Improved Short-Term Microbial Degradation in Circulating Water Reducing High Stagnant Atrazine Concentrations in Subsurface Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subsurface Deposits and Sediments
2.2. Inoculum Preparation
2.3. Degradation Experiments
2.4. Microbial Counts and Identification
2.5. Pesticide Analyses
2.6. Calculations
3. Results
3.1. Atrazine Degradation in the Sediment Slurries
3.2. Atrazine Degradation in the Circulating Water of the Sediment Columns
3.3. Cultivated Bacteria
4. Discussion
4.1. Atrazine Dissipation in the Sediment–Water Systems
4.2. Microbial Growth in the Sediment–Water Systems
4.3. Atrazine-Contaminated Aquifer Sediments and Remediation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barrios, R.E.; Gaonkar, O.; Snow, D.; Li, Y.; Li, X.; Bartelt-Hunt, S.L. Enhanced biodegradation of atrazine at high infiltration rates in agricultural soils. Environ. Sci. Proc. Imp. 2019, 21, 999–1010. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, A.; Latino, D.; Fenner, K.; Helbling, D.E. Evaluating the environmental parameters that determine aerobic biodegradation half-lives of pesticides in soil with a multivariable approach. Chemosphere 2018, 209, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Ledesma, M.; Prado, B.; Zamora, O.; Siebe, C. Mobility of atrazine in soils of a wastewater irrigated maize field. Agr. Ecosyst. Environ. 2018, 255, 73–83. [Google Scholar] [CrossRef]
- Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.-C.; García-Río, L. The mobility and degradation of pesticides in soils and the pollution of groundwater Resources. Agr. Ecosyst. Environ. 2008, 123, 247–260. [Google Scholar] [CrossRef]
- Schwab, A.P.; Splichal, P.A.; Banks, M.K. Persistence of atrazine and alachlor in ground water aquifers and soil. Water Air Soil Poll. 2006, 171, 203–235. [Google Scholar] [CrossRef]
- Talja, K.M.; Kaukonen, S.; Kilpi-Koski, J.; Malin, I.; Kairesalo, T.; Romantschuk, M.; Tuominen, J.; Kontro, M.H. Atrazine and terbutryn degradation in deposits from groundwater environment within the boreal region in Lahti, Finland. J. Agric. Food Chem. 2008, 56, 11962–11968. [Google Scholar] [CrossRef] [PubMed]
- Ralebitso, T.K.; Senior, E.; van Verseveld, H.W. Microbial aspects of atrazine degradation in natural environments. Biodegradation 2002, 13, 11–19. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Mahvi, A.H.; Ehrampoush, M.H.; Mazloomi, S.M.; Faramarzian, M.; Dehghani, M.; Yousefinejad, S.; Ghaneian, M.T.; Abtahi, S.M. Studies on influence of process parameters on simultaneous biodegradation of atrazine and nutrients in aquatic environments by a membrane photobioreactor. Environ. Res. 2018, 161, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Tonelli Fernandes, A.F.; Braz, V.S.; Bauermeister, A.; Rizzato Paschoal, J.A.; Lopes, N.P.; Stehling, E.G. Degradation of atrazine by Pseudomonas sp. and Achromobacter sp. isolated from Brazilian agricultural soil. Int. Biodeterior. Biodegrad. 2018, 130, 17–22. [Google Scholar] [CrossRef]
- Chan, C.Y.; Tao, S.; Dawson, R.; Wong, P.K. Treatment of atrazine by integrating photocatalytic and biological processes. Environ. Pollut. 2004, 131, 45–54. [Google Scholar] [CrossRef]
- Gao, J.; Song, P.; Wang, G.; Wang, J.; Zhu, L.; Wang, J. Responses of atrazine degradation and native bacterial community in soil to Arthrobacter sp. strain HB-5. Ecotox. Environ. Safe. 2018, 159, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Copley, S.D. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nat. Chem. Biol. 2009, 5, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stipičević, S.; Galzina, N.; Udiković-Kolić, N.; Jurina, T.; Mendaš, G.; Dvoršćak, M.; Petrić, I.; Barić, K.; Drevenkar, V. Distribution of terbuthylazine and atrazine residues in crop-cultivated soil: The effect of herbicide application rate on herbicide persistence. Geoderma 2015, 259-260, 300–309. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Chauhan, A.; Datta, S.; Wani, A.B.; Singh, N.; Singh, J. Toxicity, degradation and analysis of the herbicide atrazine. Environ. Chem. Lett. 2018, 16, 211–237. [Google Scholar] [CrossRef]
- He, H.; Liu, Y.; You, S.; Liu, J.; Xiao, H.; Tu, Z. A review on recent treatment technology for herbicide atrazine in contaminated environment. Int. J. Environ. Res. Public Health 2019, 16, 5129. [Google Scholar] [CrossRef] [Green Version]
- Casasso, A.; Tosco, T.; Bianco, C.; Bucci, A.; Sethi, R. How can we make pump and treat systems more energetically sustainable? Water 2020, 12, 67. [Google Scholar] [CrossRef] [Green Version]
- Kerminen, K.; Le Moël, R.; Harju, V.; Kontro, M.H. Influence of organic matter, nutrients, and cyclodextrin on microbial and chemical herbicide and degradate dissipation in subsurface sediment slurries. Sci. Total Environ. 2018, 618, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Song, F. Bioremediation of atrazine: Recent advances and promises. J. Soils Sediments 2014, 14, 1727–1737. [Google Scholar] [CrossRef]
- Ciampi, P.; Esposito, C.; Papini, M.P. Hydrogeochemical model supporting the remediation strategy of a highly contaminated industrial site. Water 2020, 11, 1371. [Google Scholar] [CrossRef] [Green Version]
- Gentry, T.; Rensing, C.; Pepper, I. New approaches for bioaugmentation as a remediation technology. Crit. Rev. Environ. Sci. Technol. 2004, 34, 447–494. [Google Scholar] [CrossRef]
- Kerminen, K.; Kontro, M.H. Sonication effect on atrazine dissipation in vadose zone sediment slurries. Environments 2017, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, L.W.; Kjaergaard, C.; Moldrup, P. Colloids and colloid-facilitated transport of contaminants in soils: An introduction. Vadose Zone J. 2004, 3, 321–325. [Google Scholar] [CrossRef]
- Meng, Z.; Carper, R. Effects of hydration on the molecular structure of metal ion-atrazine dimer complexes: A MOPAC (PM3) study. J. Mol. Struc. THEOCHEM 2000, 531, 89–98. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Sun, K.; Lin, C.; Ma, J.; He, M.; Ouyang, W. Persulfate-based advanced oxidation processes (AOPs) for organic contaminated soil remediation: A review. Chem. Eng. J. 2019, 372, 836–851. [Google Scholar] [CrossRef]
- Kerminen, K.; Salovaara, V.; Kontro, M.H. A zero-valent iron and organic matter micture enhances herbicide and herbicide degradation product removal in subsurface waters. J. Environ. Sci. 2017, 57, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, E.V.; Sáez, C.; Cañizares, P.; Martínez-Huitle, C.A.; Rodrigo, M.A. Reversible electrokinetic adsorption barriers for the removal of atrazine and oxyfluorfen from spiked soils. J. Hazard. Mater. 2017, 322, 413–420. [Google Scholar] [CrossRef]
- Grajales-Mesa, S.J.; Malina, G. Pilot-scale evaluation of a permeable reactive barrier with compost and brown coal to treat groundwater contaminated with trichloroethylene. Water 2019, 11, 1922. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.; Tomkins, J.; Wackett, L.P.; Wing, R.; Sadowsky, M.J. Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J. Bacteriol. 2001, 183, 5684–5697. [Google Scholar] [CrossRef] [Green Version]
- Mandelbaum, R.T.; Allan, D.L.; Wackett, L.P. Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl. Environ. Microb. 1995, 61, 1451–1457. [Google Scholar] [CrossRef] [Green Version]
- Balkwill, D.L.; Ghiorse, W.C. Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl. Environ. Microb. 1985, 50, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Fahy, A.; McGenity, T.J.; Timmis, K.N.; Ball, A.S. Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol. Ecol. 2006, 58, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Mattsson, M.K.; Liu, X.; Yu, D.; Kontro, M.H. Depth, soil type, water table, and site effects on microbial community composition in sediments of pesticide-contaminated aquifer. Environ. Sci. Pollut. Res. 2015, 22, 10263–10279. [Google Scholar] [CrossRef] [PubMed]
- LECO Corp. Total Organic Carbon and Nitrogen in Soils; Organic Application Note 203-821-165; LECO Corp.: St. Joseph, MI, USA, 2003. [Google Scholar]
- SFS 5505. Determination of Inorganic and Organic Nitrogen in Wastewater. Modified Kjeldahl Method; Finnish Standards Association SFS: Helsinki, Finland, 1988. [Google Scholar]
- Water Quality. Determination of Dissolved Fluoride, Chloride, Nitrite, Orthophosphate, Bromide, Nitrate and Sulphate Ions, Using Liquid Chromatography of Ions; SFS-EN ISO 10304-1, Part 1: Method for Water with Low Contamination; Finnish Standards Association SFS: Helsinki, Finland, 1995.
- Water Quality. Determination of Dissolved Anions by Liquid Chromatography of Ions; SFS-EN ISO 10304-2; Part 2: Determination of Bromide, Chloride, Nitrate, Nitrite, Orthophosphate and Sulphate in Wastewater; Finnish Standards Association SFS: Helsinki, Finland, 1997.
- Water Quality. Determination of 33 Elements by Inductively Coupled Plasma Atomic Emission Spectroscopy; ISO 11885; Finnish Standard Association: Helsinki, Finland, 1996.
- Soil Quality. Determination of Trace Elements in Extracts of Soil by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES); SFS-ISO 22036; International Standard Organization: Geneva, Switzerland, 2005.
- General Requirements for the Competence of Testing and Calibration Laboratories; SFS-EN ISO/IEC 17025; Finnish Standards Association SFS: Helsinki, Finland, 2005.
- Liu, X.; Ecarnot, M.; Kontro, M.H. The physicochemical conditions of isolation source determine the occurrence of Pseudomonas fluorescens group species. Ann. Microbiol. 2015, 65, 2363–2377. [Google Scholar] [CrossRef]
- Edwards, U.; Rogall, T.; Blöcker, H.; Emde, M.; Böttger, E.C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989, 17, 7843–7853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, N.; Jumpponen, A.; Niskanen, T.; Liimatainen, K.; Jones, K.L.; Koivula, T.; Romantschuk, M.; Strömmer, R. EcM fugal community structure, but not diversity, altered in a Pb-contaminated shooting range in a boreal coniferous forest site in Southern Finland. FEMS Microbiol. Ecol. 2011, 76, 121–132. [Google Scholar] [CrossRef] [Green Version]
- Pukkila, V.; Gustafsson, J.; Tuominen, J.; Aallonen, A.; Kontro, M.H. The most-probable-number enumeration of dichlobenil and 2,6-dichlorobenzamide (BAM) degrading microbes in Finnish aquifers. Biodegradation 2009, 20, 679–686. [Google Scholar] [CrossRef]
- Pukkila, V.; Kontro, M.H. Dichlobenil and 2,6-dichlorobenzamide (BAM) dissipation in topsoil and deposits from groundwater environment within the boreal region in southern Finland. Environ. Sci. Pollut. Res. 2014, 21, 3732–3739. [Google Scholar] [CrossRef]
- Gutell, R.R.; Larsen, N.; Woese, C.R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol. Rev. 1994, 58, 10–26. [Google Scholar] [CrossRef]
- Tomlin, C.D.S. The Pesticide Manual, 12th ed.; The British Crop Protection Council: Surrey, UK, 2000. [Google Scholar]
- Geyer, H.; Viswanathan, R.; Freitag, D.; Korte, F. Relationship between water solubility of organic chemicals and their bioaccumulation by the alga Chlorella. Chemosphere 1981, 10, 1307–1313. [Google Scholar] [CrossRef]
- Holtze, M.S.; Sørensen, S.R.; Sørensen, J.; Aamand, J. Microbial degradation of the benzonitrile herbicides dichlobenil, bromoxynil and ioxynil in soil and subsurface environments–Insights into degradation pathways, persistent metabolites and involved degrade organisms. Environ. Pollut. 2008, 154, 155–168. [Google Scholar] [CrossRef]
- Prosen, H.; Zupančič-Kralj, L. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environ. Pollut. 2005, 133, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Nasser, A.; Mingelgrin, U. Mechanochemistry: A review of surface reactions and environmental applications. Appl. Clay Sci. 2012, 67-68, 141–150. [Google Scholar] [CrossRef]
- Shin, J.Y.; Cheney, M.A. Abiotic transformation of atrazine in aqueous suspension of four synthetic manganese oxides. Colloid. Surf. A 2004, 242, 85–92. [Google Scholar] [CrossRef]
- Mata-Sandoval, J.C.; Karns, J.; Torrents, A. Influence of rhamnolipids and triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. J. Agric. Food Chem. 2001, 49, 3296–3303. [Google Scholar] [CrossRef]
- Lipponen, M.T.T.; Suutari, M.H.; Martikainen, P.J. Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems. Water Res. 2002, 36, 4319–4329. [Google Scholar] [CrossRef]
- Gregory, S.P.; Maurice, L.D.; West, J.M.; Gooddy, D.C. Microbial communities in UK aquifers: Current understanding and future research needs. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 145–157. [Google Scholar] [CrossRef]
- Balkwill, D.L.; Murphy, E.M.; Fair, D.M.; Ringelberg, D.B.; White, D.C. Microbial communities in high and low recharge environments: Implications for microbial transport in the vadose zone. Microb. Ecol. 1998, 35, 156–171. [Google Scholar] [CrossRef]
- Ros, M.; Goberna, M.; Moreno, J.L.; Hernandez, T.; García, C.; Insam, H.; Pascual, J.A. Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine. Appl. Soil Ecol. 2006, 34, 93–102. [Google Scholar] [CrossRef]
- Feakin, S.J.; Gubbins, B.; McGhee, I.; Shaw, L.J.; Burns, R.G. Inoculation of granular activated carbon with s-triazine-degrading bacteria for water treatment at pilot-scale. Water Res. 1995, 29, 1681–1688. [Google Scholar] [CrossRef]
- Martin-Laurent, F.; Barrès, B.; Wagschal, I.; Piutti, S.; Devers, M.; Soulas, G.; Philippot, L. Impact of the maize rhizosphere on the genetic structure, the diversity and the atrazine-degrading gene composition of cultivable atrazine-degrading communities. Plant Soil 2006, 282, 99–115. [Google Scholar] [CrossRef]
- Fang, H.; Lian, J.; Wang, H.; Cai, L.; Yu, Y. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. J. Hazard. Mater. 2015, 286, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Frascari, D.; Zanaroli, G.; Danko, A.S. In situ aerobic cometabolism of chlorinated solvents: A review. J. Hazard. Mater. 2015, 283, 382–399. [Google Scholar] [CrossRef] [PubMed]
- Bruell, C.J.; Marley, M.C.; Hopkins, H.H. American petroleum institute in situ air sparging database. J. Soil Contam. 1997, 6, 169–185. [Google Scholar] [CrossRef]
- Elomari, M.; Coroler, L.; Hoste, B.; Gillis, M.; Izard, D.; Leclerc, H. DNA Relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int. J. Syst. Bacteriol. 1996, 46, 1138–1144. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Allen, H.K.; Klimowicz, A.K.; Mlot, C.; Gross, J.A.; Savengsuksa, S.; McEllin, J.; Clardy, J.; Ruess, R.W.; Handelsman, J. Psychrotrophic strain of Janthinobacterium lividum from a cold Alaskan soil produces prodigiosin. DNA Cell Biol. 2010, 29, 533–541. [Google Scholar] [CrossRef]
- Klinger, E.G.; James, R.R.; Youssef, N.N.; Welker, D.L. A multi-gene phylogeny provides additional insight into the relationships between several Ascosphaera species. J. Invertebr. Pathol. 2013, 112, 41–48. [Google Scholar] [CrossRef]
- Kiecak, A.; Breuer, F.; Stumpp, C. Column experiments on sorption coefficients and biodegradation rates of selected pharmaceuticals in three aquifer sediments. Water 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Arias-Estévez, M.; Soto-González, B.; López-Periago, E.; Cancho-Grande, B.; Simal-Gándara, J. Atrazine Sorption Dynamics in Acid-Surface Soils. Bull. Environ. Contam. Toxicol. 2005, 75, 264–271. [Google Scholar] [CrossRef]
- Keinanen, M.M.; Korhonen, L.K.; Lehtola, M.J.; Miettinen, I.T.; Martikainen, P.J.; Vartiainen, T.; Suutari, M.H. The microbial community structure of drinking water biofilms can be affected by phosphorus availability. App. Environ. Microb. 2002, 68, 434–439. [Google Scholar] [CrossRef] [Green Version]
Experiment | Atrazine | Na-citrate |
---|---|---|
mg·L−1 | g·L−1 | |
Control | 0 | 0 |
Pseudomonas ADP | 0 | 0 |
Four microbes * | 0 | 0 |
Atrazine | 100 | 0 |
Atrazine, Pseudomonas ADP | 100 | 0 |
Atrazine, Pseudomonas ADP, Na-citrate | 100 | 1.0 |
Atrazine, four microbes * | 100 | 0 |
Atrazine, four microbes *, Na-citrate | 100 | 1.0 |
Isolate | 16S rDNA Sequence | Nearest Neighbor | |||
---|---|---|---|---|---|
Position | ACNO | Similarity | Strain | Isolation Source | |
Inoculated four microbes | |||||
ATR18/2a | 291-870 | KM501426 | 100.0 | Pseudomonas veronii CIP104663T | Natural mineral water (AF064460) |
ATR17/2 | 58-880 | MF977270 | 99.9 | Janthinobacterium 001xTSA06A_A01 | Cold Alaskan soil (HM113656) |
ATR16/2 | 1504-2086 * | MF977305 | 100.0 | Acremonium sp. 11665 DLW-2010 | Not Known (GQ867783) |
ATR18/2b | 94-869 * | MF977292 | 99.7 | Penicillium griseofulvum NRRL 5256 | Not Known (DQ339557) |
Isolates from sediment slurries and circulating water of sediment columns | |||||
Alphaproteobacteria | |||||
ATR47 | 46-1047 | MF977398 | 99.7 | Methylobacterium suomiense NCIMB13778 | Soil (AB175645) |
ATR52 | 54-972 | MF977401 | 100.0 | Methylobacterium fujisawaense z100a | Water moss (AB698695) |
ATR64 | 47-869 | MF977404 | 99.6 | Sphingomonas aerolata | Ice sheet, depth 44.88m (JF70599) |
Betaproteobacteria | |||||
ATR49 | 48-1074 | MF977399 | 100.0 | Burkholderia sp. H801 | Soil, dichlorophenoxyacetate (AB212238) |
ATR46 | 92-936 | MF977397 | 100.0 | Variovorax sp. CI17 | Aquifer soil, phenol (AB167189) |
ATR63 | 56-935 | MF977403 | 100.0 | Variovorax sp. CI17 | Aquifer soil, phenol (AB167189) |
Gammaproteobacteria | |||||
ATR55 | 49-932 | MF977402 | 99.9 | Acinetobacter sp. DSM 1139 | Soil, pesticides (X81657) |
ATR41 | 52-1074 | KM501423 | 100.0 | Pseudomonas sp. LAB-23 | Aquifer, trichloroethylene (AB051699) |
ATR45 | 54-1074 | KM501402 | 100.0 | Pseudomonas sp. LAB-23 | Aquifer, trichloroethylene (AB051699) |
ATR51 | 52-1074 | KM501396 | 100.0 | Pseudomonas sp. LAB-23 | Aquifer, trichloroethylene (AB051699) |
ATR54 | 52-1074 | KM501403 | 100.0 | Pseudomonas sp. LAB-23 | Aquifer, trichloroethylene (AB051699) |
ATR53 | 49-1014 | MF977393 | 100.0 | Pseudomonas sp. ADP | Mineral soil, atrazine (AM088478) |
ATR56 | 56-1014 | MF977394 | 100.0 | Pseudomonas sp. ADP | Mineral soil, atrazine (AM088478) |
ATR62 | 49-1095 | MF977392 | 99.76 | Pseudomonas putida sp. PC36 | River water, phenol (DQ178233) |
Actinobacteria | |||||
ATR50 | 29-1053 | MF977400 | 100.0 | Rhodococcus sp. K4-07B | Mine tailing site (EF612291) |
ATR42 | 22-971 | MF977395 | 99.2 | Streptomyces ederensis NRRL B-8146 | Soil (EU594481) |
ATR44 | 52-1020 | MF977396 | 99.8 | Williamsia sp. NRRL B-15444R | Soil, degrades melamine (JN201861) |
Compound | Concentration |
---|---|
Organic matter (mg·g−1) | 4.3 ± 0.2 |
Total carbon (mg·g−1) | 0.3 ± 0.1 |
NH4-N (μg·g−1) | <0.39 * |
NO3-N (μg·g−1) | <0.1 * |
Co (μg·g−1) | 3 ± 1 |
Cr (μg·g−1) | 12 ± 4 |
Cu (μg·g−1) | 15 ± 5 |
Fe (mg·g−1) | 12 ± 3 |
Mn (μg·g−1) | 96 ± 24 |
Ni (μg·g−1) | 6 ± 2 |
Pb (μg·g−1) | 3 ± 1 |
Zn (μg·g−1) | 27 ± 9 |
Treatment | Atrazine (Stabilized, day 10) | Microbial Numbers | ||||||
---|---|---|---|---|---|---|---|---|
Treatment | mg L−1 of Liquid | mg g−1 of Sediment | Initial (Day 0) | Stabilized (Day 10) | ||||
A | B | A | B | A | B | A | B | |
a.Control | <0.5d,e,f,g,h,B,* | <0.5d,e,f,g,h,A,* | <0.002d,e,f,g,h,B,* | <0.005d,e,f,g,h,A,* | 1.0 × 103 | 1.0 × 101 | 6.7 × 104d,e,f,g,h,B | 1.0 × 102c,b,d,f,g,h,A |
b.Pseudomonas ADP | 0.8 ± 0.7d,e,f,g,h,B | <0.5d,e,f,g,h,A,* | 0.003 ± 0.002d,e,f,g,h,B | <0.005d,e,f,g,h,A,* | 1.0 × 103 | 1.0 × 102 | 8.2 × 103d,e,f,g,h,B | 2.8 × 103a,d,f,g,A |
c.Four microbes | 1.9 ± 0.7d,e,f,g,h,B | <0.5d,e,f,g,h,A,* | 0.006 ± 0.002d,e,f,g,h,B | <0.005d,e,f,g,h,A,* | 1.0 × 103 | 1.0 × 101 | 8.0 × 104d,e,f,g,h,B | 1.0 × 103a,d,f,g,A |
d.Atrazine | 61.9 ± 8.9a,b,c,B | 10.3 ± 2.0a,b,c,A | 0.206 ± 0.030a,b,c,B | 0.112 ± 0.022a,b,c,A | 1.0 × 103 | 1.0 × 101 | >108a,b,c,B | 5.5 × 103a,b,c,f,A |
e.Atrazine,Pseudomonas ADP | 56.4 ± 5.8a,b,c,B | 11.8 ± 1.3a,b,c,A | 0.188 ± 0.019a,b,c,B | 0.129 ± 0.014a,b,c,A | 1.0 × 103 | 1.0 × 102 | >108a,b,c,B | 2.4 × 103f,g,A |
f.Atrazine,Pseudomonas ADP,Na-citrate | 63.8 ± 4.3a,b,c,B | 10.3 ± 3.5a,b,c,A | 0.213 ± 0.014a,b,c,B | 0.112 ± 0.038a,b,c,A | 1.0 × 103 | 1.0 × 102 | >108a,b,c,B | 4.6 × 104a,b,c,d,e,h,A |
e.Atrazine,four microbes | 53.4 ± 3.7a,b,c,B | 15.8 ± 1.2a,b,c,A | 0.178 ± 0.012a,b,c,B | 0.172 ± 0.013a,b,c,A | 1.0 × 103 | 1.0 × 102 | >108a,b,c,B | 8.0 × 104a,b,c,e,h,A |
h.Atrazine,four microbes,Na-citrate | 61.1 ± 6.1a,b,c,B | 17.5 ± 2.1a,b,c,A | 0.204 ± 0.020a,b,c,B | 0.190 ± 0.023a,b,c,A | 1.0 × 103 | 1.0 × 102 | >108a,b,c,B | 2.6 × 103a,f,g,A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hui, N.; Kontro, M.H. Improved Short-Term Microbial Degradation in Circulating Water Reducing High Stagnant Atrazine Concentrations in Subsurface Sediments. Water 2020, 12, 2507. https://doi.org/10.3390/w12092507
Liu X, Hui N, Kontro MH. Improved Short-Term Microbial Degradation in Circulating Water Reducing High Stagnant Atrazine Concentrations in Subsurface Sediments. Water. 2020; 12(9):2507. https://doi.org/10.3390/w12092507
Chicago/Turabian StyleLiu, Xinxin, Nan Hui, and Merja H. Kontro. 2020. "Improved Short-Term Microbial Degradation in Circulating Water Reducing High Stagnant Atrazine Concentrations in Subsurface Sediments" Water 12, no. 9: 2507. https://doi.org/10.3390/w12092507
APA StyleLiu, X., Hui, N., & Kontro, M. H. (2020). Improved Short-Term Microbial Degradation in Circulating Water Reducing High Stagnant Atrazine Concentrations in Subsurface Sediments. Water, 12(9), 2507. https://doi.org/10.3390/w12092507