Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Instrumentation
Surface Area Determination
2.3. Preparation of Activated Carbon
3. Results and Discussion
3.1. Characterization
3.1.1. Scanning Electron Microscopy
3.1.2. Energy Dispersed X-ray (EDX) Measurements of AC
3.2. Surface Area Determination
3.3. Dosage Effect on Removal of Acid Red 4 and Methylene Blue
3.4. Effect of pH on Removal of Acid Red 4 and Methylene Blue
3.5. Adsorption Kinetics
3.6. Isotherm Studies
3.6.1. Langmuir Isotherm
3.6.2. Freundlich Isotherm Model
3.6.3. Temkin Isotherm Model
3.7. Thermodynamic Study
3.8. Adsorption Capacities of Various Adsorbent for Removal of Acidic and MB Dyes Previous Reported with Our Adsorbent
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cechinel, M.A.P.; de Souza, A.A.U. Study of lead (II) adsorption onto activated carbon originating from cow bone. J. Cleaner Prod. 2014, 65, 342–349. [Google Scholar] [CrossRef]
- Chiarello, L.M.; Barcellos, I.O.; Spengler, G.; Roza, D.E. Treatment of acidic dyes solutions by adsorption in soybean meal. Acta Scientiarum Technol. 2012, 34, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Mezohegyi, G.; van der Zee, F.P.; Font, J.; Fortuny, A.; Fabregat, A. Towards advanced aqueous dye removal processes: A short review on the versatile role of activated carbon. J. Environ. Manag. 2012, 102, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Smitha, T.; Thirumalisamy, S.; Manonmani, S. Equilibrium and kinetics study of adsorption of crystal violet onto the peel of Cucumis sativa fruit from aqueous solution. E-J. Chem. 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishna, K.R.; Viraraghavan, T. Dye removal using low cost adsorbents. Water Sci. Technol. 1997, 36, 189–196. [Google Scholar] [CrossRef]
- Zekker, I.; Artemchuk, O.; Rikmann, E.; Ohimai, K.; Bhowmick, G.D.; Ghangrekar, M.M.; Burlakovs, J.; Tenno, T. Start-up of anammox SBR from non-specific inoculum and process acceleration methods by hydrazine. Water 2021, 13, 350. [Google Scholar] [CrossRef]
- Ho, Y.S.; Malarvizhi, R.; Sulochana, N. Equilibrium isotherm studies of methylene blue adsorption onto activated carbon prepared from Delonixregia pods. J. Environ. Prot. Sci. 2009, 3, 111–116. [Google Scholar]
- Al-Degs, Y.S.; El-Barghouthi, M.I.; El-Sheikh, A.H.; Gavin, M.W. Effect of solution pH. Dyes Pigm. 2007, 77, 16–23. [Google Scholar]
- Arivoli, S.; Sundaravadivelu, M.; Elango, K.P. Removal of basic and acidic dyes from aqueous solution by adsorption on a low cost activated carbon: Kinetic and thermodynamic study. Indian J. Chem. Technol. 2008, 15, 130–139. [Google Scholar]
- Parvin, M. Adsorption of Dyes on Activated Carbon from Agricultural Wastes. United Arab Emirates. Univ. 2013. [Google Scholar] [CrossRef]
- Pearce, C.I.; Lloyd, J.R.; Guthrie, J.T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigm. 2003, 58, 179–196. [Google Scholar] [CrossRef]
- Shokoohi, R.; Vatanpoor, V.; Zarrabi, M.; Vatani, A. Adsorption of Acid Red 18 (AR18) by activated carbon from poplar wood-A kinetic and equilibrium study. E-J. Chem. 2010, 7. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Treatment of pulp and paper mill wastewater—A review. Sci. Total Environ. 2004, 333, 37–58. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, A. Adsorption—From theory to practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. [Google Scholar] [CrossRef]
- El-Bindary, A.A.; Diab, M.A.; Hussien, M.A.; El-Sonbati, A.Z.; Eessa, A.M. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite. Spectrochim. Acta Part A 2014, 124, 70–77. [Google Scholar] [CrossRef]
- Dural, M.U.; Cavas, L.; Papageorgiou, S.K.; Katsaros, F.K. Methylene blue adsorption on activated carbon prepared from Posidoniaoceanica (L.) dead leaves: Kinetics and equilibrium studies. Chem. Eng. J. 2011, 168, 77–85. [Google Scholar] [CrossRef]
- Dubinin, M.M.; Plavnik, G.M.; Zaverina, E.D. Integrated study of the porous structure of active carbons from carbonized sucrose. Carbon 1964, 2, 261–268. [Google Scholar] [CrossRef]
- Ikram, M.; Zahoor, M.; Batiha, G.E.-S. Biodegradation and decolorization of textile dyes by bacterial strains: A biological approach for wastewater treatment. Z. Phys. Chem. 2020. [Google Scholar] [CrossRef]
- Khayam, S.M.U.; Zahoor, M.; Khan, E.; Shah, M. Reduction of keto group in drimarene blue by Aspergillus niger; a predominant reason for subsequent decolorization. Fresenius Environ. Bull. 2020, 29, 1397–1410. [Google Scholar]
- Ikram, M.; Zahoor, M.; Khan, E.; Khayam, S.M.U. Biodegradation of Novacron Turqueiose (Reactive Blue 21) by Pseudomonas aeruginosa. J. Chem. Soc. Pak. 2020, 42, 737–745. [Google Scholar]
- Brunauer, S.; Emmett, P.; Teller, E.J. Adsorption of gases in multi-molecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Tien, C. Adsorption Calculations and Modeling; Scientific Research Publishing Inc.; Butterworth-Heinemann: Washington, DC, USA, 1994; p. 16. [Google Scholar]
- Iqbal, Y.; Khan, M.A.; Ihsanullah, N.A. Effect of selected parameters on the adsorption of phenol on activated charcoal. Inter. J. Envi. Studies. 2005, 62, 47–57. [Google Scholar] [CrossRef]
- Khan, T.; Chaudhuri, M. Comparison of adsorption behaviour of coconut coir activated carbon and commercial activated carbon for textile dye. WIT Trans. Ecol. Environ. 2011, 148, 105–116. [Google Scholar]
- Chang, C.F.; Chang, C.Y.; Chen, K.H.; Tsai, W.T.; Shie, J.L.; Chen, Y.H. Adsorption of naphthalene on zeolite from aqueous solution. J. Colloid Interface Sci. 2004, 277, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Khaniabadi, Y.O.; Mohammadi, M.J.; Shegerd, M.; Sadeghi, S.; Saeedi, S.; Basiri, H. Removal of Congo red dye from aqueous solutions by a low-cost adsorbent: Activated carbon prepared from Aloe vera leaves shell. Environ. Health Eng. Manag. J. 2017, 4, 29–35. [Google Scholar] [CrossRef]
- Senthikumaar, S.; Varadarajan, P.R.; Prokodi, K.; Subhuraam, C.V. Adsorption of MB onto jute fiber carbon: Kinetic and equilibrium studies. J. Colloid Interface Sci. 2005, 284, 78–82. [Google Scholar] [CrossRef]
- Aygum, A.; Yenisoy-Karakas, S.; Duman, I. Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 2003, 66, 89–95. [Google Scholar]
- Tisserat, B.; Joshee, N.; Mahapatra, A.K.; Selling, G.W.; Finkenstadt, V.L. Physical and mechanical properties of extruded poly (lactic acid)-based Paulownia elongate biocomposites. Sci. Verse Sci. Direct Ind. Crops Prod. 2013, 44, 88–96. [Google Scholar]
- Deniz, F.; Saygideger, S. D Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by Paulownia tomentosa Steud. leaf powder as a low-cost natural biosorbent. Bioresour. Technol. 2010, 101, 5137–5143. [Google Scholar]
- Tang, Z.Q.; Chen, D.L.; Song, Z.J.; He, Y.C.; Cai, D.T. In vitro induction and identification of tetraploid plants of Paulownia tomentosa. Plant Cell Tiss. Organ Cult. 2012, 102, 213–220. [Google Scholar] [CrossRef]
- Li, X.; Qiu, J.; Hu, Y.; Ren, X.; He, L.; Zhao, N.; Ye, T.; Zhao, X. Characterization and comparison of walnuts hells-based activated carbons and their adsorptive properties. Ads. Sci. Tech. 2020, 38, 450–463. [Google Scholar] [CrossRef]
- Tenno, T.; Rikmann, E.; Zekker, I.; Tenno, T. Modelling the Solubility of Sparingly Soluble Compounds Depending on their Particles Size. Proc. Est. Acad. Sci. 2018, 67, 300–302. [Google Scholar] [CrossRef]
- Zekker, I.; Tenno, T.; Selberg, A.; Uiga, K. Dissolution Modeling and Experimental Measurement of CaS-H2O Binary System. Chin. J. Chem. 2011, 29, 2327–2336. [Google Scholar] [CrossRef]
- Tenno, T.; Rikmann, E.; Uiga, K.; Zekker, I.; Mashirin, A.; Tenno, T. A Novel Proton Transfer Model of the Closed Equilibrium System H2O-CO2-CaCO3-NHX. Proc. Est. Acad. Sci. 2018, 4017, 2. [Google Scholar] [CrossRef]
- Tenno, T.; Uiga, K.; Mashirin, A.; Zekker, I.; Rikmann, E. Modeling Closed Equilibrium Systems of H2O-Dissolved CO2-Solid CaCO3. J. Phys. Chem. A. 2017, 121, 3094–3100. [Google Scholar] [CrossRef]
- Uiga, K.; Tenno, T.; Zekker, I.; Tenno, T. Dissolution modeling and potentiometric measurements of the SrS-H2O-gas system at normal pressure and temperature at salt concentrations of 0.125–2.924 mM. J. Sulf. Chem. 2011, 32, 137–149. [Google Scholar] [CrossRef]
Acid Red 4 | |
Chemical Name | Acid Red 4 |
Molecular Formula | C17H13N2NaO5S |
Molecular Weight | 380.35 g/mol |
λ—Max | 508 nm |
Methylene Blue | |
Chemical Name | Methylene Blue |
Molecular Formula | C16H18CIN3S |
Molecular Weight | 319.9 g/mol |
λ—Max | 665 nm |
Solubility | Soluble in Water |
Surface Area (m2/g) | Pore Size Distribution | |||||||
---|---|---|---|---|---|---|---|---|
Methods | BJH Method | DR Method | ||||||
BET | BJH | LSA | DR | Pore volume (cm3/g) | pore diameter (Å) | Micropore volume (cm3/g) | Average Pore width (Å) | Ads. Energy (kJ/mol) |
219.98 | 224.89 | 346.38 | 311.22 | 0.100 | 13.68 | 0.110 | 65.29 | 3.980 |
Acid Red 4: K1 (g/mol/K) | Methylene Blue: K2 (g/mol/K) | ||||
---|---|---|---|---|---|
293 K | 303 K | 313 K | 293 K | 303 K | 313 K |
0.0000024 | 0.0000026 | 0.0000029 | 14,312.8 | 11,584.8 | 10,093.7 |
0.0000033 | 0.0000034 | 0.0000036 | 12,655.5 | 10,816.7 | 9987.7 |
Parameters | Adsorption Temperatures Acid Red 4 | Adsorption Temperatures Methylene Blue | ||||
---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 293 K | 303 K | 313 K | |
Kip | 0.0039 | 0.0053 | 0.0003 | 0.0086 | 0.0083 | 0.0016 |
Intercept | 0.772 | 0.856 | 0.9936 | 0.6318 | 0.7764 | 0.975 |
R2 | 0.9786 | 0.9141 | 0.8672 | 0.9802 | 0.9866 | 0.8998 |
Parameter | Langmuir Isotherm for AR4 | Langmuir Isotherm for MB |
---|---|---|
Qm | 238.44 | 255.89 |
KL | 0.014 | 0.003 |
R2 | 0.957 | 0.886 |
Freundlich Isotherm for AR4 | Freundlich Isotherm for MB | |
Kf | 0.623 | 0.819 |
1/n | 41.25 | 40.273 |
R2 | 0.908 | 0.839 |
Temkin Isotherm for AR4 | Temkin Isotherm for MB | |
B1 | 42.94 | 39.12 |
KT | 1.063 | 1.053 |
R2 | 0.953 | 0.803 |
Sample | ΔE (kJ/mol) | ΔH (kJ/mol) | ΔS (J mol/K) | ΔG (kJ/mol) | ||
---|---|---|---|---|---|---|
293 K | 303 K | 313 K | ||||
Acid red 4 | 30.57 | 24.88 | −2843.32 | 950.34 | 945.46 | 942.16 |
Methylene blue | 3.712 | 1.1927 | −0.329 | 4.6747 | 100.879 | 284.312 |
Dyes | Adsorbent | Qmax (mg/g) | Reference |
---|---|---|---|
Acidic dye | Musa paradisiaca char | 7.003 | [27] |
Acidic dye | Activated bleaching earth | 1.2 | [28] |
Acidic dye | Aloe barbadensis mill | 3.62 | [29] |
Acidic dye | Aloe vera leaves shell | 1.850 | [30] |
Acidic dye (AR4) | Activated carbon | 238.44 | Current work |
MB | Jute fiber carbon | 225.64 | [31] |
MB | Almond shell-activated carbon | 1.33 | [32] |
MB | Walnut shell-activated carbon | 3.53 | [32] |
MB | Hazelnut shell-activated carbon | 8.82 | [32] |
MB | Activated carbon | 255.89 | Current work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, S.; Khan, M.S.; Bibi, W.; Zekker, I.; Burlakovs, J.; Ghangrekar, M.M.; Bhowmick, G.D.; Kallistova, A.; Pimenov, N.; Zahoor, M. Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water 2021, 13, 1453. https://doi.org/10.3390/w13111453
Alam S, Khan MS, Bibi W, Zekker I, Burlakovs J, Ghangrekar MM, Bhowmick GD, Kallistova A, Pimenov N, Zahoor M. Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water. 2021; 13(11):1453. https://doi.org/10.3390/w13111453
Chicago/Turabian StyleAlam, Sultan, Muhammad Sufaid Khan, Wahida Bibi, Ivar Zekker, Juris Burlakovs, Makarand M. Ghangrekar, Gourav Dhar Bhowmick, Anna Kallistova, Nikolai Pimenov, and Muhammad Zahoor. 2021. "Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater" Water 13, no. 11: 1453. https://doi.org/10.3390/w13111453
APA StyleAlam, S., Khan, M. S., Bibi, W., Zekker, I., Burlakovs, J., Ghangrekar, M. M., Bhowmick, G. D., Kallistova, A., Pimenov, N., & Zahoor, M. (2021). Preparation of Activated Carbon from the Wood of Paulownia tomentosa as an Efficient Adsorbent for the Removal of Acid Red 4 and Methylene Blue Present in Wastewater. Water, 13(11), 1453. https://doi.org/10.3390/w13111453