Earth Observations Based Assessment of Impact of COVID-19 Lockdown on Surface Water Quality of Buddha Nala, Punjab, India
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Used
3.2. Estimation of Water Quality Indices
4. Results and Discussions
4.1. Results
4.1.1. Comparison of Indices Prior and during Lockdown Period
4.1.2. Section Wise Analysis
4.2. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. MedRxiv 2020. [Google Scholar] [CrossRef]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.P.; Mondal, S.; Ghosh, K.G. Some respite for India’s dirtiest river? Examining the Yamuna’s water quality at Delhi during the COVID-19 lockdown period. Sci. Total Environ. 2020, 744, 140851. [Google Scholar] [CrossRef] [PubMed]
- The Lancet. India under COVID-19 lockdown. Lancet 2020, 395, 1315. [Google Scholar] [CrossRef]
- Braga, F.; Scarpa, G.M.; Brando, V.E.; Manfè, G.; Zaggia, L. COVID-19 lockdown measures reveal human impact on water transparency in the Venice Lagoon. Sci. Total Environ. 2020, 736, 139612. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Lal, P.; Kumar, A.; Kumar, S.; Kumari, S.; Saikia, P.; Dayanandan, A.; Adhikari, D.; Khan, M. The dark cloud with a silver lining: Assessing the impact of the SARS COVID-19 pandemic on the global environment. Sci. Total Environ. 2020, 732, 139297. [Google Scholar] [CrossRef]
- Li, L.; Li, Q.; Huang, L.; Wang, Q.; Zhu, A.; Xu, J.; Liu, Z.; Li, H.; Shi, L.; Li, R.; et al. Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. Sci. Total Environ. 2020, 732, 139282. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; Chakir, E.M.; El Bouch, M.; Krombi, M. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ. 2020, 735, 139541. [Google Scholar] [CrossRef]
- Ghosh, A.; Nundy, S.; Mallick, T.K. How India is dealing with COVID-19 pandemic. Sens. Int. 2020, 1, 100021. [Google Scholar] [CrossRef]
- Kambalagere, Y. A Study on Air Quality Index (AQI) of Bengaluru, Karnataka during Lockdown Period to Combat Corona-virus Disease (Covid-19): Air Quality Turns ‘Better’ from ‘Hazardous’. Stud. Indian Place Names 2020, 40, 59–66. [Google Scholar]
- Mahato, S.; Pal, S.; Ghosh, K.G. Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Sci. Total Environ. 2020, 730, 139086. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- CPCB Central Pollution Control Board. Impact of Lockdown on Water Quality of River Ganga CPCB; Ministry of Environment, Forest and Climate Change, Government of India: New Delhi, India. Available online: https://cpcb.nic.in/openpdffile.php?id=TGF0ZXN0RmlsZS8yOTNfMTU4Nzk3ODU3MV9tZWRpYXBob3RvMTY3MDYucGRm= (accessed on 12 May 2020).
- Paital, B.; Das, K.; Parida, S.K. Inter nation social lockdown versus medical care against COVID-19, a mild environmental insight with special reference to India. Sci. Total Environ. 2020, 728, 138914. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef]
- Yunus, A.P.; Masago, Y.; Hijioka, Y. COVID-19 and surface water quality: Improved lake water quality during the lockdown. Sci. Total Environ. 2020, 731, 139012. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Matto, M. COVID-19 Lockdown: A Ventilator for Rivers. 2020. Available online: https://www.downtoearth.org.in/blog/covid-19-lockdown-a-ventilator-for-rivers- (accessed on 17 April 2020).
- Mani, K.A.S. The Lockdown Cleaned the Ganga More Than ‘NamamiGange’ Ever Did. Available online: https://science.thewire.in/environment/ganga-river-lockdown-cleaner-namami-gange-sewage-treatment-ecological-flow/2020 (accessed on 19 April 2020).
- Shukla, N.; Srivastava, S. Lockdown Impact: Ganga Water in Haridwar Becomes ‘Fit to Drink’ After Decades. India Today. 22 April 2020. Available online: https://www.indiatoday.in/india/story/lockdown-impact-ganga-water-in-haridwar-becomes-fit-to-drink-after-decades-1669576-2020-04-22 (accessed on 22 April 2020).
- Hader, D.P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
- Quang, N.H.; Sasaki, J.; Higa, H.; Huan, N.H. Spatiotemporal Variation of Turbidity Based on Landsat 8 OLI in Cam Ranh Bay and Thuy Trieu Lagoon, Vietnam. Water 2017, 9, 570. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Dheri, G.S.; Brar, M.S.; Malhi, S.S. Heavy-Metal Concentration of Sewage-Contaminated Water and Its Impact on Underground Water, Soil, and Crop Plants in Alluvial Soils of Northwestern India. Commun. Soil Sci. Plant Anal. 2007, 38, 1353–1370. [Google Scholar] [CrossRef]
- Jindal, R.; Sharma, C. Studies on water quality of Sutlej River around Ludhiana with reference to physicochemical parameters. Environ. Monit. Assess. 2010, 174, 417–425. [Google Scholar] [CrossRef]
- Govindaraj, S.; Saravanakumar, A. Validation of Chlorophyll and TSM in Vellar River by Using Sentinel 2 MSI Southeast Coast of India Tamil Nadu. Int. J. Sci. Technol. Res. 2019, 8, 10. [Google Scholar]
- Garg, V.; Aggarwal, S.P.; Chauhan, P. Changes in turbidity along Ganga River using Sentinel-2 satellite data during lockdown associated with COVID-19. Geomat. Nat. Hazards Risk 2020, 11, 1175–1195. [Google Scholar] [CrossRef]
- Avdan, Z.Y.; Kaplan, G.; Goncu, S.; Avdan, U. Monitoring the Water Quality of Small Water Bodies Using High-Resolution Remote Sensing Data ISPRS. Int. J. Geo Inf. 2019, 8, 553. [Google Scholar] [CrossRef] [Green Version]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Buma, W.; Lee, S.-I. Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Lacaux, J.; Tourre, Y.; Vignolles, C.; Ndione, J.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of Water Quality Parameters Using Temporal Remote Sensing Spectral Reflectance in Arid Environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- Gessesse, A.A.; Melesse, A.M. Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–92. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zhou, J.; Gurlin, D.; Moses, W.; Ioannou, I.; Ahmed, S.A. Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands. Opt. Express 2010, 18, 24109–24125. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, Y.; Zhang, B.; Song, K.; Wang, Z. Assessment of Chlorophyll-a Concentration and Trophic State for Lake Chagan Using Landsat TM and Field Spectral Data. Environ. Monit. Assess. 2006, 129, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Saxena, M. Automated algorithm for extraction of wetlands from IRS Resourcesat LISS III data. In Proceedings of the ISPRS Bhopal 2011 Workshop, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 2011; Volume 38, pp. 193–198. Available online: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-8-W20/193/2011/isprsarchives-XXXVIII-8-W20-193-2011.pdf (accessed on 8 November 2011).
- Guha, S.; Govil, H.; Gill, N.; Dey, A. Analytical study on the relationship between land surface temperature and land use/land cover indices. Ann. GIS 2020, 26, 201–216. [Google Scholar] [CrossRef]
- Xu, H.; Xu, G.; Wen, X.; Hu, X.; Wang, Y. Lockdown effects on total suspended solids concentrations in the Lower Min River (China) during COVID-19 using time-series remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102301. [Google Scholar] [CrossRef]
Band (Wavelength Region) | Resolution (m) | Central Wavelength (nm) |
---|---|---|
Band 1 (Coastal aerosol) | 60 | 443 |
Band 2 (Blue) | 10 | 490 |
Band 3 (Green) | 10 | 560 |
Band 4 (Red) | 10 | 665 |
Band 5 (Vegetation red edge) | 20 | 750 |
Band 6 (Vegetation red edge) | 20 | 740 |
Band 7 (Vegetation red edge) | 20 | 783 |
Band 8 (NIR) | 10 | 842 |
Band 8A (Vegetation red edge) | 20 | 865 |
Band 9 (Water Vapor) | 60 | 945 |
Band 10 (SWIR-Cirrus) | 60 | 1375 |
Band 11 (SWIR) | 20 | 1610 |
Band 12 (SWIR) | 20 | 2190 |
Sr. No. | Index | Band Ratio | Description of Indices | Reference |
---|---|---|---|---|
1 | Higher NDVI Indicates the vegetation growth in the water body. | Wardlow et al., 2007; [32] | ||
2 | The higher the NDWI value, the better the water quality. | McFeeters, 1996; [33] | ||
3 | Higher NDCI indicates the vegetaion growth and reduction of pollution in the water body. | Buma & Lee, 2020; Avdan et al., 2019; [31,34] | ||
4 | NDTI indicates the presence of turbidity in the water. | Lacaux, et al., 2007; Elhag, et al., 2019; [35,36] | ||
5 | Higher NI indicates the raised runoff load of N in the water body. | Gitelson, 1997 [37] | ||
6 | Higher values indicates the presence of total suspended solid | Toming et al., 2017; [38] |
T−Test for the Year 2019 and 2020 | ||||||
---|---|---|---|---|---|---|
NDVI | NDWI | NDCI | NI | NDTI | TSM | |
March | −26.17 (2.004) | 7.01 (2.0) | 5.89 (1.99) | −5.58 (1.98) | −1.37 (1.99) | −9.12 (2.00) |
May | −0.88 (1.98) | −7.55 (1.99) | −2.43 (1.99) | −12.26 (1.99) | −14.34 (1.99) | −12.31 (2.00) |
June | 8.99 (1.99) | 0.44 (1.98) | −2.13 (1.98) | −9.01 (2.00) | −5.61 (1.98) | −4.55 (2.00) |
T−Test for Different Phases of Lockdown | ||||||
NDVI | NDWI | NDCI | NI | NDTI | TSM | |
March–May | −9.53 (1.98) | −4.86 (1.98) | −1.52 (1.98) | −4.19 (1.98) | −6.37 (1.99) | 1.86 (1.99) |
March–June | −0.88 (1.98) | −2.31 (1.99) | −6.84 (2.0) | −14.57 (1.99) | −6.18 (1.99) | −3.71 (1.99) |
Upstream Section | ||||
---|---|---|---|---|
2020 | March | April | May | June |
Turb (NTU) * | 57 | 26 | 91 | 72 |
NDTI | 0.19 | −0.17 | −0.02 | 0.04 |
TSS (mg/L) * | 96 | 36 | 127 | 116 |
TDS (mg/L) * | 208 | 163 | 153 | 176 |
TSM | 1.77 | −0.19 | 0.158 | 1.14 |
Downstream Section | ||||
2020 | March | April | May | June |
Turb (NTU) * | 19 | 40 | 84 | 42 |
NDTI | 0.1 | −0.05 | 0.02 | 0.01 |
TSS (mg/L) * | 25 | 66 | 109 | 81 |
TDS (mg/L) * | 264 | 244 | 179 | 237 |
TSM | 1.23 | −0.188 | 0.17 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, S.; Kaur, S.; Jutla, A. Earth Observations Based Assessment of Impact of COVID-19 Lockdown on Surface Water Quality of Buddha Nala, Punjab, India. Water 2021, 13, 1363. https://doi.org/10.3390/w13101363
Das S, Kaur S, Jutla A. Earth Observations Based Assessment of Impact of COVID-19 Lockdown on Surface Water Quality of Buddha Nala, Punjab, India. Water. 2021; 13(10):1363. https://doi.org/10.3390/w13101363
Chicago/Turabian StyleDas, Susanta, Samanpreet Kaur, and Antarpreet Jutla. 2021. "Earth Observations Based Assessment of Impact of COVID-19 Lockdown on Surface Water Quality of Buddha Nala, Punjab, India" Water 13, no. 10: 1363. https://doi.org/10.3390/w13101363
APA StyleDas, S., Kaur, S., & Jutla, A. (2021). Earth Observations Based Assessment of Impact of COVID-19 Lockdown on Surface Water Quality of Buddha Nala, Punjab, India. Water, 13(10), 1363. https://doi.org/10.3390/w13101363