Nonlinear Shear Effects of the Secondary Current in the 2D Flow Analysis in Meandering Channels with Sharp Curvature
Abstract
:1. Introduction
2. Theoretical Studies
2.1. Two-Dimensional Flow Modeling in Meandering Channels
2.2. Vertical Profile Equations for Secondary Currents
2.3. Derivation of the Vertical Profile of the Secondary Currents
3. Experiments
3.1. Acquisition of the Field Data
3.2. Data Analysis of Secondary Currents in the Meandering Channels
3.3. Validation of Transverse Velocity Profile
4. Model Applications
4.1. Development of the 2D Numerical with the Dispersion Stress Term
4.2. Validation Using the Rozovskii Channel
4.3. Validation Using REC Meandering Channel Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henderson, F.M. Open Channel Flow; MacMillian Publishing Company: New York, NY, USA, 1966. [Google Scholar]
- Blanckaert, K.; Graf, W.H. Momentum transport in sharp open-channel bends. J. Hydraul. Eng. 2004, 130, 186–198. [Google Scholar] [CrossRef]
- Lien, H.C.; Hsieh, T.Y.; Yang, J.C.; Yeh, K.C. Bend flow simulation using 2D depth-averaged model. J. Hydraul. Eng. 1999, 125, 1097–1108. [Google Scholar] [CrossRef] [Green Version]
- Blanckaert, K.; de Vriend, H.J. Meander dynamics: A nonlinear model without curvature restrictions for flow in open-channel bends. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Rozovskii, I.L. Flow of Water in Bends of Open Channels; Academy of Science of Ukrainian SSR: Moscow, Russia, 1957. [Google Scholar]
- Kikkawa, H.; Ikeda, S.; Kitagawa, A. Flow and bed topography in curved open channels. J. Hydraul. Div. 1976, 102, 1327–1342. [Google Scholar] [CrossRef]
- de Vriend, H.J. A mathematical model of steady flow in curved shallow channels. J. Hydraul. Res. 1977, 15, 37–54. [Google Scholar] [CrossRef]
- Odgaard, A.J. Meander flow model. I: Development. J. Hydraul. Eng. 1986, 112, 1117–1136. [Google Scholar] [CrossRef]
- Johannesson, H.; Parker, G. Secondary flow in mildly sinuous channel. J. Hydraul. Eng. 1989, 115, 289–309. [Google Scholar] [CrossRef]
- Yeh, K.C.; Kennedy, J.F. Momentum model of nonuniform channel bend flow I: Fixed beds. J. Hydraul. Eng. 1993, 119, 776–795. [Google Scholar] [CrossRef] [Green Version]
- Gharmry, H.K.; Steffler, P.M. Two dimensional vertically averaged and moment equations for rapidly varied flows. J. Hydraul. Res. 2002, 40, 579–587. [Google Scholar] [CrossRef]
- Vasquez, J.A.; Millar, R.G.; Steffler, P.M. Vertically-averaged and moment of momentum model for alluvial bend morphology. In Proceedings of the 4th IAHR Symposium on River, Coastal and Esturarine Morphodynamics, Urbana, IL, USA, 4–7 October 2005; Taylor & Francis: London, UK, 2005; pp. 711–718. [Google Scholar]
- Jin, Y.C.; Steffler, P.M. Predicting flow in curved open channels by depth-averaged method. J. Hydraul. Eng. 1993, 119, 109–124. [Google Scholar] [CrossRef]
- Bernard, R.S.; Schneider, M.L. Depth Averaged Numerical Modeling for Curved Channels; Technical Report HL 92-9; US Army Corps Engineers: Washington, DC, USA, 1992. [Google Scholar]
- Finnie, J.; Donnell, B.; Letter, J.; Bernard, R.S. Secondary flow correction for depth-averaged flow calculations. J. Eng. Mech. 1999, 125, 848–863. [Google Scholar] [CrossRef]
- Begnudelli, L.; Valiani, A.; Sanders, B.F. A balanced treatment of secondary currents, turbulence and dispersion in a depth-integrated hydrodynamic and bed deformation model for channel bends. Adv. Water Resour. 2010, 33, 17–33. [Google Scholar] [CrossRef]
- Duan, J.G. Simulation of flow and mass dispersion in meandering channels. J. Hydraul. Eng. 2004, 130, 964–976. [Google Scholar] [CrossRef]
- Song, C.G.; Seo, I.W.; Kim, Y.D. Analysis of secondary current effect in the modelling of shallow water flow in open channels. Adv. Water Resour. 2012, 41, 29–48. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Lu, W.Z.; Zhou, S.F.; Wang, X.K. Impact of dissipation and dispersion terms on simulations of open channel confluence flow using two-dimensional depth averaged model. Hydrol. Process. 2014, 28, 3230–3240. [Google Scholar] [CrossRef]
- Akhtar, M.P.; Sharma, N.; Ojha, C.S.P. 2-D depth averaged modelling for curvilinear braided stretch of river Brahmaputra in India. Int. J. Res. Eng. Adv. Technol. 2015, 3, 217–230. [Google Scholar]
- Chen, C.H.; Lin, Y.T.; Chung, H.R.; Hsieh, T.Y.; Yang, J.C.; Lu, J.Y. Modelling of hyperconcentrated flow in steep-sloped channels. J. Hydraul. Res. 2018, 56, 380–398. [Google Scholar] [CrossRef]
- Qin, C.; Shao, X.; Zhou, G. Comparison of two different secondary flow correction models for depth-averaged flow simulation of meandering channels. Procedia Eng. 2016, 154, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Shao, X.; Xiao, Y. Secondary Flow Effects on Deposition of Cohesive Sediment in a Meandering Reach of Yangtze River. Water 2019, 11, 1444. [Google Scholar] [CrossRef] [Green Version]
- Ottevanger, W.; Blanckaert, K.J.; Uijttewaal, W.S.; de Vriend, H.J. Meander dynamics: A reduced-order nonlinear model without curvature restrictions for flow and bed morphology. J. Geophys. Res. Earth Surf. 2013, 118, 1118–1131. [Google Scholar] [CrossRef] [Green Version]
- Nikora, V.I.; Stoesser, T.; Cameron, S.M.; Stewart, M.; Papadopoulos, K.; Ouro, P.; McSherry, R.; Zampiron, A.; Marusic, I.; Falconer, R.A. Friction factor decomposition for rough-wall flows: Theoretical background and application to open-channel flows. J. Fluid Mech. 2019, 872, 626–664. [Google Scholar] [CrossRef] [Green Version]
- Blanckaert, K.; de Vriend, H.J. Nonlinear modeling of mean flow redistribution in curved open channels. Water Resour. Res. 2003, 39, 1375–1389. [Google Scholar] [CrossRef]
- Wei, M.; Blanckaert, K.; Heyman, J.; Li, D.; Schleiss, A.J. A parametrical study on secondary flow in sharp open-channel bends: Experiments and theoretical modeling. J. Hydro-Environ. Res. 2016, 13, 1–13. [Google Scholar] [CrossRef]
- Baek, K.O.; Seo, I.W.; Jung, S.J. Evaluation of transverse dispersion coefficient in meandering channel from transient tracer tests. J. Hydraul. Eng. 2006, 132, 1021–1032. [Google Scholar] [CrossRef]
- Baek, K.O.; Seo, I.W. Prediction of transverse dispersion coefficient using vertical profile of secondary flow in meandering channels. KSCE J. Civ. Eng. 2008, 12, 417–426. [Google Scholar] [CrossRef]
- Seo, I.W.; Jung, Y.J. Velocity Distribution of Secondary Currents in Curved Channels. J. Hydrodyn. Ser. B 2010, 22, 617–622. [Google Scholar] [CrossRef]
- Kikkawa, H.; Ikeda, S.; Ohkawa, H.; Kawamura, Y. Secondary flow in a bend of turbulent stream. Proc. Jpn. Soc. Civ. Eng. 1973, 219, 107–114. [Google Scholar] [CrossRef]
- Chang, H.H. Fluvial Processes in River Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Pix4D. Pix4Dmapper User Manual; Pix4D: Lausanne, Switzerland, 2013. [Google Scholar]
- Sontek YSI. RiverSurveyor S5/M9 System Manual; Sontek YSI: San Diego, CA, USA, 2015. [Google Scholar]
- Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D. Velocity Mapping Toolbox (VMT): A processing and visualization suite for moving-vessel ADCP measurements. Earth Surf. Process. Landf. 2013, 38, 1244–1260. [Google Scholar] [CrossRef]
- Rhoads, B.L.; Kenworthy, S.T. Time-averaged flow structure in the central region of a stream confluence. Earth Surf. Process. Landf. 1998, 23, 171–191. [Google Scholar] [CrossRef]
- Lane, S.N.; Bradbrook, K.F.; Richards, K.S.; Biron, P.A.; Roy, A.G. The application of computational fluid dynamics to natural river channels: Three-dimensional versus two-dimensional approaches. Geomorphology 1999, 29, 1–20. [Google Scholar] [CrossRef]
- Agoshkov, V.I.; Ambrosi, D.; Pennati, V.; Quarteroni, A.; Saleri, F. Mathematical and numerical modelling of shallow water flow. Comput. Mech. 1993, 11, 280–299. [Google Scholar] [CrossRef]
- Seo, I.W.; Kim, Y.D.; Song, C.G. Validation of depth-averaged flow model using flat-bottomed benchmark problems. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.J. Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations. Int. J. Numer. Methods Fluids 1987, 7, 1261–1275. [Google Scholar] [CrossRef]
- Yu, C.C.; Heinrich, J.C. Petrov—Galerkin method for multidimensional, time-dependent, convective-diffusion equations. Int. J. Numer. Methods Eng. 1987, 24, 2201–2215. [Google Scholar] [CrossRef]
- Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
Case | Flume (Sinuosity) | Experiment Date | Discharge (CMS) | Section | U (m/s) | W (m) | H (m) |
---|---|---|---|---|---|---|---|
A3-E11 | A312 (Sn = 1.2) | 31 March 2016 | 1.61 | 1 | 0.61 | 6.03 | 0.54 |
2 | 0.58 | 6.11 | 0.55 | ||||
3 | 0.68 | 5.91 | 0.47 | ||||
4 | 0.66 | 5.97 | 0.43 | ||||
5 | 0.64 | 6.13 | 0.47 | ||||
6 | 0.67 | 6.01 | 0.46 | ||||
A3-E21 | A315 (Sn = 1.5) | 25 April 2016 | 1.01 | 1 | 0.60 | 5.46 | 0.48 |
2 | 0.47 | 5.21 | 0.45 | ||||
3 | 0.64 | 4.94 | 0.38 | ||||
4 | 0.49 | 4.92 | 0.41 | ||||
5 | 0.40 | 4.99 | 0.52 | ||||
6 | 0.49 | 4.75 | 0.42 | ||||
A3-E22 | A317 (Sn = 1.7) | 26 April 2016 | 0.82 | 1 | 0.43 | 4.63 | 0.45 |
2 | 0.39 | 4.96 | 0.49 | ||||
3 | 0.42 | 5.23 | 0.45 | ||||
4 | 0.36 | 5.22 | 0.49 | ||||
5 | 0.40 | 4.91 | 0.42 | ||||
6 | 0.41 | 4.99 | 0.43 | ||||
A3-E31 | A315 (Sn = 1.5) | 8 September 2016 | 1.45 | 1 | 0.63 | 5.37 | 0.43 |
2 | 0.50 | 5.80 | 0.48 | ||||
3 | 0.63 | 5.24 | 0.47 | ||||
4 | 0.49 | 5.52 | 0.54 | ||||
5 | 0.59 | 5.59 | 0.45 | ||||
6 | 0.58 | 5.54 | 0.47 | ||||
A3-E32 | A317 (Sn = 1.7) | 9 September 2016 | 1.26 | 1 | 0.47 | 5.73 | 0.51 |
2 | 0.42 | 5.90 | 0.53 | ||||
3 | 0.43 | 5.81 | 0.52 | ||||
4 | 0.39 | 6.08 | 0.56 | ||||
5 | 0.45 | 5.85 | 0.50 | ||||
6 | 0.43 | 5.84 | 0.51 |
Case | Section | RMSE | This Study (R2) | ||||
---|---|---|---|---|---|---|---|
Rozovskii [5] | Kikkawa [6] | de Vriend [7] | Odgaard [8] | This Study | |||
A3-E21 | 2 | 3.03 | 2.41 | 3.14 | 2.63 | 2.14 | 0.984 |
4 | 4.68 | 5.02 | 5.84 | 5.18 | 3.77 | 0.926 | |
6 | 3.35 | 2.77 | 3.29 | 2.47 | 2.32 | 0.986 | |
A3-E22 | 2 | 4.56 | 4.34 | 4.03 | 4.35 | 3.58 | 0.972 |
4 | 3.70 | 5.34 | 3.84 | 2.62 | 2.64 | 0.978 | |
6 | 4.85 | 3.89 | 3.18 | 3.74 | 3.92 | 0.962 | |
A3-E31 | 2 | 3.85 | 4.06 | 6.02 | 5.58 | 3.64 | 0.947 |
4 | 3.01 | 4.52 | 4.39 | 4.40 | 3.28 | 0.961 | |
6 | 3.12 | 3.97 | 4.06 | 2.60 | 3.26 | 0.978 | |
A3-E32 | 2 | 4.41 | 3.63 | 3.19 | 5.17 | 3.52 | 0.986 |
4 | 4.82 | 3.78 | 3.87 | 6.41 | 4.28 | 0.991 | |
6 | 5.94 | 3.61 | 2.98 | 6.01 | 2.51 | 0.958 | |
Average | 4.11 | 3.95 | 3.99 | 4.26 | 3.24 | 0.969 |
Model/Degree | 143° | 186° | Average |
---|---|---|---|
Without DS | 8.7% | 16.2% | 12.5% |
With DS (de Vriend, 1977) | 7.6% | 14.3% | 10.9% |
With DS (This study) | 5.6% | 10.4% | 8.0% |
Grid | Very Fine | Fine | Medium | Coarse |
---|---|---|---|---|
Number of nodes | 6120 | 3060 | 1648 | 525 |
Error (MAPE) | 14.8% | 16.2% | 22.4% | 34.1% |
Case | A3-E21 | A3-E22 | A3-E31 | A3-E32 | Average |
---|---|---|---|---|---|
Without DS | 10.2% | 15.0% | 11.5% | 14.8% | 12.9% |
With DS | 8.1% | 11.8% | 9.4% | 12.4% | 10.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.; Seo, I.W. Nonlinear Shear Effects of the Secondary Current in the 2D Flow Analysis in Meandering Channels with Sharp Curvature. Water 2021, 13, 1486. https://doi.org/10.3390/w13111486
Shin J, Seo IW. Nonlinear Shear Effects of the Secondary Current in the 2D Flow Analysis in Meandering Channels with Sharp Curvature. Water. 2021; 13(11):1486. https://doi.org/10.3390/w13111486
Chicago/Turabian StyleShin, Jaehyun, and Il Won Seo. 2021. "Nonlinear Shear Effects of the Secondary Current in the 2D Flow Analysis in Meandering Channels with Sharp Curvature" Water 13, no. 11: 1486. https://doi.org/10.3390/w13111486
APA StyleShin, J., & Seo, I. W. (2021). Nonlinear Shear Effects of the Secondary Current in the 2D Flow Analysis in Meandering Channels with Sharp Curvature. Water, 13(11), 1486. https://doi.org/10.3390/w13111486