Streamflow Changes in the Headwater Area of Yellow River, NE Qinghai-Tibet Plateau during 1955–2040 and Their Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Methods
3. Results
3.1. Reconstruction of Yellow River Streamflow Records
3.2. Projection of Future Streamflow in the HAYR
3.3. Uncertainty Analysis
4. Discussion
5. Conclusions
- (1)
- Construction and operation of the FHSH have substantially resulted in the inter- and intra-annual variability of streamflow in the HAYR. Construction of the dam has caused a 53.5–68.4% reduction of annual streamflow (1998–2000) and a 71.8–94.4% reduction of annual streamflow in dry years (2003–2005) in the HAYR, and, due to the release of the previously accumulated water, the recent implementation of partial dam removal (September 2018) has boosted annual streamflow by 123–210%. Annual streamflow in the HAYR as measured at the Huanghe’yan Hydrological Station demonstrates a slight decreasing trend before correction, but a sharp upward trend after correction. Change trends of streamflow in spring, summer, autumn and winter are −0.04, −0.18, −0.03 and +0.07 m3·s−1·yr−1, respectively, before flow data correction and they are +0.16, +0.12, +0.16 and +0.08 m3·s−1·yr−1, respectively, after correction.
- (2)
- Presence of the FHSH largely has disturbed the signals of flow changes resulting from degrading permafrost in the HAYR. Permafrost alters subsurface hydrological processes and in-stream flow patterns. Winter baseflow will be boosted, but the ratio of QMax/QMin will decline in terms of thawing permafrost. Our study has yielded post-correction trends of annual minimum streamflow, winter baseflows and the ratio of QMax/QMin in the HAYR at 0.04 and 0.08 m3·s−1·yr−1 and −0.08 yr−1, respectively. In comparison with the trends of precorrection annual minimum streamflow, winter baseflow and the ratio of QMax/QMin of −0.004 and 0.07 m3·s−1·yr−1 and 0.03 yr−1, respectively, the post-correction streamflow has evidenced an elevated annual minimum streamflow and winter baseflow and a declined ratio of QMax/QMin (flattening hydrograph) induced by permafrost degradation. In the next 20 years, the ratio of QMax/QMin is projected to further decline at a rate of −0.11 yr−1, which will be more rapid than that of −0.08 yr−1 from 1955 to 2019. Permafrost degradation may continue to impact subsurface hydrological processes and flows in the HAYR over the decades to come.
- (3)
- The total streamflow in the HAYR shows a generally increasing trend (0.11 m3·s−1·yr−1) over the past decades (1955–2019) and may have a more prominent increasing trend (0.42 m3·s−1·yr−1) in the future (1955–2040). Together with a changing climate, a warmer-wetter HAYR should be expected, as observed in other QTP catchments. Increasing precipitation and shrinking alpine cryosphere are concerned as the major drivers for upward trends of basin streamflow on the QTP. Boosted change trends of spring flow (0.57 m3·s−1·yr−1) and autumn flow (0.22 m3·s−1·yr−1) may reveal the advancing snow-melt season and postponing freeze-up, and subsequently a potential expansion of growing season. They will naturally benefit ecological restoration and ecological environment. These hydrometeorological and ecological trends in the HAYR may also help enhance ecological safety and water supply in local communities and the downstream Yellow River basins.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, B.; Yang, D.; Kane, D.L. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resour. Res. 2003, 39, 1200. [Google Scholar] [CrossRef]
- Adam, J.C.; Haddeland, I.; Su, F.; Lettenmaier, D.P. Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob’ rivers. J. Geophys. Res. 2007, 112, D24114. [Google Scholar] [CrossRef]
- Stuefer, S.; Yang, D.; Shiklomanov, A. Effect of streamflow regulation on mean annual discharge variability of the Yenisei River. In Cold Regions Hydrology in a Changing Climate; Yang, D., Marsh, P., Gelfan, A., Eds.; IAHS: Melbourne, Australia, 2011. [Google Scholar]
- Chai, Y.; Li, Y.; Yang, Y.; Zhu, B.; Li, S.; Xu, C.; Liu, C. Influence of climate variability and reservoir operation on streamflow in the Yangtze River. Sci. Rep. 2019, 9, 5060. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; He, R.; Cheng, G.; Wu, Q.; Wang, S.; Lü, L.; Chang, X. Changes in frozen ground in the Source Area of the Yellow River on the Qinghai–Tibet Plateau, China, and their eco-environmental impacts. Environ. Res. Lett. 2009, 4, 045206. [Google Scholar] [CrossRef]
- Ge, S.; Yang, D.; Kane, D.L. Yukon River Basin long-term (1977–2006) hydrologic and climatic analysis. Hydrol. Process. 2013, 27, 2475–2484. [Google Scholar] [CrossRef]
- Bring, A.; Shiklomanov, A.; Lammers, R.B. Pan-Arctic river discharge: Prioritizing monitoring of future climate change hot spots. Earth Future 2017, 5, 72–92. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.; Bense, F.V.; Luo, D.; Marchenko, S.; Harris, A.; Lan, Y. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China. Adv. Clim. Chang. Res. 2019, 10, 225–239. [Google Scholar] [CrossRef]
- Jin, H.J.; Jin, X.Y.; He, R.X.; Luo, D.L.; Chang, X.L.; Wang, S.L.; Harris, S.A. Evolution of permafrost in China during the last 20 ka. Sci. China Earth Sci. 2019, 62, 1207–1223. [Google Scholar] [CrossRef]
- Cheng, G.; Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2012, 21, 5–23. [Google Scholar] [CrossRef]
- Bring, A.; Destouni, G. Arctic climate and water change: Model and observation relevance for assessment and adaptation. Surv. Geophys. 2014, 35, 853–877. [Google Scholar] [CrossRef] [Green Version]
- Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Spreen, G.; de Steur, L.; Stewart, K.; Woodgate, R. Arctic freshwater export: Status, mechanisms, and prospects. Glob. Planet. Chang. 2015, 125, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Kurylyk, B.L.; Hayashi, M.; Quinton, W.L.; McKenzie, J.M.; Voss, C.I. Influence of vertical and lateral heat transfer on permafrost thaw, peatland landscape transition, and groundwater flow. Water Resour. Res. 2016, 52, 1286–1305. [Google Scholar] [CrossRef] [Green Version]
- Prowse, T.D.; Wrona, F.J.; Reist, J.D.; Gibson, J.J.; Hobbie, J.E.; Le’vesque, L.M.J.; Vincent, W.F. Climate change effects on hydroecology of Arctic freshwater ecosystems. Ambio 2006, 35, 347–358. [Google Scholar] [CrossRef]
- Ye, B.; Yang, D.; Zhang, Z.; Kane, D.L. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia. J. Geophy. Res. 2009, 114, D07102. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Yang, D.; Zhang, T.; Zhang, Y.; Zhou, Z. 2011 Hydrological process change with air temperature over the Lena Basin in Siberia. In Proceedings of the Cold Regions Hydrology in a Changing Climate, Melbourne, Australia, 25 July 2011. [Google Scholar]
- Ye, B.; Ding, Y.; Jiao, K.; Shen, Y.; Zhang, J. The response of river discharge to climate warming in cold region over China. Quatern. Sci. 2012, 32, 103–110. (In Chinese) [Google Scholar]
- Bense, V.F.; Kooi, H.; Ferguson, G.; Read, T. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J. Geophy. Res. Earth 2012, 117, F03036. [Google Scholar] [CrossRef] [Green Version]
- Thawing Permafrost Reduces River Runoff? Available online: https://www.nature.com/news/thawing-permafrost-reduces-river-runoff-1.9749 (accessed on 6 January 2020).
- Kane, D.L.; Yoshikawa, K.; McNamara, J.P. Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeol. J. 2013, 21, 41–52. [Google Scholar] [CrossRef]
- Han, T.; Pu, H.; Cheng, P.; Jiao, K. Hydrological effects of alpine permafrost in the headwaters of the Urumqi River, Tianshan Mountains. Sci. Cold Arid Reg. 2016, 8, 241–249. [Google Scholar]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost—A review. Vadose Zone J. 2016, 15, 1–20. [Google Scholar] [CrossRef]
- Xu, R.; Hu, H.; Tian, F.; Li, C.; Khan, M.Y.A. Projected climate change impacts on future streamflow of the Yarlung Tsangpo-Brahmaputra River. Glob. Planet. Chang. 2019, 175, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sheng, Y.; Wu, J.; Feng, Z.; Hu, X.; Zhang, X. Landform-related permafrost characteristics in the source area of the Yellow River, eastern Qinghai-Tibet Plateau. Geomorphology 2016, 269, 104–111. [Google Scholar] [CrossRef]
- Wang, S.; Sheng, Y.; Li, J.; Wu, J.; Cao, W.; Ma, S. An estimation of ground ice volumes in permafrost layers in Northeastern Qinghai-Tibet Plateau, China. Chin. Geogr. Sci. 2018, 28, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Ma, S.; Cao, W.; Wu, J. Spatiotemporal changes of permafrost in the Headwater Area of the Yellow River under a changing climate. Land Degrad. Dev. 2020, 31, 133–152. [Google Scholar] [CrossRef]
- Liu, J.; Duan, Y.; Hao, G.; Ge, X.; Sun, H. Evolutionary history and underlying adaptation of alpine plants on the Qinghai-Tibet Plateau. J. Syst. Evol. 2014, 52, 241–249. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Wu, X.; Luo, D.; Sheng, Y.; Li, X.; He, R.; Wang, Q.; Knops, J.M.H. Permafrost degradation leads to decrease in biomass and species richness on the northeastern Qinghai-Tibet Plateau. Plants 2020, 9, 1453. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Niu, T.; De, K. Ecological restoration and its effects on a regional climate: The Source Region of the Yellow River, China. Environ. Sci. Technol. 2015, 49, 5897–5904. [Google Scholar] [CrossRef]
- Jin, X.; Jin, H.; Iwahana, G.; Marchenko, S.; Luo, D.; Li, X.; Liang, S. Impacts of climate-induced permafrost degradation on vegetation: A review. Adv. Clim. Chang. Res. 2020, 12, 29–47. [Google Scholar] [CrossRef]
- Gao, S.; Jin, H.; Bense, V.F.; Wang, X.; Chai, X. Application of electrical resistivity tomography for delineating permafrost hydrogeology in the headwater area of Yellow River on Qinghai-Tibet Plateau, SW China. Hydrogeol. J. 2019, 27, 1725–1737. [Google Scholar] [CrossRef]
- Serban, D.R.; Jin, H.; Serban, M.; Luo, D.; Wang, Q.; Jin, X.; Ma, Q. Mapping thermokarst lakes/ponds across permafrost landscapes in the Headwater Area of Yellow River on NE Qinghai-Tibet Plateau. Int. J. Remote Sens. 2020, 41, 7042–7067. [Google Scholar] [CrossRef]
- Campbell, T.K.F.; Lantz, T.C.; Fraser, R.H.; Hogan, D. High Arctic vegetation change mediated by hydrological conditions. Ecosystems 2020, 23, 106–121. [Google Scholar] [CrossRef]
- Xu, W.; Yang, D.; Li, Y.; Xiao, R. Correlation analysis of Mackenzie River discharge and NDVI relationship. Can. J. Remote Sens. 2016, 42, 292–306. [Google Scholar] [CrossRef]
- Shiklomanov, A.I.; Lammers, R.B.; Lettenmaier, D.P.; Polischuk, Y.M.; Savichev, O.G.; Smith, L.C.; Chernokulsky, A.V. Hydrological changes: Historical analysis, contemporary status, and future projections. In Regional Environmental Changes in Siberia and Their Global Consequences; Groisman, P.Y., Gutman, G., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 111–154. [Google Scholar]
- Zeng, F.; Collatz, G.J.; Pinzon, J.E.; Ivanoff, A. Evaluating and quantifying the climate-driven interannual variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at global scales. Remote Sens. 2013, 5, 3918–3950. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Dong, Z.; Lall, U.; Dong, N.; Yang, M. Monthly streamflow simulation for the headwater catchment of the Yellow River Basin with a hybrid statistical-dynamic model. Water Resour. Res. 2019, 55, 7606–7621. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. Bulletin of River Sediment in China; China Water&Power Press: Beijing, China, 2008–2017. (In Chinese)
- Luo, D.; Jin, H.; Lin, L.; He, R.; Yang, S.; Chang, X. Progress in permafrost temperature and thickness in the source area of the Huanghe River. Sci. Geogr. Sin. 2012, 32, 898–904. (In Chinese) [Google Scholar]
- Luo, D.; Jin, H.; Marchenko, S.; Romanovsky, V. Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Sci. China Earth Sci. 2014, 57, 1834–1845. [Google Scholar] [CrossRef]
- Jin, H.; Luo, D.; Wang, S.; Lü, L.; Wu, J. Spatiotemporal variability of permafrost degradation on the Qinghai-Tibet Plateau. Sci. Cold Arid Reg. 2011, 3, 0281–0305. [Google Scholar]
- Luo, D.; Jin, H.; Jin, X.; He, R.X.; Li, X.; Muskett, R.; Marchenko, S.; Romanovsky, V. Elevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest China. Permafr. Periglac. Process. 2018, 29, 257–270. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Li, Y.; Cheng, H. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai–Tibet Plateau, China. Catena 2007, 70, 506–514. [Google Scholar] [CrossRef]
- Liang, S.; Ge, S.; Wan, L.; Xu, D. Characteristics and causes of vegetation variation in the source regions of the Yellow River, China. Int. J. Remote Sens. 2012, 33, 1529–1542. [Google Scholar] [CrossRef]
- Brierley, G.J.; Li, X.L.; Cullum, C.; Gao, J. Landscape and ecosystem diversity in the Yellow River Source Zone. In Landscape and Ecosystem Diversity, Dynamics and Management in the Yellow River Source Zone; Brierley, G.J., Li, X., Cullum, C., Gao, J., Eds.; Springer Geography: Cham, Switzerland, 2016; pp. 1–34. [Google Scholar]
- Du, Y. Land Cover of Tibet Plateau; National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Zheng, G.; Yang, Y.; Yang, D.; Dafflon, B.; Lei, H.; Yang, H. Satellite-based simulation of soil freezing/thawing processes in the northeast Tibetan Plateau. Remote Sens. Environ. 2019, 231, 11269. [Google Scholar] [CrossRef]
- Luo, D.; Liu, L.; Jin, H.J.; Wang, X.; Chen, F. Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeast Tibetan Plateau. Agr. For. Meteorol. 2020, 281, 10819. [Google Scholar] [CrossRef]
- Yang, D.; Ye, B.; Kane, D.L. Streamflow changes over Siberian Yenisei River Basin. J. Hydrol. 2004, 296, 59–80. [Google Scholar] [CrossRef]
- Hernández-Henríquez, M.A.; Mlynowski, T.J.; Déry, S.J. Reconstructing the natural streamflow of a regulated river: A case study of La Grande Rivière, Québec, Canada. Can. Water Resour. J. 2010, 35, 301–316. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Li, E.; Mu, X.; Wen, Z.; Rayburg, S.; Tian, P. Changing trends and regime shift of streamflow in the Yellow River basin. Stoch. Environ. Res. Risk Assess. 2015, 29, 1331–1343. [Google Scholar] [CrossRef]
- Searcy, J.K.; Hardison, C.H. Double-mass curves. In Manual of Hydrology: Part I: General Surface-Water Techniques; U.S. Geological Survey, Ed.; U. S. Government Printing Office: Washington, DC, USA, 1960; pp. 13–59. [Google Scholar]
- Zhang, S.; Jia, S.; Liu, C.; Cao, W.; Hao, F.; Liu, J.; Yan, H. Study on the changes of water cycle and its impacts in the source region of the Yellow River. Sci. China Ser. E Technol. Sci. 2004, 47, 142–151. [Google Scholar] [CrossRef]
- Birkundavyi, S.; Labib, R.; Trung, H.T.; Rousselle, J. Performance of neural networks in daily streamflow forecasting. J. Hydrol. Eng. 2002, 7, 392. [Google Scholar] [CrossRef]
- Dolling, O.R.; Varas, E.A. Artificial neural networks for streamflow prediction. J. Hydraul. Res. 2002, 40, 547–554. [Google Scholar] [CrossRef]
- Sahoo, A.; Samantaray, S.; Ghose, D.K. Stream flow forecasting in Mahanadi River Basin using artificial neural networks. Comput. Sci. 2019, 157, 168–174. [Google Scholar] [CrossRef]
- Sequoira, H.; Luna, I. Performance comparison of feedforward neural networks applied to streamflow series forecasting. Mathemat. Eng. Sci. Aerosp. 2019, 10, 41–53. [Google Scholar]
- Liao, Y.; Moody, J.; Wu, L. Application of artificial neural networks to time series prediction. In Handbook of Neural Network Signal Processing; Hu, Y., Hwang, J., Eds.; CRC Press: Boca Raton, FL, USA, 2002; pp. 249–266. [Google Scholar]
- Onyutha, C. Graphical-statistical method to explore variability of hydrological time series. Hydrol. Res. 2021, 52, 266–283. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Liu, G.; Han, C.; Yang, Y.; Song, Y.; Guo, S. Response of low flows under climate warming in high-altitude permafrost regions in western China. Hydrol. Process. 2019, 33, 66–75. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, G.; Li, X.; Jin, H.; Yang, D.; Flerchinger, G.N.; Change, X.; Bense, V.; Han, X.; Liang, J. Influences of frozen ground and climate change on hydrological processes in an alpine watershed: A case study in the upstream area of the Hei’he River, Northwest China. Permafr. Periglac. Process. 2017, 28, 420–432. [Google Scholar] [CrossRef]
- Song, C.; Wang, G.; Mao, T.; Dai, J.; Yang, D. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau. Sci. China Earth Sci. 2019, 62, 1–11. [Google Scholar] [CrossRef]
- Guo, J.; Mu, D.; Liu, X.; Yan, H.; Sun, Z.; Guo, B. Water storage changes over the Tibetan Plateau revealed by GRACE mission. Acta Geophys. 2016, 64, 463–476. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Kang, S.; Zhao, Q.; Li, J. Terrestrial water storage changes of permafrost in the Three-River Source Region of the Tibetan Plateau, China. Adv. Meteorol. 2016, 1, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hayakawa, N.; Lu, M.; Dong, S.; Yuan, J. Winter streamflow, ground temperature and active-layer thickness in Northeast China. Permafr. Periglac. Process. 2003, 14, 11–18. [Google Scholar] [CrossRef]
- Duan, L.; Man, X.; Kurylyk, B.L.; Cai, T. Increasing winter baseflow in response to permafrost thaw and precipitation regime shifts in northeastern China. Water 2017, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.; Pavelsky, T.; MacDonald, G.; Shiklomanov, A.; Lammers, R. Rising minimum daily flows in northern Eurasian rivers: A growing influence of groundwater in the high-latitude hydrologic cycle. J. Geophys. Res. Biogeosci. 2007, 112, G04S47. [Google Scholar] [CrossRef] [Green Version]
- Lyon, S.W.; Destouni, G. Changes in catchment-scale recession flow properties in response to permafrost thawing in the Yukon River Basin. Int. J. Climatol. 2010, 30, 2138–2145. [Google Scholar] [CrossRef]
- Woo, M.K. Permafrost Hydrology; Springer Science & Business Media: Heidelberg, Germany, 2012. [Google Scholar]
- Lan, C.; Zhang, Y.X.; Zhu, F.X.; Liang, L.Q. Characteristics and changes of streamflow on the Tibetan Plateau: A review. J. Hydrol. Reg. Stud. 2014, 2, 49–68. [Google Scholar]
- Liu, W.; Sun, F.; Li, Y.; Zhang, G.; Sang, Y.; Lim, W.H.; Liu, J.; Wang, H.; Bai, P. Investigating water budget dynamics in 18 river basins across the Tibetan Plateau through multiple datasets. Hydrol. Earth Syst. Sci. 2018, 22, 351–371. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Lan, C.; Su, F.; Liu, X.; Sun, H.; Ding, J.; Wang, L.; Leng, G.; Zhang, Y.; Sang, Y.; et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts. Chin. Sci. Bull. 2019, 64, 2807–2821. (In Chinese) [Google Scholar]
- Yao, T.D.; Qin, D.H.; Shen, Y.; Zhao, L.; Wang, N.L.; Lu, X. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau. Chin. J. Nat. 2013, 35, 179–186. (In Chinese) [Google Scholar]
- Wang, N.; Yao, T.; Xu, Q.; Chen, A.; Wang, W. Spatial patterns, trend and influence of glacier change in Tibetan Plateau and surroundings after global warming. Bull. Chin. Acad. Sci. 2019, 34, 1220–1232. (In Chinese) [Google Scholar]
- Zhao, L.; Ding, Y.; Liu, G.; Wang, S.; Jin, H. Estimates of the reserves of ground ice in permafrost regions on the Tibetan Plateau. J. Glaciol. Geocryol. 2010, 22, 106–112. (In Chinese) [Google Scholar]
- Zhao, L.; Hu, G.; Zou, D.; Wu, X.; Ma, L.; Sun, Z.; Yuan, L.; Zhou, H.; Liu, S. Permafrost changes and their effects on hydrological processes on the Qinghai-Tibet Plateau. Bull. Chin. Acad. Sci. 2019, 34, 1223–1246. [Google Scholar]
- Cheng, G.; Zhao, L.; Li, R.; Wu, X.; Sheng, Y.; Hu, G.; Zou, D.; Jin, H.; Li, X.; Wu, Q. Characteristics, changes and impacts of permafrost on the Qinghai-Tibet Plateau. Chin. Sci. Bull. 2019, 64, 2783–2795. [Google Scholar]
- Durocher, M.; Requena, A.I.; Burn, D.; Pellerin, J. Analysis of trends in annual streamflow to the Arctic Ocean. Hydrol. Process. 2019, 33, 1143–1151. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H. Variations of air temperature and precipitation from 1953 to 2012 in the Madoi Station in the Source Area of the Yellow River. J. Arid Land Res. Environ. 2014, 28, 1–8. (In Chinese) [Google Scholar]
- Ahmed, R.; Prowse, T.; Dibike, Y.; Bonsal, B.; O’Neil, H. Recent trends in freshwater influx to the Arctic Ocean from four major Arctic-draining rivers. Water 2020, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Makarieva, O.; Nesterova, N.; Post, D.A.; Sherstyukov, A.; Lebedeva, L. Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost. The Cryosphere 2019, 13, 1635–1659. [Google Scholar] [CrossRef] [Green Version]
- Caine, N. Recent hydrologic change in a Colorado alpine basin: An indicator of permafrost thaw? Ann. Glaciol. 2010, 51, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Kopysov, S.; Erofeev, A. The influences of climate on runoff: A case study of four catchments in Western Siberia. Earth Environ. Sci. 2019, 381, 012046. [Google Scholar] [CrossRef]
- Spence, C.; Kokelj, S.V.; Ehsanzadeh, E. Precipitation trends contribute to streamflow regime shifts in northern Canada. In Cold Regions Hydrology in a Changing Climate; Yang, D., Marsh, P., Gelfan, A., Eds.; IAHS: Melbourne, Australia, 2011. [Google Scholar]
- Chen, D.; Xu, Q.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y.; Fan, J.; et al. Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin. Sci. Bull. 2015, 60, 3025–3035. (In Chinese) [Google Scholar]
Yellow River Streamflow | Trend (in m3·s−1·yr−1) and Significance (in %) | |||||||
---|---|---|---|---|---|---|---|---|
Annual | Spring | Summer | Autumn | Winter | Max. | Min. | Max./Min. | |
Gauged | −0.009; 6 | −0.04; 35 | −0.18; 62 | −0.03; 10 | +0.07; 60 | −0.11; 32 | −0.004; 7 | 0.07; 24 |
Corrected | +0.11; 71 | +0.16; 94 | +0.12; 45 | +0.16; 53 | +0.08; 72 | +0.18; 53 | +0.04; 53 | −0.08; 76 |
Predicted | +0.42; 99 | +0.57; 99 | +0.28; 95 | +0.18; 92 | +0.49; 99 | +0.66; 99 | 0.22; 99 | −0.11; 99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Dai, C.; Jin, H.; Liang, S.; Bense, V.F.; Lan, Y.; Marchenko, S.S.; Wang, C. Streamflow Changes in the Headwater Area of Yellow River, NE Qinghai-Tibet Plateau during 1955–2040 and Their Implications. Water 2021, 13, 1360. https://doi.org/10.3390/w13101360
Ma Q, Dai C, Jin H, Liang S, Bense VF, Lan Y, Marchenko SS, Wang C. Streamflow Changes in the Headwater Area of Yellow River, NE Qinghai-Tibet Plateau during 1955–2040 and Their Implications. Water. 2021; 13(10):1360. https://doi.org/10.3390/w13101360
Chicago/Turabian StyleMa, Qiang, Changlei Dai, Huijun Jin, Sihai Liang, Victor F. Bense, Yongchao Lan, Sergey S. Marchenko, and Chuang Wang. 2021. "Streamflow Changes in the Headwater Area of Yellow River, NE Qinghai-Tibet Plateau during 1955–2040 and Their Implications" Water 13, no. 10: 1360. https://doi.org/10.3390/w13101360
APA StyleMa, Q., Dai, C., Jin, H., Liang, S., Bense, V. F., Lan, Y., Marchenko, S. S., & Wang, C. (2021). Streamflow Changes in the Headwater Area of Yellow River, NE Qinghai-Tibet Plateau during 1955–2040 and Their Implications. Water, 13(10), 1360. https://doi.org/10.3390/w13101360