Identification of Nitrate Sources in Rivers in a Complex Catchment Using a Dual Isotopic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Measurement
2.3. NO3−-N Source Identification and Contribution Estimation
2.4. Statistical Analysis
3. Results
3.1. Spatiotemporal Variations in Nitrogen Concentration
3.2. Spatiotemporal Variations in δ15N-NO3 and δ18O-NO3
3.3. Nitrate Sources and Contributions in Rivers
3.4. Contribution of Tributaries to the Mainstem River NO3−-N
4. Discussion
4.1. Spatiotemporal Variation in Nitrogen
4.2. Nitrate Transformation and Source Identification
4.3. Mitigating Nitrogen Pollution in Rivers
4.4. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Micheli, F. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 1999, 285, 1396–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paerl, H.W.; Gardner, W.S.; Havens, K.E.; Joyner, A.R.; Mccarthy, M.J.; Newell, S.E.; Qin, B.; Scott, J.T. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 2016, 54, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonlanthen, P.; Bittner, D.; Hudson, A.G.; Young, K.A.; Muller, R.; Lundsgaard-Hansen, B.; Roy, D.; Piazza, S.D.; Largiader, C.R.; Seehausen, O. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 2012, 482, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.; Dentener, F.; Capone, D.; Boyer, E.; Howarth, R.; Seitzinger, S. Nitrogen cycles: Past, present and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C.N. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 2008, 452, 202–205. [Google Scholar] [CrossRef]
- Seitzinger, S.P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 1988, 33, 702–724. [Google Scholar] [CrossRef]
- Walter, K.D.; Wes, W.B.; Jeffrey, L.E.; Tyler, J.P.; Kristen, L.P.; Alyssa, J.R.; Joshua, T.S.D.J. Thornbrugh. Eutrophication of U.S. freshwaters: Analysis of potential economic damages. Environ. Sci. Technol. 2009, 43, 12–19. [Google Scholar]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing Anthropogenic Inputs of Nitrogen to Ecosystems; Blackwell: Oxford, UK, 2008. [Google Scholar]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Sustaining China’s water resources. Science 2013, 339, 141. [Google Scholar] [CrossRef]
- Yang, H.; Xie, P.; Ni, L.; Flower, R.J. Pollution in the Yangtze. Science 2012, 337, 410. [Google Scholar] [CrossRef]
- Cho, K.H.; Pachepsky, Y.A.; Oliver, D.M.; Muirhead, R.W.; Park, Y.; Quilliam, R.S.; Shelton, D.R. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities. Water Res. 2016, 100, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Perakis, S.S.; Hedin, L.O. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 2002, 415, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Shen, X.; Li, L.; Huang, X.; Zhou, Y. Spatio-temporal variations of health costs caused by chemical fertilizer utilization in China from 1990 to 2012. Sustainability 2017, 9, 1505. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Yan, C.; Wang, Z.; Xu, F.; Yang, F. Quantitative identification of nitrate sources in a coastal peri-urban watershed using hydrogeochemical indicators and dual isotopes together with the statistical approaches. Chemosphere 2020, 243, 125364. [Google Scholar] [CrossRef]
- Ji, X.; Xie, R.; Hao, Y.; Lu, J. Quantitative identification of nitrate pollution sources and uncertainty analysis based on dual isotope approach in an agricultural watershed. Environ. Pollut. 2017, 229, 586–594. [Google Scholar] [CrossRef]
- Yi, Q.; Zhang, Y.; Xie, K.; Chen, Q.; Zheng, F.; Tonina, D.; Shi, W.; Chen, C. Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes. J. Hydrol. 2020, 581. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, P.; Song, J.; Li, Q. Application of nitrogen and oxygen Isotopes for source and fate identification of nitrate pollution in surface water: A review. Appl. Sci. 2018, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Liu, Y.; Zhang, Y.; Dahlgren, R.A.; Chen, D. Coupling stable isotopes and water chemistry to assess the role of hydrological and biogeochemical processes on riverine nitrogen sources. Water Res 2019, 150, 418–430. [Google Scholar] [CrossRef] [Green Version]
- Xue, D.; De Baets, B.; Van Cleemput, O.; Hennessy, C.; Berglund, M.; Boeckx, P. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. Environ. Pollut. 2012, 161, 43–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, P.; Li, F.; Wei, A. Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. Chemosphere 2018, 208, 493–501. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Z.; Yan, T.; Yang, Y. Source identification and impact of landscape pattern on riverine nitrogen pollution in a typical urbanized watershed, Beijing, China. Sci. Total Environ. 2018, 628, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Fukada, T.; Hiscock, K.M.; Dennis, P.F. A dual-isotope approach to the nitrogen hydrochemistry of an urban aquifer. Appl. Geochem. 2004, 19, 709–719. [Google Scholar] [CrossRef]
- Fukada, T.; Hiscock, K.M.; Dennis, P.F.; Grischek, T. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res. 2003, 37, 3070–3078. [Google Scholar] [CrossRef]
- Fabre, C.; Sauvage, S.; Guilhen, J.; Cakir, R.; Gerino, M.; Sánchez-Pérez, J.M. Daily denitrification rates in floodplains under contrasting pedo-climatic and anthropogenic contexts: Modelling at the watershed scale. Biogeochemistry 2020, 149, 317–336. [Google Scholar] [CrossRef]
- Yi, Q.; Chen, Q.; Hu, L.; Shi, W. Tracking nitrogen sources, transformation, and transport at a basin scale with complex plain river networks. Environ. Sci. Technol. 2017, 51, 5396–5403. [Google Scholar] [CrossRef]
- Ding, J.; Xi, B.; Gao, R.; He, L.; Liu, H.; Dai, X.; Yu, Y. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach. Sci. Total Environ. 2014, 484, 10–18. [Google Scholar] [CrossRef]
- Guo, J.; Zuo, P.; Yang, L.; Pan, Y.; Wang, L. Quantitative identification of non-point sources of nitrate in urban channels based on dense in-situ samplings and nitrate isotope composition. Chemosphere 2020, 263, 128219. [Google Scholar] [CrossRef]
- Li, C.; Li, S.; Yue, F.; Liu, J.; Zhong, J.; Yan, Z.; Zhang, R.; Wang, Z.; Sen, X. Identification of sources and transformations of nitrate in the Xijiang River using nitrate isotopes and Bayesian model. Sci. Total Environ. 2019, 646, 801–810. [Google Scholar] [CrossRef]
- Luu, T.N.M.; Garnier, J.; Billen, G.; Thi, P.Q.L.; Nemery, J.; Orange, D.; Lan, A.L. N, P, Si budgets for the Red River Delta (northern Vietnam): How the delta affects river nutrient delivery to the sea. Biogeochemistry 2012, 107, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Xu, Y.P.; Wu, Z.F.; Deng, X.J.; Wang, Q. The relative impact of urbanization and precipitation on long-term water level variations in the Yangtze River Delta. Sci. Total Environ. 2019, 648, 460–471. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Yang, H.; Chuai, X.; Wu, C. Convergence of carbon intensity in the Yangtze River Delta, China. Habitat Int. 2017, 60, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Casciotti, K.L.; Sigman, D.M.; Hastings, M.G.; Bohike, J.K.; Hilkert, A. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 2002, 74, 4905–4912. [Google Scholar] [CrossRef] [PubMed]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L.; Rands, S. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zheng, B.; Jia, H.; Chen, Z. Determination sources of nitrates into the Three Gorges Reservoir using nitrogen and oxygen isotopes. Sci. Total Environ. 2019, 687, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.Y.; Toor, G.S. Delta(15)N and delta(18)O reveal the sources of nitrate-nitrogen in urban residential stormwater runoff. Environ. Sci. Technol. 2016, 50, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhao, C.; Wang, Q.; Xu, Y.; Guo, J.; Wang, L. Research on the characteristics and simulation of nitrogen and phosphorus in complex watersheds—a case study of Yuntaishan River Basin in Nanjing City. J. Agro Environ. Sci. 2020. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Yang, H.; Li, N.; Gong, C. Spatiotemporal analysis of water quality using multivariate statistical techniques and the water quality identification index for the Qinhuai River Basin, East China. Water 2020, 12, 2764. [Google Scholar] [CrossRef]
- Guo, J.; Wang, L.; Yang, L.; Deng, J.; Zhao, G.; Guo, X. Spatial-temporal characteristics of nitrogen degradation in typical rivers of Taihu Lake Basin, China. Sci. Total Environ. 2020, 713, 136456. [Google Scholar] [CrossRef]
- Thu, H.L.T.; Joachim, F.; Günter, M. Kinetics and simulation of nitrification at various pH values of a polluted river in the tropics. Ecohydrol. Hydrobiol. 2019, 12, 54–65. [Google Scholar]
- Xia, X.; Liu, T.; Yang, Z.; Michalski, G.; Liu, S. Enhanced nitrogen loss from rivers through coupled nitrification-denitrification caused by suspended sediment. Sci. Total Environ. 2017, 579, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Vrebos, D.; Beauchard, O.; Meire, P. The impact of land use and spatial mediated processes on the water quality in a river system. Sci. Total Environ. 2017, 601–602, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Li, P.; Lu, K.; Tantai, Z.; Zhang, J.; Ren, Z.; Wang, X.; Yu, K.; Shi, P.; Cheng, Y. Seasonal changes in water quality and its main influencing factors in the Dan River basin. Catena 2019, 173, 131–140. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, T.; Ma, W.; Li, Y.; Zeng, K. Impacts of water quality variation and rainfall runoff on Jinpen Reservoir, in Northwest China. Water Sci. Eng. 2015, 8, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.; Li, P.; Yan, X. Runoff concentration and load of nitrogen and phosphorus from a residential area in an intensive agricultural watershed. Sci. Total Environ. 2013, 458–460, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Lefrancq, M.; Jadas-Hecart, A.; La Jeunesse, I.; Landry, D.; Payraudeau, S. High frequency monitoring of pesticides in runoff water to improve understanding of their transport and environmental impacts. Sci. Total Environ. 2017, 587–588, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.R.; Weeser, B.; Guzha, A.C.; Rufino, M.C.; Butterbach-Bahl, K.; Windhorst, D.; Breuer, L. Using high-resolution Data to assess land use impact on nitrate dynamics in East African Tropical Montane Catchments. Water Resour. Res. 2018, 54, 1812–1830. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.R.; Breuer, L.; Butterbach-Bahl, K.; Pelster, D.E.; Rufino, M.C. Land use affects total dissolved nitrogen and nitrate concentrations in tropical montane streams in Kenya. Sci. Total Environ. 2017, 603–604, 519–532. [Google Scholar] [CrossRef]
- Mainali, J.; Chang, H. Landscape and anthropogenic factors affecting spatial patterns of water quality trends in a large river basin, South Korea. J. Hydrol. 2018, 564, 26–40. [Google Scholar] [CrossRef]
- Yang, H.; Ma, M.; Thompson, J.R.; Flower, R.J. Waste management, informal recycling, environmental pollution and public health. J. Epidemiol. Community Health 2018, 72, 237–243. [Google Scholar] [CrossRef]
- Mueller, C.; Zink, M.; Samaniego, L.; Krieg, R.; Merz, R.; Rode, M.; Knoller, K. Discharge driven nitrogen dynamics in a Mesoscale River Basin as constrained by stable isotope patterns. Environ. Sci. Technol. 2016, 50, 9187–9196. [Google Scholar] [CrossRef]
- Kellman, L.M. A study of tile drain nitrate-delta N-15 values as a tool for assessing nitrate sources in an agricultural region. Nutr. Cycl. Agroecosyst. 2005, 71, 131–137. [Google Scholar] [CrossRef]
- Kendall, C. Tracing nitrogen sources and cycling in catchments. In Isotope Tracers in Catchment Hydrology; Kendall, C., McDonnell, J.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 519–576. [Google Scholar]
- Bottcher, J.; Strebel, O.; Voerkelius, S.; Schmidt, H.L. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. J. Hydrol. 1990, 114, 413–424. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zhang, Y.; Zhao, D.; Huang, X.; Li, H. Rural domestic waste management in Zhejiang Province, China: Characteristics, current practices, and an improved strategy. J. Air Waste Manag. Assoc. 2015, 65, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Cheng, H.; Pu, X.; Liu, X.; Cheng, Q. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities. Environ. Sci. Process Impacts 2015, 17, 131–144. [Google Scholar] [CrossRef]
- Divers, M.T.; Elliott, E.M.; Bain, D.J. Quantification of nitrate sources to an urban stream using dual nitrate isotopes. Environ. Sci. Technol. 2014, 48, 10580–10587. [Google Scholar] [CrossRef]
- Yang, H.; Huang, X.; Thompson, J.R.; Flower, R.J. Enforcement key to China’s environment. Science 2015, 347, 834–835. [Google Scholar] [CrossRef]
- Yang, H.; Wright, J.A.; Gundry, S.W. Water accessibility: Boost water safety in rural China. Nature 2012, 484, 318. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Industry: Rural factories won’t fix Chinese pollution. Nature 2012, 490, 342–343. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Pollution: China’s new leaders offer green hope. Nature 2013, 493, 163. [Google Scholar] [CrossRef] [Green Version]
- Yang, H. China must continue the momentum of green law. Nature 2014, 509, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H. China’s soil plan needs strong support. Nature 2016, 536, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.C.; Zhang, X.Q.; Li, Y.; Yang, H.; Tanaka, K. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. J. Clean. Prod. 2019, 222, 373–380. [Google Scholar] [CrossRef]
- Hu, M.C.; Zhang, X.Q.; Siu, Y.L.; Li, Y.; Tanaka, K.; Yang, H.; Xu, Y.P. Flood mitigation by permeable pavements in Chinese sponge city construction. Water 2018, 10, 172. [Google Scholar] [CrossRef] [Green Version]
- Husic, A.; Fox, J.; Adams, E.; Pollock, E.; Ford, W.; Agouridis, C.; Backus, J. Quantification of nitrate fate in a karst conduit using stable isotopes and numerical modeling. Water Res. 2020, 170, 115348. [Google Scholar] [CrossRef]
Land Use Types | Sub-Catchments | |||
---|---|---|---|---|
Shengli River | Yunba River | Mainstem | Yangshan River | |
Urban land | 20.6% | 7.3% | 22.4% | 42.8% |
Rivers/Ponds | 2.4% | 2.9% | 2.6% | 2.3% |
Agricultural land | 42.4% | 39.0% | 37.8% | 27.4% |
Forest land | 14.2% | 33.0% | 17.1% | 11.4% |
Rural residence/unused land | 20.5% | 17.9% | 20.1% | 16.2% |
Total area (km2) | 64.6 | 38.4 | 49.5 | 30.8 |
Months | Monthly Rainfall (mm) | Water Temperature (℃) | Discharge (m3/s) | ||
---|---|---|---|---|---|
M3 | M6 | T7 | |||
Mar | 49.5 | 15.8 | 2.52 | Na | Na |
Apr | 20 | 20.0 | 2.48 | Na | 0.52 |
May | 35 | 25.2 | 0.42 | 1.63 | 0.11 |
Jun | 92.5 | 26.2 | 1.75 | 2.87 | 0.13 |
Jul | 191.5 | 26.0 | 0.61 | 0.61 | 0.17 |
Aug | 76.5 | 29.2 | 1.17 | 2.52 | 0.10 |
Sep | 52.5 | 25.5 | 2.05 | 2.10 | 0.74 |
Oct | 7 | 20.6 | 0.72 | 1.72 | Na |
Nov | 12.5 | 15.9 | 0.24 | 0.40 | 0.52 |
Dec | 58 | 11.0 | 0.42 | 0.40 | 0.16 |
Jan | 32.5 | 9.7 | 0.92 | 1.53 | 0.24 |
Sources | δ15N-NO3 (‰) | δ18O-NO3 (‰) | References |
---|---|---|---|
Manure and sewage | 16.3 (5.7) | 7.0 (2.7) | [21] |
NH4+ in fertilizer | −0.2 (2.3) | −2.0 (8.0) | [36] |
Atmospheric NO3− | 0.79 (2.5) | 80.01 (1.6) | This study |
Nitrogen in soil organic matter | 4.7 (0.3) | −2.0 (8.0) | [27] |
Catchments | Rivers | Area (km2) | Annual Runoff (×104 m3) | Loads (t) |
---|---|---|---|---|
Yunba River | Tributary T1 | 38.4 | 1190.8 | 31.4 |
Shengli River | Tributary T2 | 64.6 | 526.2 | 5.68 |
Yangshan River | Tributary T7 | 30.8 | 853.7 | 23.8 |
Yuntaishan Basin | Basin outlet M8 | 183.2 | 3483.6 | 108.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Yuan, Q.; Zhao, C.; Wang, L.; Li, Y.; Ma, X.; Guo, J.; Yang, H. Identification of Nitrate Sources in Rivers in a Complex Catchment Using a Dual Isotopic Approach. Water 2021, 13, 83. https://doi.org/10.3390/w13010083
Xu Y, Yuan Q, Zhao C, Wang L, Li Y, Ma X, Guo J, Yang H. Identification of Nitrate Sources in Rivers in a Complex Catchment Using a Dual Isotopic Approach. Water. 2021; 13(1):83. https://doi.org/10.3390/w13010083
Chicago/Turabian StyleXu, Yunyun, Qiqi Yuan, Chunfa Zhao, Lachun Wang, Yuhua Li, Xiaoxue Ma, Jiaxun Guo, and Hong Yang. 2021. "Identification of Nitrate Sources in Rivers in a Complex Catchment Using a Dual Isotopic Approach" Water 13, no. 1: 83. https://doi.org/10.3390/w13010083
APA StyleXu, Y., Yuan, Q., Zhao, C., Wang, L., Li, Y., Ma, X., Guo, J., & Yang, H. (2021). Identification of Nitrate Sources in Rivers in a Complex Catchment Using a Dual Isotopic Approach. Water, 13(1), 83. https://doi.org/10.3390/w13010083