- Miranda, A.F.; Muradov, N.; Gujar, A.; Stevenson, T.; Nugegoda, D.; Ball, A.S.; Mouradov, A. Application of aquatic plants for the treatment of selenium-rich mining wastewater and production of renewable fuels and petrochemicals. J. Sustain. Bioenergy Syst. 2014, 4, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Shayan, S.I.; Agblevor, F.A.; Bertin, L.; Sims, R.C. Hydraulic retention time effects on wastewater nutrient removal and bioproduct production via rotating algal biofilm reactor. Bioresour. Technol. 2016, 211, 527–533. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, R.; Melo, L.F.; Purkhold, U.; Wuertz, S.; Wagner, M. Nitrifying and heterotrophic population dynamics in biofilm reactors: Effects of hydraulic retention time and the presence of organic carbon. Water Res. 2002, 36, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Spolaore, P.; Joanniscassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Lavu, R.V.S.; De Schepper, V.; Steppe, K.; Majeti, P.N.V.; Tack, F.; Du Laing, G. Use of selenium fertilizers for production of Se-enriched Kenaf (Hibiscus cannabinus): Effect on Se concentration and plant productivity. J. Plant Nutr. Soil Sci. 2013, 176, 634–639. [Google Scholar] [CrossRef]
- Chen, L.; Yang, F.; Xu, J.; Hu, Y.; Hu, Q.; Zhang, Y.; Pan, G. Determination of selenium concentration of rice in china and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem. 2002, 50, 5128–5130. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.S.; Trainor, T.P.; Spormann, A.M.; Brown, G.E. Selenium speciation and partitioning within Burkholderia cepacia biofilms formed on α-Al2O3 surfaces. Geochim. Cosmochim. Acta 2003, 67, 3547–3557. [Google Scholar] [CrossRef]
Parameter | Unit | Content |
---|---|---|
Total dissolved solid | mg L−1 | 34,870 |
pH | 8.1 | |
Total N | mg L−1 | 14.5 |
Total P | mg L−1 | 1.21 |
Total Se | μg L−1 | 115 |
COD | mg L−1 | 2.25 |
Chloride | mg L−1 | 19,400 |
Na | mg L−1 | 10,790 |
K | mg L−1 | 387 |
Ca | mg L−1 | 415 |
Mg | mg L−1 | 1293 |
Al | mg L−1 | 0.001 |
As | μg L−1 | 4.61 |
Cd | μg L−1 | 0.004 |
Cr | μg L−1 | 127 |
Hg | μg L−1 | 0.017 |
Pb | μg L−1 | 23.6 |
Element | N | P | Se | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | a | b | c | d | a | b | c | d | a | b | c | d |
Day 0–6 | 42.8 ± 9.6% | 39.5 ± 6.1% | 43.8 ± 9.5% | 43.4 ± 2.1% | 96.0 ± 1.0% | 96.2 ± 1.2% | 92.2 ± 2.9% | 95.0 ± 2.3% | 16.3 ± 3.2% | 1.7 ± 3.5% | 2.5 ± 3.2% | 7.0 ± 1.7% |
Day 6–12 | 69.5 ± 7.1% | 79.3 ± 3.9% | 89.3 ± 3.9% | 62.1 ± 14.4% | 86.8 ± 11.7% | 93.0 ± 1.8% | 93.4 ± 0.5% | 77.7 ± 19.8% | 14.0 ± 2.6% | 4.0 ± 2.8% | 2.6 ± 1.7% | 2.4 ± 3.5% |
Day 12–18 | 79.9 ± 1.6% | 82.4 ± 0.8% | 74.3 ± 5.1% | 44.8 ± 32.9% | 98.3 ± 0.8% | 89.3 ± 8.2% | 81.4 ± 5.3% | 55.4 ± 39.7% | 10.9 ± 2.1% | 3.9 ± 2.0% | 1.9 ± 3.8% | 4.6 ± 3.0% |
Day 18–24 | 83.0 ± 7.8% | 79.3 ± 2.1% | 78.7 ± 1.0% | 58.2 ± 24.9% | 97.0 ± 1.1% | 92.8 ± 2.8% | 85.2 ± 7.6% | 80.8 ± 10.1% | 11.2 ± 2.0% | 6.4 ± 2.7% | 4.3 ± 1.8% | 8.3 ± 3.4% |
Day 24–30 | 88.5 ± 6.2% | 84.6 ± 0.9% | 80.2 ± 2.2% | 89.8 ± 1.3% | 99.8 ± 0.2% | 84.2 ± 7.7% | 85.3 ± 7.4% | 73.7 ± 1.5% | 4.4 ± 2.2% | 2.3 ± 4.5% | 3.9 ± 2.8% | 3.6 ± 2.7% |
Contaminants | N a | P a | Se b | COD a | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IWLR | 25% | 50% | 100% | 25% | 50% | 100% | 25% | 50% | 100% | 25% | 50% | 100% |
Inlet | 3.57 ± 0.07 | 7.21 ± 0.14 | 14.40 ± 0.26 | 0.34 ± 0.01 | 0.63 ± 0.02 | 1.21 ± 0.03 | 28.1 ± 2.3 | 56.4 ± 3.1 | 114.0 ± 5.0 | 0.57 ± 0.09 | 1.12 ± 0.17 | 2.25 ± 0.34 |
Effluent | ||||||||||||
HRT 3d | 1.07 ± 0.17 | 2.21 ± 0.36 | 5.76 ± 0.78 | 0.08 ± 0.03 | 0.110 ± 0.03 | 0.19 ± 0.02 | 23.5 ± 3.4 | 42.3 ± 4.1 | 109.2 ± 4.1 | 1.03 ± 0.14 | 2.11 ± 0.35 | 4.61 ± 0.24 |
HRT 6d | 0.33 ± 0.15 | 0.75 ± 0.10 | 2.45 ± 0.25 | 0.010 ± 0.03 | 0.015 ± 0.02 | 0.036 ± 0.01 | 20.5 ± 3.5 | 35.2 ± 3.2 | 101.1 ± 4.2 | 3.24 ± 0.22 | 4.64 ± 0.23 | 7.53 ± 0.66 |
HRT 9d | 0.27 ± 0.12 | 0.32 ± 0.17 | 1.95 ± 1.07 | 0.006 ± 0.02 | 0.009 ± 0.03 | 0.029 ± 0.01 | 18.7 ± 2.2 | 30.1 ± 2.1 | 94.3 ± 2.3 | 3.37 ± 0.52 | 5.23 ± 0.75 | 7.96 ± 0.66 |
Element | Content (mg kg−1) | LOF (mg kg−1) |
---|---|---|
N | 65,200 ± 1300 | – |
P | 6130 ± 462 | – |
S | 4360 ± 158 | – |
Se | 21.8 ± 3.4 | – |
As | 0.2 ± 0.2 | 15 |
Cd | 0 ± 0 | 3 |
Cr | 6.2 ± 0.4 | 150 |
Hg | 0.1 ± 0.1 | 2 |
Pb | 28.5 ± 5.2 | 50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.; Mao, Y.; Wei, Y.; Shang, P.; Zhou, X. Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water 2020, 12, 2071. https://doi.org/10.3390/w12072071
Han W, Mao Y, Wei Y, Shang P, Zhou X. Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water. 2020; 12(7):2071. https://doi.org/10.3390/w12072071
Chicago/Turabian StyleHan, Wei, Yufeng Mao, Yunpeng Wei, Peng Shang, and Xu Zhou. 2020. "Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer" Water 12, no. 7: 2071. https://doi.org/10.3390/w12072071
APA StyleHan, W., Mao, Y., Wei, Y., Shang, P., & Zhou, X. (2020). Bioremediation of Aquaculture Wastewater with Algal-Bacterial Biofilm Combined with the Production of Selenium Rich Biofertilizer. Water, 12(7), 2071. https://doi.org/10.3390/w12072071