Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania)
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Data Acquisition
2.1.1. LiDAR Data
2.1.2. Development of Bathymetric Model
2.1.3. Hydrological Data
2.1.4. Land-Use Data
2.2. 2D HEC-RAS Modeling
2.3. Dam Break Scenario
2.4. Flood Hazard Assessment
3. Results
3.1. Flood Pattern
3.1.1. Flood Extent
3.1.2. Flood Depth
3.1.3. Flood Velocity
3.2. Flood Hazard Assessment
4. Discussion
5. Conclusions
- Combining 2D hydraulic modeling of the R1 dam break scenario (piping failure) with high-density LiDAR data (0.5 m spatial resolution) and local hydrological parameters (correlation between R1 inflow (m3/s) with water volume (m3) and water level (m)) proved to be an efficient method to improve the action plan for dam failure (APDF) and flood mitigation strategy within the Başeu multi-reservoir system.
- The multi-scenario approach using the inflow rate with 1% (100 year), 0.5% (500 year), and 0.1% (1000 year) recurrence intervals allowed the testing of the flood control capacity of Başeu multi-reservoir system according to R1 water volume which can cause a flood event in the case of dam failure. Accordingly, the first two scenarios (100 year and 500 year) indicate that only first four settlements (S1—Havârna, S2—Gârbeni, S3—Tătărășeni, S4—Balinți) located downstream of R1 are potentially affected by floods due to the location between R1 and R2 reservoirs, and only in case of 1000-year scenario are all 27 settlements potentially affected.
- The 2D hydraulic models were exported into a set of flood hazard parameters (e.g., flood extent, flood depth, flood velocity) and can be used for improve the flood hazard maps and answer real questions regarding the flood hazard threat at the local level in case of a dam failure.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D, 2D | one-dimensional, two-dimensional |
APDF | action plans for dam failure |
LiDAR | light intensity detection and ranging |
DEM | digital elevation model |
GIS | geographic information system |
HEC-RAS | Hydrologic Engineering Center’s River Analysis System |
R1 | Cal Alb reservoir |
R1–R5 | Başeu multi-reservoir system |
S1–S27 | Settlements code |
BCE | before common era |
CE | common era |
ICOLD | International Commission on Large Dams |
USGS | US Geological Survey |
DAMBRK ’88 | a dam-break flood forecasting model vs. 1988 (Fread, D.L.) |
BREACH 7/88 | a deterministic model of the erosion formed breach vs. 1988 (Fread, D.L.) |
DWOPER 8/89 | an unsteady flow dynamic routing model vs. 1989 (Fread, D.L.) |
SMPDBK 9/91 | an interactive simplified dam-break model vs. 1991 (Fread, D.L.) |
MIKE SHE | hydrological modeling system for simulating surface water flow |
EU | European Union |
FRMP | flood risk management plan |
FEMA | Federal Emergency Management Agency (US) |
AIDR | Australian Institute for Disaster Resilience |
NWL | normal water level |
RNC | Romanian National Classification |
PBWBA | Prut–Bîrlad Water Basin Administration |
DWL | Dead water level |
DTM | Digital terrain model |
PBRB | Prut–Bîrlad river basin |
ALS | airborne laser scanner |
OOR | official operating rules |
NACLRR | National Agency for Cadaster and Land Registration of Romania |
D × V | depth × velocity |
DSM | digital surface model |
References
- Singh, V.P. Dam Breach Modeling Technology; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 1996; Volume 17, p. 242. [Google Scholar]
- Mihu-Pintilie, A. Natural Dam Lakes and Their Status Within Limnological and Geographical Studies. In Natural Dam Lake Cuejdel in the Stânişoarei Mountains, Eastern Carpathians; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2018; pp. 5–50. [Google Scholar]
- Mihu-Pintilie, A.; Nicu, I.C.; Pintilie, M. Nicu GIS-based Landform Classification of Eneoli thic Archaeological Sites in the Plateau-plain Transition Zone (NE Romania): Habitation Practices vs. Flood Hazard Perception. Remote Sens. 2019, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Lukman, S.; Otun, J.A.; Adie, D.B.; Ismail, A.; Oke, I.A. A Brief Assessment of a Dam and Its Failure Prevention. J. Fail. Anal. Prev. 2011, 11, 97–109. [Google Scholar] [CrossRef]
- Costa, J.; Schuster, R. The formation and failure of natural dams. Open File Rep. 1987, 100, 1054–1068. [Google Scholar] [CrossRef] [Green Version]
- Foster, M.; Fell, R.; Spannagle, M. The statistics of embankment dam failures and accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- Urzică, A.; Huţanu, E.; Mihu-Pintilie, A.; Stoleriu, C.C. Dam breaks analysis using HEC-RAS techniques. Case study: Cal Alb dam (NE Romania). In Proceedings of the Agenda of the 16th International Conference on Environmental Science and Technology (CEST2019), Rhodes, Greece, 4–7 September 2019; Available online: https://cest2019.gnest.org/conference-program (accessed on 7 April 2020).
- International Commission on Large Dams. World Register of Dams Database. Available online: http://www.icold-cigb.org (accessed on 13 June 2013).
- Agureev, N.V. Continuous-flow method of constructing large embankments (dams) by filling from above. Power Technol. Eng. 1991, 25, 289–296. [Google Scholar] [CrossRef]
- Chen, S.-S.; Zhong, Q.; Shen, G.-Z. Numerical modeling of earthen dam breach due to piping failure. Water Sci. Eng. 2019, 12, 169–178. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Ge, W. Weight analysis of influencing factors of dam break risk consequences. Nat. Hazards Earth Syst. Sci. 2018, 18, 3355–3362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Peng, M.; Chang, D.; Xu, Y. Dam Failure Mechanisms and Risk Assessment; Wiley: Singapore, 2016; p. 474. [Google Scholar]
- ASCE/EWRI Task Committee on Dam/Levee Breaching Earthen Embankment Breaching. J. Hydraul. Eng. 2011, 137, 1549–1564. [CrossRef]
- Genevois, R.; Ghirotti, M. The 1963 Vaiont Landslide. G. Geol. Appl. 2005, 1, 41–52. [Google Scholar] [CrossRef]
- Albu, L.-M.; Enea, A.; Iosub, M.; Breaban, I.G. Dam Breach Size Comparison for Flood Simulations. A HEC-RAS Based, GIS Approach for Drăcșani Lake, Sitna River, Romania. Water 2020, 12, 1090. [Google Scholar] [CrossRef]
- Talukdar, P.; Dey, A. Hydraulic failures of earthen dams and embankments. Innov. Infrastruct. Solut. 2019, 4, 42. [Google Scholar] [CrossRef]
- Jing, X.; Chen, Y.; Williams, D.J.; Serna, M.L.; Zheng, H. Overtopping Failure of a Reinforced Tailings Dam: Laboratory Investigation and Forecasting Model of Dam Failure. Water 2019, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, J.; He, H.-Q.; He, W.-Z. Experimental study on piping in sandy gravel foundations considering effect of overlying clay. Water Sci. Eng. 2016, 9, 165–171. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Li, C.; Min, X.; Xiaolei, T. Review of Dam-break Research of Earth-rock Dam Combining with Dam Safety Management. Procedia Eng. 2012, 28, 382–388. [Google Scholar] [CrossRef] [Green Version]
- George, A.C.; Nair, B.T. Dam Break Analysis Using BOSS DAMBRK. Aquat. Procedia 2015, 4, 853–860. [Google Scholar] [CrossRef]
- Fread, D.L. The NWS DAMBRK Model: Theoretical Background/User Documentation; Silver Spring, Md., Hydrologic Research Laboratory, National Weather Service, NOAA: Silver Spring, MD, USA, 1988. [Google Scholar]
- Wing, O.E.J.; BatesiD, P.D.; NealiD, J.C.; Sampson, C.C.; Smith, A.M.; Quinn, N.; Shustikova, I.; Domeneghetti, A.; Gilles, D.W.; Goska, R.; et al. A New Automated Method for Improved Flood Defense Representation in Large-Scale Hydraulic Models. Water Resour. Res. 2019, 55, 11007–11034. [Google Scholar] [CrossRef] [Green Version]
- Brunner, G.W. Using HEC-RAS for Dam Break Studies. 2014. Available online: https://www.hec.usace.army.mil/publications (accessed on 2 February 2020).
- Brunner, G.W. HEC-RAS 5.0 River Analysis System, Hydraulic Reference Manual. 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation (accessed on 2 February 2020).
- Brunner, G.W.; CEIWR-HEC. HEC-RAS River Analysis System, 2D Modeling User’s Manual. Version 5.0. 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation (accessed on 2 February 2020).
- Cai, W.; Zhu, X.; Peng, A.; Wang, X.; Fan, Z. Flood Risk Analysis for Cascade Dam Systems: A Case Study in the Dadu River Basin in China. Water 2019, 11, 1365. [Google Scholar] [CrossRef] [Green Version]
- EC (European Commission). Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks. In Official Journal of the European Union; Office for Official Publications of the Eu-ropean Communities: Luxembourg, 2007; Volume L288, pp. 27–34. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 (accessed on 6 June 2020).
- Romanescu, G.; Stoleriu, C.C.; Mihu-Pintilie, A. Implementation of EU Water Framework Directive (2000/60/EC) in Romania—European Qualitative Requirements. In Springer Water; Springer Science and Business Media LLC: Dordrecht, The Netherlands, 2020; pp. 17–55. [Google Scholar]
- IGSU (Romanian General Inspectorate for Emergency Situations). Ordinance 1422/192 from 16 May 2012 on the Regulation of Emergencies Generated by Floods, Dangerous Meteorological Phenomena, Accidents at Hydrotechnical Constructions, Accidental Pollution on Watercourses and Marine Pollution in the Coastal Area. Available online: http://legislatie.just.ro/Public/DetaliiDocument/141181 (accessed on 6 June 2020).
- Stoleriu, C.C.; Urzica, A.; Mihu-Pintilie, A. Improving flood risk map accuracy using high-density LiDAR data and the HEC-RAS river analysis system: A case study from north-eastern Romania. J. Flood Risk Manag. 2019, 13. [Google Scholar] [CrossRef]
- Mihu-Pintilie, A.; Cîmpianu, C.I.; Stoleriu, C.C.; Pérez, M.N.; Paveluc, L.E. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach. Water 2019, 11, 1832. [Google Scholar] [CrossRef] [Green Version]
- Huţanu, E.; Mihu-Pintilie, A.; Urzica, A.; Paveluc, L.E.; Stoleriu, C.C.; Grozavu, A. Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water 2020, 12, 1624. [Google Scholar] [CrossRef]
- Enea, A.; Urzică, A.; Breabăn, I.G. Remote sensing, GIS and HEC-RAS techniques, applied for flood extent validation, based on Landsat imagery, LiDAR and hydrological data. Case study: Başeu River, Romania. J. Environ. Prot. Ecol. 2018, 19, 1091–1101. [Google Scholar]
- Urzica, A.; Mihu-Pintilie, A.; Huţanu, E.; Ghindaoanu, B.V.; Albu, L.M. Using gis methods for modelling exceptional flood events in baseu river basin, ne romania. Proceedings 2018 2018, 4, 463–471. [Google Scholar] [CrossRef]
- Huţanu, E.; Urzică, A.; Paveluc, L.E.; Stoleriu, C.C.; Grozavu, A. The role of hydro-technical works in diminishing flooded areas. Case study: The June 1985 flood on the Miletin River. In Proceedings of the Agenda of the 16th International Conference on Environmental Science and Technology (CEST2019), Rhodes, Greece, 4–7 September 2019; Available online: https://cest2019.gnest.org/conference-program. (accessed on 7 April 2020).
- Apel, H.; Aronica, G.T.; Kreibich, H.; Thieken, A.H. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49, 79–98. [Google Scholar] [CrossRef]
- Dasallas, L.; Kim, Y.; An, H. Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water 2019, 11, 2048. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, P.; Tegos, A.; Oikonomou, A.; Pagana, V.; Koukouvinos, A.; Mamassis, N.; Koutsoyiannis, D.; Efstratiadis, A. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J. Hydrol. 2016, 534, 478–492. [Google Scholar] [CrossRef]
- Manfreda, S.; Samela, C.; Gioia, A.; Consoli, G.G.; Iacobellis, V.; Giuzio, L.; Cantisani, A.; Sole, A. Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Nat. Hazards 2015, 79, 735–754. [Google Scholar] [CrossRef]
- Leandro, J.; Chen, A.S.; Djordjević, S.; Savić, D.A. Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation. J. Hydraul. Eng. 2009, 135, 495–504. [Google Scholar] [CrossRef]
- Horritt, M.S.; Batesi, P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Alho, P.; Aaltonen, J. Comparing a 1D hydraulic model with a 2D hydraulic model for the simulation of extreme glacial outburst floods. Hydrol. Process. 2008, 22, 1537–1547. [Google Scholar] [CrossRef]
- Kadir, M.A.A. 2D Flood inundation simulation based on a large scale physical model using course numerical grid method. Int. J. Geomate 2019, 17, 230–236. [Google Scholar] [CrossRef]
- Froehlich, D.C. Embankment Dam Breach Parameters and Their Uncertainties. J. Hydraul. Eng. 2008, 134, 1708–1721. [Google Scholar] [CrossRef]
- FEMA (Federal Emergency Management Agency, U.S.). Guidance for Flood Risk Analysis and Mapping. Flood Depth and Analysis Grids. Guidance Document; 14 February 2018. Available online: https://www.fema.gov/ (accessed on 6 June 2020).
- AIDR (Australian Institute for Disaster Resilience). Australian Disaster Resilience Handbook 7 Managing the Floodplain: A Guide to Best Practice in Flood Risk Management in Australia (AIDR 2017). Available online: http://www.dpmc.gov.au/government/its-honour (accessed on 6 June 2020).
- Romanescu, G.; Cimpianu, C.I.; Mihu-Pintilie, A.; Stoleriu, C.C. Historic flood events in NE Romania (post-1990). J. Maps 2017, 13, 787–798. [Google Scholar] [CrossRef]
- Romanescu, G.; Stoleriu, C.C. Exceptional floods in the Prut basin, Romania, in the context of heavy rains in the summer of 2010. Nat. Hazards Earth Syst. Sci. 2017, 17, 381–396. [Google Scholar] [CrossRef] [Green Version]
- Romanescu, G.; Stoleriu, C. An inter-basin backwater overflow (the Buhai Brook and the Ezer reservoir on the Jijia River, Romania). Hydrol. Process. 2013, 28, 3118–3131. [Google Scholar] [CrossRef]
- NARW (National Administration “Romanian Waters”)—Hazard and risk flood maps. Available online: http://gis2.rowater.ro:8989/flood/ (accessed on 6 June 2020).
- SMIS-CSNR 17945 (Water Administration Prut—Bîrlad, Romania) Works for reducing the flood risk in Prut—Bîrlad Basin. Available online: http://www.romair.ro (accessed on 6 June 2020).
- Teo, T.-A.; Yeh, W.-Y. The Benefit of the Geospatial-Related Waveforms Analysis to Extract Weak Laser Pulses. Remote Sens. 2018, 10, 1141. [Google Scholar] [CrossRef] [Green Version]
- Arief, H.A.; Strand, G.-H.; Tveite, H.; Indahl, U. Land Cover Segmentation of Airborne LiDAR Data Using Stochastic Atrous Network. Remote Sens. 2018, 10, 973. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Liu, H.; Wu, J.; Hu, Y.; Zhang, L. Automated derivation of urban building density information using airborne LiDAR data and object-based method. Landsc. Urban Plan. 2010, 98, 210–219. [Google Scholar] [CrossRef]
- Mihu-Pintilie, A.; Asăndulesei, A.; Nicu, I.C.; Stoleriu, C.C.; Romanescu, G. Using GPR for assessing the volume of sediments from the largest natural dam lake of the Eastern Carpathians: Cuejdel Lake, Romania. Environ. Earth Sci. 2016, 75, 710. [Google Scholar] [CrossRef]
- Diaconu, D.C.; Bretcan, P.; Peptenatu, D.; Tanislav, D.; Mailat, E. The importance of the number of points, transect location and interpolation techniques in the analysis of bathymetric measurements. J. Hydrol. 2019, 570, 774–785. [Google Scholar] [CrossRef]
- Jonoski, A.; Popescu, I.; Zhe, S.; Mu, Y.; He, Y. Analysis of Flood Storage Area Operations in Huai River Using 1D and 2D River Simulation Models Coupled with Global Optimization Algorithms. Geosci. 2019, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Ghostine, R.; Hoteit, I.; Vazquez, J.; Terfous, A.; Ghenaim, A.; Mose, R. Comparison between a coupled 1D-2D model and a fully 2D model for supercritical flow simulation in crossroads. J. Hydraul. Res. 2014, 53, 274–281. [Google Scholar] [CrossRef]
- Hu, L.; Yang, X.; Li, Q.; Li, S. Numerical Simulation and Risk Assessment of Cascade Reservoir Dam-Break. Water 2020, 12, 1730. [Google Scholar] [CrossRef]
- Prestininzi, P.; Di Baldassarre, G.; Schumann, G.; Bates, P. Selecting the appropriate hydraulic model structure using low-resolution satellite imagery. Adv. Water Resour. 2011, 34, 38–46. [Google Scholar] [CrossRef]
- Patel, D.P.; Ramirez, J.A.; Srivastava, P.K.; Bray, M.; Han, D. Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: A case application of the new HEC-RAS 5. Nat. Hazards 2017, 89, 93–130. [Google Scholar] [CrossRef]
- Quirogaa, V.M.; Kurea, S.; Udoa, K.; Manoa, A. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua 2016, 3, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Peng, J.; Jiang, C.; Guo, W. A Preliminary Study of the Failure Modes and Process of Landslide Dams Due to Upstream Flow. Water 2019, 11, 1115. [Google Scholar] [CrossRef] [Green Version]
- Dirkx, W.-J.; Van Beek, R.; Bierkens, M. The Influence of Grain Size Distribution on the Hydraulic Gradient for Initiating Backward Erosion. Water 2020, 12, 2644. [Google Scholar] [CrossRef]
- Říha, J.; Kotaška, S.; Petrula, L. Dam Break Modeling in a Cascade of Small Earthen Dams: Case Study of the Čižina River in the Czech Republic. Water 2020, 12, 2309. [Google Scholar] [CrossRef]
- Wahl, T.L. Uncertainty of Predictions of Embankment Dam Breach Parameters. J. Hydraul. Eng. 2004, 130, 389–397. [Google Scholar] [CrossRef]
- Von Thun, J.L.; Gillette, D.R. Guidance on Breach Parameters; Unpublished internal document; U.S. Bureau of Reclamation: Denver, CO, Canada, 1990.
- Wu, Y.; Tian, L.; Rubinato, M.; Gu, S.; Yu, T.; Xu, Z.; Cao, P.; Wang, X.; Zhao, Q. A New Parallel Framework of SPH-SWE for Dam Break Simulation Based on OpenMP. Water 2020, 12, 1395. [Google Scholar] [CrossRef]
- Albano, R.; Mancusi, L.; Adamowski, J.; Cantisani, A.; Sole, A. A GIS Tool for Mapping Dam-Break Flood Hazards in Italy. ISPRS Int. J. Geo Inf. 2019, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Boosari, S.S.H. Predicting the Dynamic Parameters of Multiphase Flow in CFD (Dam-Break Simulation) Using Artificial Intelligence-(Cascading Deployment). Fluids 2019, 4, 44. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Zhang, J.; Li, T. Dam-Break Flows: Comparison between Flow-3D, MIKE 3 FM, and Analytical Solutions with Experimental Data. Appl. Sci. 2018, 8, 2456. [Google Scholar] [CrossRef] [Green Version]
- Yerramilli, S. Potential Impact of Climate Changes on the Inundation Risk Levels in a Dam Break Scenario. ISPRS Int. J. Geo Inf. 2013, 2, 110–134. [Google Scholar] [CrossRef]
- Garcia, M.; Juan, A.; Bedient, P.B. Integrating Reservoir Operations and Flood Modeling with HEC-RAS 2D. Water 2020, 12, 2259. [Google Scholar] [CrossRef]
- Menéndez-Pidal, I.; Martín, J.A.H.; Alonso-Muñoyerro, J.M.; Sanz, E. Real-Time Data and Flood Forecasting in Tagus Basin. A Case Study: Rosarito and El Burguillo Reservoirs from 8–12 March 2018. Water 2020, 12, 1004. [Google Scholar] [CrossRef] [Green Version]
- Arseni, M.; Rosu, A.; Calmuc, M.; Calmuc, V.; Iticescu, C.; Georgescu, L.P. Development of Flood Risk and Hazard Maps for the Lower Course of the Siret River, Romania. Sustainability 2020, 12, 6588. [Google Scholar] [CrossRef]
- Ballesteros, J.; Bodoque, J.; Díez-Herrero, A.; Sánchez-Silva, M.; Stoffel, M. Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. J. Hydrol. 2011, 403, 103–115. [Google Scholar] [CrossRef]
- Pappenberger, F.; Beven, K.J.; Horritt, M.; Blazkova, S. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J. Hydrol. 2005, 302, 46–69. [Google Scholar] [CrossRef]
- Attari, M.; Hosseini, S.M. A simple innovative method for calibration of Manning’s roughness coefficient in rivers using a similarity concept. J. Hydrol. 2019, 575, 810–823. [Google Scholar] [CrossRef]
- MLIT (Ministry of Land, Infrastructure and Transport, Japan). Flood Hazard Mapping Manual in Japan. Edited by Flood Control Division, River Bureau; June 2005. Available online: https://www.pwri.go.jp (accessed on 10 March 2020).
- Urzica, A.; Mihu-Pintilie, A.; Hutanu, E.; Stoleriu, C.C. Using HEC-RAS software to analyze 6 parameters regarding the manifestation of flood events. A case study of Baseu river lowland, NE Romania. In Proceedings of the 5th International Scientific Conference Geobalcanica, Sofia, Bulgaria, 13–14 June 2019; Volume 5, pp. 643–650. [Google Scholar] [CrossRef]
Reservoir Dam | Dam Height (m) | Dam Type | Reservoir Volume (Million m3) | 1 (%) of Total Storage Capacity | Class of Importance | Category |
---|---|---|---|---|---|---|
R1 | 14.5 | Earth dam | 16.3 | 100 | III | B |
R2 | 4 | Earth dam | 2.5 | 28.8 | IV | C |
R3 | 4.5 | Earth dam | 3.3 | 63.3 | IV | C |
R4 | 11 | Earth dam | 25 | 41.2 | III | B |
R5 | 5 | Earth dam | 5.95 | 37 | IV | C |
Code | Settlement Name | Settlement Type | Built-Up Area Surface (ha) | Number of Inhabitants | Population Density (Inhabitants/km2) |
---|---|---|---|---|---|
S1 | Havârna | Village | 418 | 2823 | 675 |
S2 | Gârbeni | Village | 64 | 420 | 656 |
S3 | Tătărășeni | Village | 114 | 797 | 699 |
S4 | Balinți | Village | 67 | 396 | 591 |
S5 | Niculcea | Village | 13 | 41 | 315 |
S6 | Negreni | Village | 109 | 909 | 834 |
S7 | Știubieni | Village | 214 | 1727 | 807 |
S8 | Chișcăreni | Village | 61 | 495 | 811 |
S9 | Sat Nou | Village | 28 | 124 | 443 |
S10 | Petricani | Village | 97 | 645 | 665 |
S11 | Săveni | City | 229 | 8145 | 3557 |
S12 | Vlăsinești | Village | 156 | 1596 | 1023 |
S13 | Bozieni | Village | 34 | 255 | 750 |
S14 | Sârbi | Village | 104 | 1064 | 1023 |
S15 | Miron C. | Village | 83 | 472 | 569 |
S16 | Slobozia | Village | 18 | 86 | 478 |
S17 | Hănești | Village | 128 | 1127 | 880 |
S18 | Moara J. | Village | 22 | 89 | 405 |
S19 | Mihălășeni | Village | 107 | 743 | 694 |
S20 | Negrești | Village | 32 | 300 | 938 |
S21 | Păun | Village | 41 | 289 | 705 |
S22 | Năstase | Village | 31 | 183 | 590 |
S23 | Stânca | Village | 105 | 812 | 773 |
S24 | Ștefănești | City | 242 | 6630 | 2740 |
S25 | Bădiuți | Village | 108 | 985 | 912 |
S26 | Bobulești | Village | 206 | 1322 | 642 |
S27 | Românești | Village | 183 | 1394 | 762 |
Recurrence Interval | 1Qmax (m3/s) | Volume of Water Contained (Million m3) |
---|---|---|
1% (100-year) | 185 | 10.19 |
0.5% (500-year) | 225 | 12.39 |
0.1% (1000-year) | 315 | 17.35 |
Flood Hazard | D × V (m2/s) | Hazard Description |
---|---|---|
H1 | ≤0.3 | Generally sage vehicles, people, and buildings |
H2 | ≤0.6 | Unsafe for small vehicles |
H3 | ≤1.2 | Unsafe for vehicles, children, and the elderly |
H4 | ≤2 | Unsafe for vehicles and people |
H5 | ≤4 | Unsafe for vehicles and people. All the building types vulnerable to structural damage. Some less robust building types vulnerable to failure. |
H6 | >4 | Unsafe for vehicles and people. All building types considered vulnerable to failure. |
Settlement Code | Built-Up Area (ha) | Number of Inhabitants | 1% (100-year) | 0.5% (500-year) | 0.1% (1000-year) | |||
---|---|---|---|---|---|---|---|---|
1 ha | 2 inhab. | 1 ha | 2 inhab. | 1 ha | 2 inhab. | |||
(S1) Havârna | 418 | 2823 | 10.44 | 25–50 | 11.20 | 50–75 | 25.78 | 150–200 |
(S2) Gârbeni | 64 | 420 | 2.67 | 5–25 | 3.33 | 25–50 | 15.4 | 150–200 |
(S3) Tătărășeni | 114 | 797 | 0.44 | <5 | 0.54 | 5–25 | 5.6 | 25–50 |
(S4) Balinți | 67 | 396 | 5.79 | 25–50 | 5.87 | 25–50 | 9.45 | 50–75 |
(S5) Niculcea | 13 | 41 | - | - | - | - | 0.08 | <5 |
(S6) Negreni | 109 | 909 | 0.79 | 5–25 | 0.80 | 5–25 | 1.28 | 5–25 |
(S7) Știubieni | 214 | 1727 | - | - | - | - | 4.72 | 25–50 |
(S8) Chișcăreni | 61 | 495 | - | - | - | - | 1.75 | 5–25 |
(S9) Sat Nou | 28 | 124 | - | - | - | - | 1.18 | 5–25 |
(S10) Petricani | 97 | 645 | - | - | - | - | 3 | 5–25 |
(S11) Săveni | 229 | 8145 | - | - | - | - | 0.41 | 5–25 |
(S12) Vlăsinești | 156 | 1596 | - | - | - | - | 0.84 | 5–25 |
(S13) Bozieni | 34 | 255 | - | - | - | - | 2.1 | 5–25 |
(S14) Sârbi | 104 | 1064 | - | - | - | - | 0.7 | 5–25 |
(S15) Miron C. | 83 | 472 | - | - | - | - | 1.63 | 5–25 |
(S16) Slobozia | 18 | 86 | - | - | - | - | - | - |
(S17) Hănești | 128 | 1127 | - | - | - | - | 1.4 | 5–25 |
(S18) Moara J. | 22 | 89 | - | - | - | - | 0.01 | <5 |
(S19) Mihălășeni | 107 | 743 | - | - | - | - | - | - |
(S20) Negrești | 32 | 300 | - | - | - | - | - | - |
(S21) Păun | 41 | 289 | - | - | - | - | 0.76 | 5–25 |
(S22) Năstase | 31 | 183 | - | - | - | - | 0.01 | <5 |
(S23) Stânca | 105 | 812 | - | - | - | - | 0.71 | 5–25 |
(S24) Ștefănești | 242 | 6630 | - | - | - | - | 4.1 | 75–100 |
(S25) Bădiuți | 108 | 985 | - | - | - | - | 1.43 | 5–25 |
(S26) Bobulești | 206 | 1322 | - | - | - | - | 1.92 | 5–25 |
(S27) Românești | 183 | 1394 | - | - | - | - | - | - |
Land-Use Category | Recurrence Interval | ||
---|---|---|---|
1% (100-year) | 0.5% (500-year) | 0.1% (1000-year) | |
Houses (no.) | 25 | 28 | 179 |
Attachments buildings (no.) | 28 | 32 | 192 |
Industrial buildings (no.) | - | - | 2 |
Buildings (ha) | 0.45 | 0.53 | 3.45 |
Streams (ha) | 0.01 | 0.01 | 0.08 |
Lakes and reservoirs (ha) | 0.06 | 0.06 | 0.12 |
Yards (ha) | 1.588 | 1.84 | 10.55 |
Exploitation roads (ha) | - | - | 0.02 |
Local road (ha) | 0.27 | 0.32 | 2.28 |
County road (ha) | 0.01 | 0.01 | 0.04 |
National Road (ha) | - | - | 0.001 |
Orchard (ha) | 0.01 | 0.01 | 0.26 |
Grassland (ha) | 1.9 | 2.29 | 12.31 |
Forest vegetation (ha) | 1.78 | 1.9 | 7.85 |
Secondary streets (ha) | - | - | 0.01 |
Arable land (ha) | 12.8 | 13.6 | 44.64 |
Unproductive land (ha) | - | - | 0.2 |
Degraded land (ha) | 0.09 | 0.09 | 0.17 |
Shrubbery (ha) | 0.27 | 0.27 | 0.36 |
Vineyard (ha) | 0.01 | 0.01 | 0.05 |
Wetlands (ha) | 0.75 | 0.78 | 1.82 |
Flood Depth (m) | Recurrence Interval | |||||
---|---|---|---|---|---|---|
1% (100-year) | 0.5% (500-year) | 0.1% (1000-year) | ||||
1 build | 2 rel.freq. | 1 build | 2 rel.freq. | 1 build | 2 rel.freq. | |
<1 | 40 | 75.5 | 43 | 71.7 | 175 | 46.9 |
1–2 | 13 | 24.5 | 15 | 25.0 | 85 | 22.8 |
2–3 | - | - | 2 | 3.3 | 56 | 15.0 |
3–4 | - | - | - | - | 35 | 9.4 |
4–5 | - | - | - | - | 10 | 2.7 |
>5 | - | - | - | - | 12 | 3.2 |
Flood Velocity (m/s) | Recurrence Interval | |||||
---|---|---|---|---|---|---|
1% (100-year) | 0.5% (500-year) | 0.1% (1000-year) | ||||
1 build | 2 rel.freq. | 1 build | 2 rel.freq. | 1 build | 2 rel.freq. | |
<1 | 47 | 88.7 | 52 | 86.7 | 257 | 68.9 |
1–2 | 6 | 11.3 | 8 | 13.3 | 105 | 28.2 |
2–3 | - | - | 11 | 2.9 | ||
3–4 | - | - | - | - | - | - |
4–5 | - | - | - | - | - | - |
>5 | - | - | - | - | - | - |
Flood Hazard Classes | D × V (m2/s) | Recurrence Interval | |||||
---|---|---|---|---|---|---|---|
1% (100-year) | 0.5% (500-year) | 0.1% (1000-year) | |||||
1 build | 2 rel.freq. | 1 build | 2 rel.freq. | 1 build | 2 rel.freq. | ||
H1 | ≤ 0.3 | 15 | 28.3 | 31 | 51.7 | 125 | 33.5 |
H2 | ≤ 0.6 | 11 | 20.8 | 11 | 18.3 | 56 | 15.0 |
H3 | ≤ 1.2 | 14 | 26.4 | 8 | 13.3 | 55 | 14.7 |
H4 | ≤ 2 | 5 | 9.4 | 4 | 6.7 | 48 | 12.9 |
H5 | ≤ 4 | 8 | 15.1 | 6 | 10.0 | 67 | 18.0 |
H6 | > 4 | - | - | - | - | 22 | 5.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urzică, A.; Mihu-Pintilie, A.; Stoleriu, C.C.; Cîmpianu, C.I.; Huţanu, E.; Pricop, C.I.; Grozavu, A. Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania). Water 2021, 13, 57. https://doi.org/10.3390/w13010057
Urzică A, Mihu-Pintilie A, Stoleriu CC, Cîmpianu CI, Huţanu E, Pricop CI, Grozavu A. Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania). Water. 2021; 13(1):57. https://doi.org/10.3390/w13010057
Chicago/Turabian StyleUrzică, Andrei, Alin Mihu-Pintilie, Cristian Constantin Stoleriu, Cătălin Ioan Cîmpianu, Elena Huţanu, Claudiu Ionuţ Pricop, and Adrian Grozavu. 2021. "Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania)" Water 13, no. 1: 57. https://doi.org/10.3390/w13010057
APA StyleUrzică, A., Mihu-Pintilie, A., Stoleriu, C. C., Cîmpianu, C. I., Huţanu, E., Pricop, C. I., & Grozavu, A. (2021). Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania). Water, 13(1), 57. https://doi.org/10.3390/w13010057