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Abstract: Leakage is the most serious problem in reservoir operation, because heavy leakage influ-
ences reservoir impoundment efficiency and even leads to a complete loss of reservoir functions.
Since its completion in 1982, Qionglin Reservoir has never been fully filled with water except in the
spring of 1983 when there was heavy rain. The reservoir management unit suspected that its side
slopes, bottom or dam might leak and carried out a number of leakage prevention and improvement
works, but all of them failed to fulfill the impoundment function of the reservoir. Hence, this study
attempts to find out the reasons why the reservoir cannot impound water. A series of tests and inves-
tigations are carried out in this study, including electrical resistivity tomography of dam, tracer test,
geological drilling test, reservoir water level observation, investigation of reservoir catchment area
and field investigation of dam. The test results and investigation results show that no leakage path
and leakage are found. According to the analysis, there is no serious leakage of this reservoir. The
main reason for the failure of impoundment is that massive improper development in the catchment
area influences the runoff into the reservoir.

Keywords: leakage; electrical resistivity tomography (ERT); tracer test

1. Introduction

Kinmen is a small island located between Taiwan and the Chinese Mainland, with
an area of 151 square kilometers and a population of about 130,000. Figure 1 shows the
location of Kinmen. Kinmen Island has a mean annual precipitation of less than 1100 mm
and a mean annual evaporation of 1600 mm; therefore, water is very precious. Many small
reservoirs have been built in the island to store runoff water from rare rains. Located in the
central area of Kinmen islands, Qionglin Reservoir was completed in March 1982. Since
its completion, Qionglin Reservoir has never achieved the planned impoundage except
in April 1983 when there was heavy rain. The reservoir management unit considered
that leakage might occur in Qionglin Reservoir and made many improvements. Three
reservoir safety assessments were carried out in 1998, 2001 and 2005, respectively. Leakage
prevention and improvement works were conducted in 1998, including laying impermeable
cloth at its bottom and reinforced concrete on its slope. Upstream water interception and
diversion works were added in 2001. However, due to the poor impoundment, in order to
understand the leakage of Qionglin Reservoir, this study carried out tests and investigations
on Qionglin Reservoir to explore the reasons for its poor impoundment.

In order to explore the reasons why Qionglin Reservoir has never been fully filled with
water, this study carried out a series of tests and investigations: non-destructive testing
including electrical resistivity tomography and tracer leakage test, and field investiga-
tion including geological drilling, reservoir water level observation, reservoir catchment
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area investigation, visual inspection of the dam and pumping test. Then, in this study,
the results of the above tests and investigations were analyzed and compared with the
basic data of the base, including rainfall, underground water and geology, to attempt to
put forward the problem of its poor impoundment and make suggestions on its future
improvement direction.

2. Literature Review
2.1. Reservoir Leakage Mechanism

Leakage is the most serious problem after reservoir impoundment and occurs as long
as leaking pipes run through the bank or the bottom of the reservoir. There are some cases
at home and abroad in which serious leakage influences reservoir impoundment efficiency
and even causes them to completely lose their functions [1,2]. Reservoir leakage is mainly
caused by topographic and geological factors. There are three topographic factors: leakage
through a watershed into the adjacent valley, through a bend into the downstream valley
and through the bank and bottom of a reservoir into the low-lying discharge area. There
are four geological factors: rock and soil layers with good water permeability, fractured or
fissured permeable zones, caves and paleochannel [3]. Other causes of leakage are karst
phenomena, poor reservoir operation and old reservoir materials.

2.2. Methods of Investigation and Test for Reservoir Leakage

For reservoirs in use, their dams may have borne more weight than what they were
originally designed to carry, thus causing local internal damages. In addition, both material
aging and violent earthquakes damage dams and foundations. In order to understand
the leakage in a dam, the traditional visual inspection cannot provide information about
internal damages, and monitoring instruments such as hydraulic pressure gauges can only
provide information about single points, neither of which can provide enough information
for judgment. Moreover, destructive testing methods and internal monitoring instruments
should be avoided for dams as much as possible; therefore, there is little information from
inside dams. Hence, the non-destructive geophysical exploration technology and chemical
leakage tracing tests are used in this study for dam leakage investigation.

In recent years, the geophysical exploration technologies have been widely used for
reservoir dam investigation and monitoring. For the topic of potential reservoir dam leak-
age, the non-destructive large-scale assessment by the geophysical exploration technologies
can make up for the shortage of monitoring points and provide information on dam wet-
ness [4,5]. Mature geophysical exploration technologies that can be applied in leakage in-
vestigation are electrical resistivity tomography method [6–8], self-potential method [9,10],
electromagnetic exploration method [11], elastic wave tomography method [12,13] and
seismic surface-wave method [14,15]. These methods are mainly used for non-destructive
testing of dam surfaces and measurement in bores. Hence, this study attempted to ex-
plore the possibility of internal leakage in dams by the electrical resistivity tomography
method (ERT).

Vorokov et al. [7] proposed the application of geophysical exploration in dam investi-
gation and tested abnormal sinking of dam riprap layers, local leakage of dams, engineering
properties of dam materials, density and void ratios of dam materials by vibration test
and earth resistance method. Song et al. [6] conducted a leakage investigation at Sandong
embankment dam in South Korea, by methods such as electrical resistivity tomography,
self-potential method and tracer test, which measured reservoir water level dropping
and water level change in holes and monitoring of temperature in holes to preliminar-
ily speculate the area that might leak. Oh et al. [15] applied the multi-channel seismic
surface-wave method and electrical resistivity tomography method to dam investigation in
South Korea, which the earth resistance profile was overlaid with shear wave velocity for
integrated interpretation. The dam material composition and the existence of cracks could
be understood from the results. Abdel Aal et al. [16] investigated the leakage of an earth
dam in Washington State in the United States, which configured seven testing lines and
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concluded that the leakage path was from the low-resistance area. Lin et al. [17] configured
two ERT testing lines on the top of the leaking embankment dam and the downstream
shell of Xinshan Reservoir in Taiwan and concluded that the low-resistance area was the
suspected abnormal leakage area.

Tracer test is a chemical technology to investigate reservoir leakage. In recent years,
tracer test has often been used for hydrogeological investigation, to study the direction and
velocity of groundwater flow [18–20]. By tracer test, leakage can be detected accurately,
quickly and timely, which is of great significance in underground leakage monitoring [21].

2.3. Background of Qionglin Reservoir

Qionglin Reservoir is located in the central area of the main island of Kinmen, with a
catchment area of 153 hectares, an impounded area of 9.9 hectares, a dam height of 9.7 M, a
dam crest elevation of 28.5 m, a full water level elevation of 26.5 m and an impoundment
capacity of 309,000 m3. It is a rolled homogeneous earth dam, and the standard section of
the dam is shown in Figure 1. Since its completion in 1982, Qionglin Reservoir has always
been empty due to its poor impoundment. The reservoir management unit considered
that it might leak and made many improvements. Three reservoir safety assessments were
carried out in 1998, 2001 and 2005, respectively, to try to find out the causes of leakage
or impoundment failure. Leakage prevention and improvement works were conducted
in 1998, including laying impermeable cloth at its bottom and reinforced concrete on its
slope. Upstream water interception and diversion works were added in 2001. However,
its impoundment is still poor, and it cannot impound efficiently. Now, the reservoir is
temporarily out of service.

Water 2021, 13, 1463 4 of 20 
 

 

 
Figure 1. (a) Location of Kinmen Island, (b) location of Qionglin Reservoir and (c) standard section 
of the dam. 

 
Figure 2. Geological map of Qionglin Reservoir/Drilling locations of Qionglin Reservoir over the 
years. 

Figure 1. (a) Location of Kinmen Island, (b) location of Qionglin Reservoir and (c) standard section
of the dam.



Water 2021, 13, 1463 4 of 19

The geology of Qionglin Reservoir can be referred to the 1:50,000 geological map of
Kinmen area [22], outcrop mainly consist of modern sediment, red clay-gravel bed and
Kinmen bed. The modern sediment is mainly composed of sand, mud and peat. The
red clay-gravel bed is mainly composed of red clay and gravel, which are paleochannel
deposits, and the gravel is round or oval with a diameter mostly smaller than 10 cm. The
Kinmen bed is a sedimentary layer accumulated in ancient channels and is mainly fine
sandstone containing gravel and clay. The bed is nearly horizontal and consists of two
layers. The upper layer is mainly sandstone containing gravel and clay with a thickness of
about 30 m, and the lower layer is mainly fine sandstone containing clay with a thickness
of about 42 m. Figure 2 shows the geological map of Qionglin Reservoir.
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In order to investigate the causes of reservoir leakage, the reservoir management unit
in the dam, bottom and surrounding area of the reservoir, drilled 14 holes in 1992 and
8 holes in 1995. The drilling locations over the years are shown in Figure 2. Figure 3 is
the geologic cross-section of the dam site drawn after drilling data collection. As shown
in Figure 3, the geology of the dam site is mainly red sandy clay (CL), grayish-yellow
clayey coarse sand (SC), red and grayish-yellow argillaceous coarse sand (SM) and yellow
argillaceous coarse sand (SM SC). According to the investigation results, the SM materials
at the bottom, soil slope and in the front of the dam to the northwest of the inundated
area were permeable, and the inundated area could easily leak water. Field tests were
carried out to understand the soil density of the dam and the bottom of the reservoir, and
the results showed that the Relative Compaction (RC) of the dam was about 93% and the
Relative Compaction (RC) of the bottom of reservoir was about 89–92%, indicating that the
density of the soil layer at the bottom of reservoir was quite consistent. In order to obtain
the permeability of the shallow soil in the whole region, the reservoir management unit
conducted a 17 hole field permeability test at the bottom of the reservoir, and the results
showed that the permeability coefficient of the reservoir area was between 10−5 cm/s and
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10−6 cm/s on average. According to the test results, the permeability coefficient of the
bottom of the reservoir was low.
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3. Research Method
3.1. Electrical Resistivity Tomography (ERT)

In the electrical resistivity tomography method, 2 current electrodes (C1, C2) were
mainly used to apply current into the strata at a low-frequency alternating current and
2 potential electrodes (P1, P2) were used to measure potential difference. According
to measured injected current, the potential difference between two electrodes and the
geometry of electrodes, the apparent resistivity, which is equivalent to the resistivity of
the semi-infinite homogeneous media, can be calculated by the electrostatic theory. The
spatial influence range depends on the space between electrodes. The greater the spacing
between electrodes is, the greater the influence will be. By inverse analysis, the actual
resistivity distribution of the strata can be estimated, so as to understand the stratum
structure. The earth resistivity is highly related to water content; therefore, the electrical
resistivity tomography can be used to help to investigate the leakage of reservoir dam.

In this study, 2 testing lines were laid out around Qionglin Reservoir, as shown in
Figure 4. Of the 2 testing lines, L1 was on the west side of the dam, with a length of 78 m
and the electrode spacing of 3 m, and L2 was on the north side of the dam, with a length of
126 m and the electrode spacing of 3 m. The Wenner–Shlumberger array was adopted in
field measurement for data collection.

SYSCAL PRO Switch 48, an earth resistance meter produced by IRIS of France, was
used in this study. In order to ensure measurement quality, all data were repeatedly
measured to ensure that the difference between values of all data obtained from repeated
measurement was less than 3%. In addition, the current values of the obtained data were
controlled to ensure to obtain the data with high signal-to-noise ratio.
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3.2. Tracer

Bromide is considered as one of the best hydrological tracers, because it is conservative
in most environments. Br- in the environment is usually in the ocean in the form of
halides. Hence, there is no need to worry that using sodium bromide as a tracer causes
environmental pollution and does harm to human health, and sodium bromide is easy to
measure and has low costs [23,24]. Moreover, according to Flury and Papritz (1993) [25],
bromide ions did not react easily with substrates, because the negative ions are repelled
by most of the negatively charged substrates and concentrated in the center of the water.
Therefore, in most experiments with bromide ions as tracers, the influence of the chemical
reaction and absorption between solutes and substrates on transmission mechanisms is
assumed to be minimal or even ignored.

In this study, sodium bromide was mainly used as the tracer, and placed near the
spillway above the stilling basin of the reservoir in the form of a solution. Then, the sensor
was placed on the left bank (the stilling basin outside the reservoir) and the right bank
(inside the reservoir area) of the stilling basin to detect the changes of sodium bromide ion
concentration. In addition, water samples were respectively collected in the reservoir and
stilling basin for the ion chromatography (IC) to analyze the common ions, so as to confirm
the test results again. Figure 4 shows the tracer application area and sampling points and
the points of sensors.

The tracer receiver used in this program was TempHion Smart Sensor produced by
INW. The operating principle of the instrument is that the induction electrode at the front of
the instrument is immersed in a cap containing the reference solution of standard electrode,
and the water to be tested enters the cap due to capillarity; then, the induction electrode can
calculate the ionic concentration of the solution to be tested based on the ionic concentration
difference between the solution to be tested and the reference solution of standard electrode.
It can test the bromide ion concentration ranging from 0 to 10,000 ppm, with an accuracy
of 2% of the tested value. In order to ensure that data can be recorded as soon as bromide
ions enter the receiving well, the instrument was placed at an appropriate place below the
water level and automatically records data every 10 min.

3.3. Supplementary Drilling Test

In order to investigate the causes of reservoir leakage, in the dam, bottom and sur-
rounding area of the reservoir, the reservoir management unit drilled 14 holes in 1992 and
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8 holes in 1995. During the execution of this study, Qionglin Reservoir was kept at a low
water level, making it impossible to carry out geological drilling at the bottom and surface
excavation. Hence, in this study, a total of 4 places at the lower reaches of the dam, the
northwest around the reservoir and the upper reaches were selected for drilling, and the
data of the 4 holes were analyzed and compared with the drilling data in literature. The
detailed locations are shown in Figure 2.

The field drilling was adopted for the base investigation, and a total of 4 holes num-
bered BH-1 to BH-4 were drilled, with a total drilling depth of 60 m, as shown in Figure 2
drilling locations of Qionglin Reservoir over the years. The field standard penetration test
was carried out to all holes to calculate the blow counts (SPT-N value) penetrating into
the strata, and the field permeability test was conducted. Split spoons and thin wall tubes
were provided for laboratory test.

3.4. Long-Term Reservoir Water Level Observation

The most intuitive way to investigate reservoir leakage is to observe the water levels
of Qionglin Reservoir over the years and to compare it with the change of water levels of
other reservoirs in Kinmen Island. There are a total of 10 reservoirs in Kinmen Island, as
shown in Figure 5. The water levels, rainfall and evaporation of 10 reservoirs in Kinmen
Island from 19 December 2011 to 4 June 2019 were collected in this study for comparison
and analysis.

Water 2021, 13, 1463 8 of 20 
 

 

 
Figure 5. Location of 10 reservoirs in Kinmen Island. /Catchment area of Qionglin Reservoir. 

Figure 6 is the comparison between water levels and rainfall of Qionglin Reservoir 
from 19 December 2011 to 4 June 2019. From the observation of the above water level 
changes, Qionglin Reservoir was at the dead water level before May 2013; its water level 
changed significantly from May 2013 to 2017 with the rainfall; the water level changes 
slightly after dropping to the dead water level in March 2018; and the water level was 
around EL.22.5–23 m, despite the heavy rain in May and August 2018. 

 
Figure 6. Comparison between water levels and rainfall of Qionglin Reservoir. 

3.5. Field Investigation of the Catchment Area of the Reservoir 
The runoff of the reservoir is mainly sourced from the catchment area. The catch-

ment area of Qionglin Reservoir is 125.42 hectares, as shown in Figure 5. The current state 
of the drainage paths in the catchment area was investigated in this study to facilitate the 
future analysis of the problem that the reservoir cannot impound. 

3.6. Field Investigation of the Dam of the Reservoir 
In order to understand the safety of the reservoir structure, an on-site visual inspec-

tion on the dam and spillway was conducted in this study, to determine whether there 
was any abnormity or other potential problems of the reservoir structure. Moreover, in 
order to understand if the cracks in the walls of the spillway stilling basin were one of the 

Figure 5. Location of 10 reservoirs in Kinmen Island. /Catchment area of Qionglin Reservoir.

Figure 6 is the comparison between water levels and rainfall of Qionglin Reservoir
from 19 December 2011 to 4 June 2019. From the observation of the above water level
changes, Qionglin Reservoir was at the dead water level before May 2013; its water level
changed significantly from May 2013 to 2017 with the rainfall; the water level changes
slightly after dropping to the dead water level in March 2018; and the water level was
around EL.22.5–23 m, despite the heavy rain in May and August 2018.
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3.5. Field Investigation of the Catchment Area of the Reservoir

The runoff of the reservoir is mainly sourced from the catchment area. The catchment
area of Qionglin Reservoir is 125.42 hectares, as shown in Figure 5. The current state of the
drainage paths in the catchment area was investigated in this study to facilitate the future
analysis of the problem that the reservoir cannot impound.

3.6. Field Investigation of the Dam of the Reservoir

In order to understand the safety of the reservoir structure, an on-site visual inspection
on the dam and spillway was conducted in this study, to determine whether there was any
abnormity or other potential problems of the reservoir structure. Moreover, in order to
understand if the cracks in the walls of the spillway stilling basin were one of the reasons
for leakage, a pumping test was carried out in this study to the spillway stilling basin.
At the end of the spillway, a pump was used to pump water from the stilling basin, and
the water replenishment after the basin drained was observed to evaluate the source and
amount of leakage.

4. Results and Analysis
4.1. Electrical Resistivity Tomography Results and Analysis
4.1.1. Field Electrical Resistivity Tomography Results

The geological distribution of strata can be examined through geological drilling to
confirm the distribution of the permeable and impermeable layers inside and outside the
dam. However, in order to find the place where leaks in the dam, the dam surface shall be
examined. Hence, in addition to geological drilling, this study carried out an electrical resis-
tivity tomography and analyzed leakage of Qionglin Reservoir through the comprehensive
comparison of the two pieces of data. In this study, two testing lines were laid out around
Qionglin Reservoir: L1 was on the west side of the dam and L2 was on the north side of
the dam. An electrical resistivity tomography was carried out in the rainy season and dry
season, respectively. The two tests were performed on 4 March and 21 August. The electrical
resistivity tomography results and analysis of the two testing lines are described as follows:

(1) Line L1

The electrical resistivity tomography results of L1 are shown in Figure 7. The resistivity
distribution was roughly two-layered, showing a low–high pattern from shallow to deep.
In the first layer, the resistivity was relatively low, and the depth was less than 8.6 m; in the
second layer, the resistivity was relatively high, and the thickness was about 3 m. The first
test was carried out a few days after rain, and it was wet below the surface; therefore, the
resistivity was very low, within 6 m below the surface. By comparing the results of the two
tests, the overall results tended to be the same with clear distinction under the depth of
6 m, except for the variables caused by rainy days. With the drilling data and the reservoir
water level of the day, it could be found that the boundary between the permeable layer
and the impermeable layer was the same as the boundary of the earth resistance between
the first layer and the second layer.
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(2) Line L2

The electrical resistivity tomography results of L2 are shown in Figure 8. The resistivity
distribution was roughly two-layered, showing a low–high pattern from shallow to deep.
In the first layer, the resistivity was relatively low, and the depth was less than 4 m; in
the second layer, the resistivity was relatively high, and the thickness was about 15 m.
The overall results of the two tests tended to be the same. With the drilling data and the
reservoir water level of the day, it could be found that the boundary between the permeable
layer and the impermeable layer was the same as the boundary of the resistance between
the first layer and the second layer.
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4.1.2. Comprehensive Analysis of Electrical Resistivity Tomography Results

The Wenner–Shlumberger array was adopted in this study for electrical resistiv-
ity tomography. This electrode arrangement method has good spatial resolution and is
suitable for low-depth investigation. According to the results of this test site, the Wenner–
Shlumberger array can provide sufficient depth and maintain good resolution for the
testing lines with a span less than 78 m and 126 m.

According to the integrated results of the electrical resistivity tomography and drilling
survey, the resistivity distribution was roughly the same as the drilling result (BH1, BH2)
distribution. For testing line L1, the first layer was impermeable, mainly composed of
CL and CH, and its resistivity was low because drainage is not easy in the clay layer and
the soil contains water; the second layer was permeable mainly composed of SC and SM,
with low resistivity when wet and high resistivity when dry. According to the comparison
between the reservoir water level and the earth resistance profile, there was no leakage on
the west side of the dam of the reservoir; therefore, the second layer had a higher resistivity
than the first layer. For testing line L2, the first layer was impermeable, composed of CL
and small amounts of CH, and its resistivity was low because drainage was not easy in the
clay layer and the soil contains water; the second layer was permeable mainly composed
of SM, with low resistivity when wet and high resistivity when dry. According to the
comparison between the reservoir water level and the earth resistance profile, there was
no leakage on the north side of the dam of the reservoir; therefore, the second layer has a
higher resistivity than the first layer. Both testing lines showed distinct distribution and a
low-to-high order, and no reservoir leakage was found.

Two tests were carried out a few days after rain and in dry weather, respectively.
According to the results of L1 and L2, the influence of the rain on the test results was roughly
at the boundary between the permeable layer and the impermeable layer, indicating that
the local geology is distinct and not leaky.

4.2. Tracer Analysis Result

In this study, sodium bromide was used as the tracer and placed near the spillway
on the right bank of the stilling basin of the reservoir in the form of a solution. Then,
TempHion Smart Sensor was placed on the left bank (outside the reservoir) and the right
bank (inside the reservoir area) of the stilling basin to detect the changes in sodium bromide
ion concentration. The tracer test was conducted at the spillway of Qionglin Reservoir from
23 January 2019 to 26 January 2019. The estimated water volume of the reservoir was about
14,000 m3, and 5 kg of tracer was added; therefore, the estimated tracer concentration in the
water was about 0.5 ppm. In addition to on-site monitoring with a receiver, three groups of
water samples were collected and sent back to the laboratory for analysis.

Figure 9 is the diachronic diagram of time-varying bromide ion concentration on the
left bank (the stilling basin outside the reservoir) and the right bank (inside the reservoir
area) measured by TempHion ISE. At the beginning, the background values of left bank
and the right bank were 0 ppm and 0.6 ppm, respectively. As the bromide ion concentration
was automatically received every 10 min, the diachronic diagram of the left bank shows
that the artificial tracer put in has no influence; while the diachronic diagram of the right
bank shows that the concentration decreases rapidly from 0.6 ppm to 0.3 ppm and then
remains between 0.3 ppm and 0.2 ppm, indicating that the right bank was not influenced by
the artificial tracer put in due to the background value of the right bank of 0.6. It indicates
that the stilling basin did not receive any signal from the artificial tracer during the test
period (from the afternoon of 23 January 2019 to the noon of 26 January 2019).
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In this study, water samples were respectively collected from the stilling basin on the
left bank and the reservoir area on the right bank on 26 January 2019 and sent back to the
laboratory for analysis. The results showed that the bromide ion concentration in the water
of the reservoir on the right bank was about 0.3 ppm, while no bromide ion concentration
was detected in the analysis of the water samples collected from the stilling basin on the
left bank. Such results were same as the bromide ion concentration results measured on the
left and right banks by TempHion ISE. Additionally, in this study, on 10 June 2019, water
samples were collected again from the reservoir area on the right bank and the stilling
basin on the left bank for testing. The results showed that the bromide ion concentration in
the water of the reservoir on the right bank had significantly decreased to 0.03 ppm, while
no bromide ion concentration was detected from the stilling basin on the left bank. Such
results were similar to those of the first analysis, but after nearly 5 months, bromide ion
concentration had significantly decreased. The tracer test results showed that no leakage
was found in the dam spillway.

4.3. Supplementary Drilling Test Results and Analysis

Based on the field drilling data and laboratory test results, the soil layer distribution
of all boreholes can be analyzed. The stratigraphic section changes of the four boreholes
in the base mainly consist of three layers: hard reddish-brown sandy clay (CL), medium-
dense yellowish-brown silty fine sand (SM) and medium-dense yellowish-brown and
greyish-white clayey fine sand (SC), from the surface to the underground. According to
the constant head permeability test in the field, the permeability coefficient K is about
2.3–4.3 × 10−4 cm/s, indicating a high permeability coefficient outside the dam.

In order to understand the relationship among reservoir water level, rainfall and
groundwater level, in this study, the two holes BH-1 and BH-2 were changed to be ground-
water observation wells after drilling, to observe the changes of groundwater level around
the reservoir. Figure 10 shows the groundwater level elevation changes. From December
2017 to January 2019, the groundwater level changed slightly, generally between EL 14.5 m
and EL 15.5 m. The maximum and minimum groundwater levels of BH-1 were EL 15.28 m
and EL 14.46 m, respectively. The maximum and minimum groundwater levels of BH-2
were EL 15.78 m and EL 14.30 m, respectively. According to Figure 10, the groundwa-
ter level did not immediately change with reservoir water level and rainfall, which only
reflected the change trend.
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Based on the data from previous drilling, water permeability tests and test pits and
the results of this drilling and water permeability test, the geological fence diagram of
Qionglin Reservoir was drawn in this study, as shown in Figure 11. The analysis results are
as follows:

(1) According to the results of the manual test pits, the Relative Compaction (RC) of the
dam is 93%, and the Relative Compaction (RC) of the dam bottom is 89–92%, which
proves that it did meet the compaction density requirements and effectively reduce
the water permeability when the reservoir bottom was backfilled.

(2) According to the results of the water permeability test, the permeability coefficient of
the dam bottom is low, meaning it does not easily leak water.

(3) The borehole in this water permeability test is located outside the reservoir with a high
permeability coefficient between 2.3 × 10−4 cm/s and 4.3 × 10−4 cm/s, indicating
good permeability outside the reservoir.

(4) The sedimentary layers of the geological section A–A’ are, from bottom to top, a
permeable layer mainly comprised of SM and an impermeable layer mainly comprised
of CL. The minimum elevation of the impermeable layer is 7 m, and the maximum
elevation is 10 m.

(5) The sedimentary layers of the geological section B–B’ are, from bottom to top, a
permeable layer mainly comprised of SM and an impermeable layer comprised of CL
and small amounts of SC and SM. The minimum elevation of the impermeable layer
is 4.5 m, and the maximum elevation is 10 m.

(6) The sedimentary layers of the geological section C–C’ are, from bottom to top, a
permeable layer mainly comprised of SM and an impermeable layer mainly comprised
of CL. The impermeable layer is about in a straight-line shape, with an elevation
about 8 m.
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(7) The sedimentary layers of the geological section D–D’ are, from bottom to top, a
permeable layer mainly comprised of SM and SC and an impermeable layer com-
prised of CH, CL and small amounts of SC and SM. The minimum elevation of the
impermeable layer is 5.5 m, and the maximum elevation is 8 m.

(8) The sedimentary layers of the geological section E–E’ are, from bottom to top, a
permeable layer mainly comprised of SM and SC and an impermeable layer comprised
of CL. The minimum elevation of the impermeable layer is 8 m, and the maximum
elevation is 13 m.

(9) The sedimentary layers of the geological section F–F’ are, from bottom to top, a
permeable layer mainly comprised of SM and an impermeable layer comprised of CL
and small amounts of SM. The minimum elevation of the impermeable layer is 8 m,
and the maximum elevation is 10 m.

(10) According to the geological drilling data and geological fence diagram, in the sedimen-
tary layers inside and outside the dam and of the reservoir bottom, their impermeable
layers cover their permeable layers. In addition, leakage improvement works have
been carried out for the reservoir, and impermeable cloth has been laid throughout
the reservoir area. Therefore, it is preliminarily concluded that Qionglin Reservoir
shall have no serious leakage.
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4.4. Long-Term Reservoir Water Level Observation Results and Analysis

In this study, the water level changes of Qionglin Reservoir were compared with
those of other reservoirs in Kinmen Island to explore whether the water level changes of
Qionglin Reservoir were reasonable and whether there was any significant leakage in the
reservoir area. The water levels, rainfall and evaporation of 10 reservoirs in the island from
19 December 2011 to 4 June 2019 were collected in this study for comparison and analysis.

Figure 12 is the comparison between water levels and rainfall of 10 Reservoir in
Kinmen Island from 19 December 2011 to 4 June 2019. The results showed that there was no
abnormal change in the water level of Qionglin Reservoir, and the rate of decline from the
high water level was not higher than that of other reservoirs (without considering the water
intake from reservoirs). According to the data from the meteorological station of Kinmen
County, the monthly evaporation of Kinmen is between 100 and 200 mm depending on the
season, and the average daily evaporation is between 3 and 6 mm. Figure 12 showed that,
from the end of October 2016 to the beginning of June 2017, the water level of Qionglin
Reservoir steadily declined. After comparing the declining trend with the rainfall and
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evaporation, it was proved that the declining trend of reservoir water level is within
a reasonable range. Based on the analysis of the above reservoir water level changes,
Qionglin Reservoir should have no serious leakage.
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4.5. Results and Analysis of the Catchment Area Investigation

In this study, an investigation was conducted to 54 detailed places in the catchment
area of Qionglin Reservoir. According to the investigation results, this area was topograph-
ically rugged, and the ridge line in the original topographic map can no longer be used
as the boundary of the catchment area. It was found that private excavations, such as
structure construction, animal husbandry and fish farm digging, are constantly carried out
in the catchment area, resulting in significant changes in the topography and landform.

An important catchment area is in the south of the reservoir, and the surface runoff
is mainly channeled to Qionglin Reservoir through three drainage culverts. However,
frequent private development in the area caused that a lot of water cannot flow into the
three drainage culverts, and most of the surface runoff either seeps into the surface or
forms a pool. Most obviously, some privately dug duck ponds have become pools, so
that the runoff from surrounding areas concentrates and no longer flows into the drainage
culverts or the reservoir. On the west side of the reservoir, the new road has blocked the
runoff into the reservoir.

Within the range of investigation, there were many ditches, most of which have been
in bad repair and overgrown with weeds, losing their guiding roles. In addition to that,
too many development cases have prevented water from flowing through the area, leaving
most ditches dry.

Therefore, according to the investigation results, much of the catchment area in the
south of the reservoir was no longer capable of collecting water and guiding surface runoff.
If the catchment area is to be used in the future, the topography and landform must be
rearranged to facilitate drainage and create paths generating gravity flows. Conversely,
water is collected and forcibly conveyed to Qionglin Reservoir by means of power.
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The catchment area on the northwest side of the reservoir is the only ditch with runoff
in this investigation, and its guiding function is still normal. As long as the path to the
reservoir is organized and improved, the water in the catchment area on the northwest
side of the reservoir can flow into the reservoir normally.

4.6. Results and Analysis of the Dam Investigation

According to the inspection on the reservoir structure in this study, there were prob-
lems, such as subsidence in some concrete slabs of the upstream slope, dislocation of and
weed growth in some expansion joints of the upstream slope, weed growth in and local
unevenness of the downstream slope, multiple cracks in the road on the dam crest, multiple
cracks in the wall on the left side of the upstream spillway, multiple cracks in the wall on
the right side of the upstream spillway, long-term water accumulation in the downstream
channel of the spillway, serious sedimentation of and weed growth in the downstream
channel of the spillway, apparent traces of water seepage in the cracks in the wall on the
left side of the downstream spillway and apparent traces of water seepage in the cracks in
the wall on the right side of the downstream spillway.

The pumping test of the spillway stilling basin was carried out on 21 February 2019.
After the stilling basin was drained, the test showed that there was no significant water
recovery in the stilling basin, and the impoundment was gradually restored to the state
before pumping until the rainfall on 2 March 2019. According to the pumping test results,
there was no significant leakage path in the cracks in the walls on the left and right sides of
the stilling basin of the downstream spillway.

4.7. Leakage Analysis

The submerged area of the Qionglin Reservoir dam is placed on the soil foundation
(multi-layer, CL). The drilling data in Section 4.3 and Figure 3 show that there is still a
thin layer in front of the dam, which may cause leakage. Therefore, this article discusses
the leakage analysis of the dam and the leakage analysis of the head difference (hydraulic
gradient) caused by the groundwater level:

Case 1: Analysis of dam leakage: when the reservoir water level is full (EL = 26.5m),
leakage will occur due to the hydraulic gradient, and at this time, the groundwater
level will raise and maintain at the bottom of the reservoir (EL = 21.5m).

The leakage analysis of the dam is as follows: the basic assumptions are as follows,
and the flow net is shown in Figure 13.

(1) The permeability coefficient of the reservoir bottom and the dam K = 1 × 10−5 cm/s.
(2) The permeable layer at the bottom of the reservoir is assumed to be 30 m deep.
(3) The dam leakage analysis width is 400 m.
(4) Where I = hydraulic gradient, A = grid area, Nf = number of flow channel, Nq = number

of potential drop, h = the difference between upstream and downstream heads,
L = Seepage path length.

Nq = 6 Nf = 3.3 h = 4.5

q = k i A = k ·N f
Nq

·h = 1 × 10−5 × 10−2 × 3.3
6

× 4.5 = 2.475 × 10−6 m3/s

Calculation the annual seepage volume, when the dam leakage width is set to be
400 m,

Q = 400 × 2.475 × 10−6 × 86,400 × 365 = 3.1 × 104 m3/year = 31,000 m3/year
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Figure 13. Seepage flow net diagram of dam and dam foundation of Qionglin Reservoir.

Case 2: Leakage analysis at the bottom of the reservoir: if the reservoir does not have
water all year round and the ground water recharge is insufficient, the ground-
water level will not be maintained on the ground but will be located at between
EL = 21.5–14.5m.

The leakage amount analysis of the reservoir bottom is as follows: the basic assump-
tions are as follows

(1) Permeability coefficient of the reservoir bottom K = 1 × 10−5 cm/s
(2) The average thickness of the impermeable layer (CL) at the bottom of the reservoir is

5 m
(3) The average submerged area of the reservoir bottom is A = 51,371 m2 (where

A = 3355 m2 (EL = 21.5), A = 99,387 m2 (EL = 26))

q = k i A = K
h
L

A

= 1 × 10−5 × 10−2 × 7
5
× 51371

= 7.2 × 10−3 m3/s

= 2.27 × 104 m3/year

From the above calculation, it can be seen that when Qionglin Reservoir is full all
year round, the annual leakage of the dam is 31,000 m3/year. However, when there is
a small amount of water in the reservoir all the year round, leakage occurs due to the
hydraulic gradient of groundwater, the annual leakage is 22,700 m3/year in the bottom of
the reservoir. Although all the leakage is not large, the reservoir management unit must pay
attention to this problem, such as by implementing the leakage prevention improvement
project at the bottom of the reservoir.

5. Conclusions and Suggestions
5.1. Conclusions

In order to investigate whether there is any leakage and abnormal impoundment
function in Qionglin Reservoir, a series of tests and investigations were conducted in this
study, including electrical resistivity tomography, tracer leakage test, geological drilling
test, long-term observation of reservoir water level and analysis, field investigation of
the catchment area and dam of the reservoir, and pumping test of downstream stilling
basin. The test results and investigation results showed that no leakage path and leakage
were found. In this study, the earth resistance shows no significant leakage path in the
dam; therefore, it was estimated that there should be no leakage in the dam. According
to the tracer test, the dam and spillway structure was still in good condition, and there
was no significant leakage path. By comparing the geological drilling data of four new
holes with the existing drilling results, the soil distribution in strata is basically the same.
According to relevant tests, there is a CL impermeable layer about 5 m thick at the bottom
of the reservoir (permeability coefficient 10−5–10−6 cm/s), indicating that it did meet the
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compaction density requirements and effectively reduced the water permeability when the
reservoir bottom was backfilled. In addition, large-scale leakage is less likely to happen
after the leakage prevention and improvement works. Based on the long-term observation
of the reservoir water level, it is estimated that the leakage loss of the reservoir is about
200–500 tons per day, in a reasonable evaporation range. According to the inspection of the
existing concrete structure of the reservoir, there are significant leakage traces in the walls
on the left and right sides of the downstream spillway, and water constantly accumulates in
the stilling basin at the bottom of the spillway. Therefore, this study conducts a tracer test to
determine whether there are some leakage paths and a pumping test to examine the leakage.
According to the test results, at the current low water level, the spillway is still in good
condition, and there is no significant leakage path. Based on the long-term observation
of the reservoir water level, compared with the water level changes of other reservoirs
in the island, the water level changes of Qionglin Reservoir are normal. Moreover, after
comparing it with all reservoirs and comparing its declining trend with the precipitation
and evaporation, the reservoir water level trend is within a reasonable range. Based on
the above series of tests and investigations, Qionglin Reservoir has no serious leakage, the
spillway and dam are in good condition, and no significant leakage path is found.

Although no significant leakage was found according to the test and investigation
results, the field investigation in this study shows that the continuous human exploitation
in the catchment area has greatly changed the topography and landform, and many
ditches and low-lying lands in the catchment area have become dry. On the west side
of the reservoir, the new built road has blocked the inflow of runoff. On the south side
of the reservoir, due to the existing topographic changes, trench terrain destruction and
discontinuous rainfall, it is difficult to create runoff to replenish the reservoir water level. In
the catchment area on the south side of the reservoir, due to the lack of overall agricultural
drain planning, water storage by farmers of some agricultural ponds for irrigation, it
is difficult to replenish the water in the catchment area to the reservoir. At present, the
catchment area is continuously reduced due to development behaviors, and the agricultural
husbandry, farming and public works construction in the catchment area have negative
influences on the runoff into the reservoir, and it may be difficult for the discontinuous
rainfall to create the runoff to replenish the reservoir water level.

5.2. Suggestions

Leakage is the most serious problem in reservoir operation, because heavy leakage
influences reservoir impoundment efficiency and even leads to a complete loss of reservoir
functions. A reservoir leaks for complicated reasons. Once there is any leakage, a com-
prehensive and thorough inspection must be carried out for the reservoir, to find out the
causes of leakage and to improve according to the causes of leakage. Wrong improvements
which cannot solve leakage and waste a lot of money should be avoided.

Since its completion in 1982, Qionglin Reservoir has never been fully filled with
water except in the spring of 1983 when it was full of water due to heavy rain. The
reservoir management unit suspected that its side slopes, bottom or dam might leak
and carried out a number of leakage prevention and improvement works, but all of
them failed to fulfill the impoundment of the reservoir. Hence, through a series of tests
and investigations, this study attempts to find out the reasons why the reservoir cannot
impound water. According to the results of tests and the investigation, no leakage path
and leakage have been found. By analysis, the reservoir has no serious leakage. The main
reason for the failure of impoundment is the improper development of the catchment
area, which influences the runoff flowing into the reservoir. Hence, it is suggested in this
study that, the reservoir management unit should not spend a lot of money on leakage
improvement, and improvements should be made in the future according to the reasons
why the reservoir cannot impound, including the overall catchment project works in the
catchment area, the water interception and diversion works planning to replenish the
reservoir water and the reservoir structure crack reinforcement works. In the future, we
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can also try to investigate the interaction between Qionglin Reservoir and groundwater
through numerical simulation [26,27]. When Qionglin Reservoir is full all year round or
when there is a small amount of water in the reservoir all the year round, leakage occurs
due to the hydraulic gradient of groundwater. Although all the leakage is not large, the
reservoir management unit must pay attention to this problem, such as by implementing
the leakage prevention improvement project at the bottom of the reservoir.
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