A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods
Abstract
:1. Introduction
2. Material and Methods
2.1. Research Method
2.2. HEC-HMS Model
2.3. Bayesian Network (BN) Model
2.4. Support Vector Machine Regression Model
2.5. Validation of the Models
2.6. Hybrid Model for Determining Debris Flood Peak Flow
2.7. Case Study
2.8. Debris Flood Event Data Evaluation
3. Results and Discussion
3.1. The Results of Sensitivity Analysis
3.2. Calibration of HEC-HMS Parameters
3.3. Validation of HEC-HMS Model
3.4. BN and SVR-PSO Models
3.5. Prediction of Debris Flood Peak Flows by Proposed Hybrid Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Azam, M.; Kim, H.S.; Maeng, S.J. Development of flood alert application in Mushim stream watershed Korea. Int. J. Disaster Risk Reduct. 2017, 21, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Bhadra, A.; Panigrahy, N.; Singh, R.; Raghuwanshi, N.S.; Mal, B.C.; Tripathi, M. Development of a geomorphological instantaneous unit hydrograph model for scantily gauged watersheds. Environ. Model. Softw. 2008, 23, 1013–1025. [Google Scholar] [CrossRef]
- Hassan-Esfahani, L.; Banihabib, M.E. The impact of slit and detention dams on debris flow control using GSTARS 3. Environ. Earth Sci. 2016, 75, 328. [Google Scholar] [CrossRef]
- Szomorová, L.; Halaj, P. Numerical simulations in the Mala Nitra stream by 1D model. Acta Sci. Pol. Form. Circumiectus 2015, 14, 185–194. [Google Scholar] [CrossRef]
- Halwatura, D.; Najim, M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Harun, S.; Nor, N.I.A.; Kassim, A.H.M. Artificial neural network model for rainfall–runoff relationship. J. Teknol. 2002, 37, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Joo, J.; Kjeldsen, T.R.; Kim, H.; Lee, H. A comparison of two event-based flood models (ReFH-rainfall runoff model and HEC-HMS) at two Korean catchments, Bukil and Jeungpyeong. KSCE J. Civ. Eng. 2013, 18, 330–343. [Google Scholar] [CrossRef]
- Lopez, V.; Napolitano, F.; Russo, F. Calibration of a rainfall-runoff model using radar and raingauge data. Adv. Geosci. 2005, 2, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Laouacheria, F.; Mansouri, R. Comparison of WBNM and HEC-HMS for runoff hydrograph prediction in a small urban catchment. Water Resour. Manag. 2015, 29, 2485–2501. [Google Scholar] [CrossRef]
- Banihabib, M.E. Performance of conceptual and black-box models in flood warning systems. Cogent Eng. 2016, 3, 1127798. [Google Scholar] [CrossRef]
- Skhakhfa, I.; Ouerdachi, L. Hydrological modelling of wadi Ressoul watershed, Algeria, by HEC-HMS model. J. Water Land Dev. 2016, 31, 139–147. [Google Scholar] [CrossRef]
- Zelelew, D.G.; Melesse, A.M. Applicability of a spatially semi-distributed hydrological model for watershed scale runoff estimation in Northwest Ethiopia. Water 2018, 10, 923. [Google Scholar] [CrossRef] [Green Version]
- Banihabib, M.E.; Forghani, A. An assessment framework for the mitigation effects of check dams on debris flow. Catena 2017, 152, 277–284. [Google Scholar] [CrossRef]
- Peng, S.-H. Hazard ratings of debris flow evacuation sites in hillside communities of Ershui Township, Changhua County, Taiwan. Water 2016, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, X.; Cai, E.; Huang, G.; Ding, C. Integration of dynamic rainfall data with environmental factors to forecast debris flow using an improved GMDH model. Comput. Geosci. 2013, 56, 23–31. [Google Scholar] [CrossRef]
- Hirano, M.; Moriyama, T.; Kawahara, K. Prediction of the occurrence of debris flow and a runoff analysis by the use of neural networks. J. Nat. Disaster Sci. 1995, 17, 53–63. [Google Scholar]
- Kern, A.N.; Addison, P.; Oommen, T.; Salazar, S.E.; Coffman, R.A. Machine learning based predictive modeling of debris flow probability following wildfire in the Intermountain Western United States. Math. Geol. 2017, 49, 717–735. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, W.; Zhao, M.; Liu, Q.; Wang, J. Identification of the debris flow process types within catchments of Beijing Mountainous Area. Water 2019, 11, 638. [Google Scholar] [CrossRef] [Green Version]
- Hoseini, Y.; Azari, A.; Pilpayeh, A. Flood modeling using WMS model for determining peak flood discharge in southwest Iran case study: Simili basin in Khuzestan Province. Appl. Water Sci. 2016, 7, 3355–3363. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.-L.; Xu, Y.-P.; Sun, H.-Y.; Xie, W.; Wu, G. Predicting the occurrence of channelized debris flow by an integrated cascading model: A case study of a small debris flow-prone catchment in Zhejiang Province, China. Geomorphology 2018, 308, 78–90. [Google Scholar] [CrossRef]
- Balaz, M.; Danáčová, M.; Szolgay, J. On the use of the Muskingum method for the simulation of flood wave movements. Slovak J. Civ. Eng. 2010, 18, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-M.; Kong, F.-Z.; Zhu, Z.-X. Application of Muskingum routing method with variable parameters in ungauged basin. Water Sci. Eng. 2011, 4, 1–12. [Google Scholar]
- Xu, C.-Y. Operational testing of a water balance model for predicting climate change impacts. Agric. For. Meteorol. 1999, 98, 295–304. [Google Scholar] [CrossRef]
- Chu, X.; Steinman, A.D. Event and continuous hydrologic modeling with HEC-HMS. J. Irrig. Drain. Eng. 2009, 135, 119–124. [Google Scholar] [CrossRef]
- Hugin Expert A/S, A., Hugin API Reference Manual. 2014. Available online: https://www.hugin.com (accessed on 28 January 2019).
- Madsen, A.L.; Lang, M.; Kjærulff, U.B.; Jensen, F. The hugin tool for learning bayesian networks. In European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty; Nielsen, T.D., Zhang, N.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Banihabib, M.E.; Tanhapour, M.; Roozbahani, A. Bayesian networks model for identification of the effective variables in the forecasting of debris flows occurrence. Environ. Earth Sci. 2020, 79, 1–15. [Google Scholar] [CrossRef]
- Anbari, M.J.; Tabesh, M.; Roozbahani, A. Risk assessment model to prioritize sewer pipes inspection in wastewater collection networks. J. Environ. Manag. 2017, 190, 91–101. [Google Scholar] [CrossRef]
- Song, L.; Chen, M.; Gao, F.; Cheng, C.; Chen, M.; Yang, L.; Wang, Y. Elevation influence on rainfall and a parameterization algorithm in the Beijing Area. J. Meteorol. Res. 2019, 33, 1143–1156. [Google Scholar] [CrossRef]
- Guo, X.-J.; Cui, P.; Li, Y. Debris flow warning threshold based on antecedent rainfall: A case study in Jiangjia Ravine, Yunnan, China. J. Mt. Sci. 2013, 10, 305–314. [Google Scholar] [CrossRef]
- Wei, F.; Hu, K.; Zhang, J.; Jiang, Y.; Chen, J. Determination of effective antecedent rainfall for debris flow forecast based on soil moisture content observation in Jiangjia Gully, China. In Monitoring, Simulation, Prevention and Remediation of Dense Debris Flows II; DeWrachien, D., Brebbia, C.A., Lenzi, M.A., Eds.; WIT Press: Ashurst, UK, 2008; pp. 13–22. [Google Scholar]
- Gunn, S.R. Support vector machines for classification and regression. ISIS Tech. Rep. 1998, 14, 5–16. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory; John Wiley: New York, NY, USA, 1998. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yan, F.-R.; Li, Z.-H.; Wang, D.; Sheng, H.-L.; Liu, Y. Serum-Free medium optimization based on trial design and support vector regression. BioMed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.; Lee, S.-W. Applications of support vector machines for pattern recognition: A survey. In Computer Vision; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Du, W.; Gao, Y.; Liu, C.; Zheng, Z.; Wang, Z. Adequate is better: Particle swarm optimization with limited-information. Appl. Math. Comput. 2015, 268, 832–838. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Yoon, H.; Hyun, Y.; Ha, K.; Lee, K.-K.; Kim, G.-B. A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions. Comput. Geosci. 2016, 90, 144–155. [Google Scholar] [CrossRef]
- Garrote, L.; Molina, M.; Mediero, L. Probabilistic Forecasts Using Bayesian Networks Calibrated with Deterministic Rainfall-Runoff Models; Springer: Berlin/Heidelberg, Germany, 2006; pp. 173–183. [Google Scholar]
- Hirano, M. Prediction of debris flow for warning and evacuation. In Recent Developments on Debris Flows; Springer: Berlin/Heidelberg, Germany, 1997; pp. 7–26. [Google Scholar]
- Soomro, A.G.; Babar, M.M.; Memon, A.H.; Zaidi, A.Z.; Ashraf, A.; Lund, J. Sensitivity of direct runoff to curve number using the SCS-CN Method. Civ. Eng. J. 2019, 5, 2738–2746. [Google Scholar] [CrossRef]
- Zelelew, D.G.; Langon, S. Selection of appropriate loss methods in HEC-HMS model and determination of the derived values of the sensitive parameters for un-gauged catchments in Northern Ethiopia. Int. J. River Basin Manag. 2019, 18, 127–135. [Google Scholar] [CrossRef]
- Takahashi, T.; Das, D.K. Debris Flow: Mechanics, Prediction and Countermeasures; CRC Press: London, UK, 2014. [Google Scholar]
- Ouedraogo, A.; Raude, J.; Gathenya, J.M. Continuous modeling of the Mkurumudzi River Catchment in Kenya Using the HEC-HMS Conceptual Model: Calibration, validation, model performance evaluation and sensitivity analysis. Hydrology 2018, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Sardoii, E.R.; Rostami, N.; Khalighi, S.; Taheri, S. Calibration of loss estimation methods in HEC-HMS for simulation of surface runoff (Case Study: Amirkabir Dam Watershed, Iran). Adv. Environ. Biol. 2012, 6, 343–348. [Google Scholar]
Basin | Area (km2) | Average Length of Main Channel (km) | Mean Channel Slope (%) | Average Basin Elevation (m) | Average Lag Time (Minute) | Average Time of Concentration (Hour) |
---|---|---|---|---|---|---|
Navrood | 265.23 | 32.5 | 5.1 | 1393.91 | 77.37 | 2.11 |
Kasilian | 67.8 | 15.2 | 4.7 | 1569 | 95.36 | 2.6 |
Amameh | 37.2 | 13.6 | 9.2 | 2650 | 81.6 | 2.25 |
Basin | Event | CN Average | Average | Average | MARE | RMSE | |||
---|---|---|---|---|---|---|---|---|---|
Initial | Calibrated | Initial | Calibrated | Initial | Calibrated | ||||
Navrood | 11 July 2004 | 78.61 | 86.61 | 0.3 | 0.36 | 0.26 | 0.26 | 0.00 | 0.7 |
Kasilian | 2 December 2008 | 79.5 | 92.53 | 0.3 | 0.35 | 0.48 | 0.38 | 0.00 | 0.6 |
Amameh | 18 November 2009 | 82.69 | 60.00 | 0.4 | 0.3 | 0.39 | 0.5 | 0.00 | 0.3 |
Basin | Flood Type | Number of Events | Average MARE | Average RMSE (m3/s) |
---|---|---|---|---|
Navrood | ordinary | 7 | 0.024 | 1.74 |
debris | 5 | 0.038 | 2.04 | |
Kasilian | ordinary | 7 | 0.038 | 0.714 |
debris | 4 | 0.073 | 0.8 | |
Amameh | ordinary | 6 | 0.024 | 0.466 |
debris | 4 | 0.040 | 0.575 |
Model | Test | Train | ||||
---|---|---|---|---|---|---|
R2 | RMSE | MARE | R2 | RMSE | MARE | |
BN | 0.973 | 0.001 | 0.085 | 0.984 | 0.001 | 0.072 |
SVR-PSO | 0.964 | 0.003 | 0.143 | 0.98 | 0.002 | 0.126 |
Basin | Event Date | Observed Peak Flow (m3/s) | Observed Time of Peak Flow (hr) | HEC-HMS | HMS-BN Hybrid Model | HMS-SVR-PSO Hybrid Model | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Time of Peak Flow (hr) | MARE | Predicted Peak Flow (m3/s) | MARE | Predicted Peak Flow (m3/s) | MARE | Predicted Peak Flow (m3/s) | MARE | ||||
Amameh | 14 April 2012 | 4.6 | 8 | 8 | 0.00 | 4.5 | 0.021 | 4.64 | 0.011 | 4.66 | 0.013 |
Navrood | 26 August 2015 | 5.1 | 2 | 3 | 0.5 | 4.9 | 0.039 | 5.05 | 0.006 | 5.11 | 0.003 |
Navrood | 17 September 2015 | 11.1 | 14 | 14 | 0.00 | 10.8 | 0.027 | 11.16 | 0.006 | 11.21 | 0.009 |
Kasilian | 30 March 2016 | 6.2 | 19 | 20 | 0.052 | 5.7 | 0.08 | 6 | 0.032 | 6 | 0.032 |
Average | 0.138 | 0.042 | 0.013 | 0.014 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banihabib, M.E.; Jurik, L.; Kazemi, M.S.; Soltani, J.; Tanhapour, M. A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods. Water 2020, 12, 2246. https://doi.org/10.3390/w12082246
Banihabib ME, Jurik L, Kazemi MS, Soltani J, Tanhapour M. A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods. Water. 2020; 12(8):2246. https://doi.org/10.3390/w12082246
Chicago/Turabian StyleBanihabib, Mohammad Ebrahim, Lubos Jurik, Mahsa Sheikh Kazemi, Jaber Soltani, and Mitra Tanhapour. 2020. "A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods" Water 12, no. 8: 2246. https://doi.org/10.3390/w12082246
APA StyleBanihabib, M. E., Jurik, L., Kazemi, M. S., Soltani, J., & Tanhapour, M. (2020). A Hybrid Intelligence Model for the Prediction of the Peak Flow of Debris Floods. Water, 12(8), 2246. https://doi.org/10.3390/w12082246