An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery
Abstract
:1. Introduction
2. Data Source
3. Methods
3.1. Analysis of the Spectral Response Mechanism
3.2. A Method of Automatic Threshold Determination
3.3. The Contrast Value between Water Bodies and Nonwater Bodies
3.4. Accuracy Assessment Method
4. Results
4.1. Comparison of the Water Indices Enhancement Performance
4.2. Validation of the Effectiveness of the Water Index
4.3. Water Body Extraction Performance
4.4. Accuracy Assessment
5. Discussion
6. Conclusions
- (1)
- Compared with NDWI, the SWI calculated using vegetation-sensitive red-edge and SWIR bands can achieve better enhancement performance for various water body types, including purer water, turbid water, salt water, and floating ice. The contrast values between water bodies and nonwater bodies of the SWI are larger than those of the NDWI, which indicates that the SWI can effectively separate different types of water bodies and nonwater bodies;
- (2)
- The integration of the SWI and Otsu algorithm is an effective method for accurately extracting various water body types. Visual evaluation suggests that the extraction accuracy of the SWI is better than that of the NDWI for Chaka Salt Lake and Chain Lake. Quantitative assessment shows that the overall accuracy of water body extraction using SWI for Taihu Lake and the Yangtze River (92.75% and 93%, respectively) is higher than that using the NDWI;
- (3)
- Although the water body extraction spatial resolution of the SWI is 20 m, the extraction performance of the SWI is better than that of the NDWI with a resolution of 10 m. Moreover, the new method can effectively extract large water bodies and wide river channels by eliminating shadow noise in urban areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, M.; Sexton, J.O.; Channan, S.; Townshend, J.R. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm. Int. J. Digit. Earth. 2016, 9, 113–133. [Google Scholar] [CrossRef] [Green Version]
- Sekertekin, A. A Survey on Global Thresholding Methods for Mapping Open Water Body Using Sentinel-2 Satellite Imagery and Normalized Difference Water Index. Arch. Comput. Method Eng. 2019, 13, 13. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Pang, Z.; Guo, H.; Long, T.; Ni, Y. Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery. Remote Sens. Lett. 2020, 11, 265–273. [Google Scholar] [CrossRef]
- Yue, H.; Li, Y.; Qian, J.X.; Liu, Y. A new accuracy evaluation method for water body extraction. Int. J. Remote Sens. 2020, 41, 1–32. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Ni, Y.; Liu, H.; Peng, Y.; Lv, K.; Wang, G. Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images. Remote Sens. 2018, 10, 755. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Trigg, M.A. HYDROLOGY The dynamics of Earth’s surface water. Nature 2016, 540, 348–349. [Google Scholar] [CrossRef] [Green Version]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth’s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Guo, H.; He, G.; Jiang, W.; Yin, R.; Yan, L.; Leng, W. A Multi-Scale Water Extraction Convolutional Neural Network (MWEN) Method for GaoFen-1 Remote Sensing Images. ISPRS Int. J. Geo-Inform. 2020, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; He, G.; Pang, Z.; Long, T.; Fu, J.; Guo, H.; Ni, Y. Verification and analysis of surface water in China based on Landsat8 OLI images. IOP Conf. Ser. Earth Environ. Sci. 2020, 502, 012030. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.Y.; Gong, P.; Geng, X.R.; Zhao, Y.C. Improving the Accuracy of the Water Surface Cover Type in the 30 m FROM-GLC Product. Remote Sens. 2015, 7, 13507–13527. [Google Scholar] [CrossRef] [Green Version]
- Liao, A.P.; Chen, L.J.; Chen, J.; He, C.Y.; Cao, X.; Chen, J.; Peng, S.; Sun, F.D.; Gong, P. High-resolution remote sensing mapping of global land water. Sci. China-Earth Sci. 2014, 57, 2305–2316. [Google Scholar] [CrossRef]
- Sekertekin, A. Potential of global thresholding methods for the identification of surface water resources using Sentinel-2 satellite imagery and normalized difference water index. J. Appl. Remote Sens. 2019, 13. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Wang, Z.F.; Liu, J.G.; Li, J.B.; Zhang, D.D. Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sens. 2018, 10, 1643. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Li, W.; Zhou, D.; Tian, L.; Ling, F.; Wang, H.; Gui, Y.; Sun, B. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 2014, 5, 672–681. [Google Scholar] [CrossRef]
- Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface Water Mapping by Deep Learning. IEEE J. Sel. Top. Appl. Earth. Observ. Remote Sens. 2017, 10. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Wu, J.P.; Li, L.Y.; Liu, R. An evaluation of Suomi NPP-VIIRS data for surface water detection. Remote Sens. Lett. 2015, 6, 155–164. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Y.; Zhang, S.; Li, L.; Shi, K.; Liu, R. Surface Water Mapping from Suomi NPP-VIIRS Imagery at 30 m Resolution via Blending with Landsat Data. Remote Sens. Lett. 2016, 8, 631. [Google Scholar] [CrossRef] [Green Version]
- Bijeesh, T.V.; Narasimhamurthy, K.N. Surface water detection and delineation using remote sensing images: A review of methods and algorithms. Sustain. Water Resour. Manag. 2020, 6. [Google Scholar] [CrossRef]
- Huang, X.; Xie, C.; Fang, X.; Zhang, L.P. Combining Pixel- and Object-Based Machine Learning for Identification of Water-Body Types From Urban High-Resolution Remote-Sensing Imagery. IEEE J. Sel. Top. Appl. Earth. Observ. Remote Sens. 2015, 8, 2097–2110. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.W.; Xiao, X.M.; Xiao, T.; Yang, Z.Q.; Zhao, G.S.; Zou, Z.H.; Qin, Y.W. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- Lu, S.L.; Wu, B.F.; Yan, N.N.; Wang, H. Water body mapping method with HJ-1A/B satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 428–434. [Google Scholar] [CrossRef]
- Fisher, A.; Danaher, T. A Water Index for SPOT5 HRG Satellite Imagery, New South Wales, Australia, Determined by Linear Discriminant Analysis. Remote Sens. 2013, 5, 5907–5925. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; He, H.X.; Yu, C.H.; Zhang, W.; Li, L.Y.; Meng, L.K. Using the modified two-mode method to identify surface water in Gaofen-1 images. J. Appl. Remote Sens. 2018, 13, 16. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Yang, X.C.; Qin, Q.M.; Yesou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 2020, 244, 23. [Google Scholar] [CrossRef]
- Wieland, M.; Martinis, S. Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany. Int. J. Remote Sens. 2020, 41, 4740–4754. [Google Scholar] [CrossRef]
- Liu, Q.H.; Huang, C.; Shi, Z.L.; Zhang, S.Q. Probabilistic River Water Mapping from Landsat-8 Using the Support Vector Machine Method. Remote Sens. 2020, 12, 1374. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.H.; Ling, F.; Wang, Q.M.; Li, W.B.; Li, X.D. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.C.; Chen, L. Evaluation of automated urban surface water extraction from Sentinel-2A imagery using different water indices. J. Appl. Remote Sens. 2017, 11, 11. [Google Scholar] [CrossRef]
- Yang, X.C.; Zhao, S.S.; Qin, X.B.; Zhao, N.; Liang, L.G. Mapping of Urban Surface Water Bodies from Sentinel-2 MSI Imagery at 10 m Resolution via NDWI-Based Image Sharpening. Remote Sens. 2017, 9, 596. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Caballero, I.; Ruiz, J.; Navarro, G. Sentinel-2 Satellites Provide Near-Real Time Evaluation of Catastrophic Floods in the West Mediterranean. Water 2019, 11, 2499. [Google Scholar] [CrossRef] [Green Version]
- Bishop-Taylor, R.; Sagar, S.; Lymburner, L.; Alam, I.; Sixsmith, J. Sub-Pixel Waterline Extraction: Characterising Accuracy and Sensitivity to Indices and Spectra. Remote Sens. 2019, 11, 2984. [Google Scholar] [CrossRef] [Green Version]
- Bioresita, F.; Puissant, A.; Stumpf, A.; Malet, J.P. Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping. Int. J. Remote Sens. 2019, 40, 9026–9049. [Google Scholar] [CrossRef]
- Yang, X.C.; Chen, Y.; Wang, J.Z. Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sens. Lett. 2020, 11, 687–696. [Google Scholar] [CrossRef]
- Bie, W.J.; Fei, T.; Liu, X.Y.; Liu, H.Z.; Wu, G.F. Small water bodies mapped from Sentinel-2 MSI (MultiSpectral Imager) imagery with higher accuracy. Int. J. Remote Sens. 2020, 41, 7912–7930. [Google Scholar] [CrossRef]
- Yang, X.C.; Qin, Q.M.; Grussenmeyer, P.; Koehl, M. Urban surface water body detection with suppressed built-up noise based on water indices from Sentinel-2 MSI imagery. Remote Sens. Environ. 2018, 219, 259–270. [Google Scholar] [CrossRef]
Bands | Wavelength Range/µm | Spatial Resolution/m |
---|---|---|
Band 1—Coastal aerosol | 0.433–0.453 | 60 |
Band 2—Blue | 0.4575–0.5225 | 10 |
Band 3—Green | 0.5425–0.5775 | 10 |
Band 4—Red | 0.65–0.68 | 10 |
Band 5—Vegetation Red Edge 1 (VRE1) | 0.6975–0.7125 | 20 |
Band 6—Vegetation Red Edge 2 (VRE2) | 0.7325–0.7475 | 20 |
Band 7—Vegetation Red Edge 3 (VRE3) | 0.773–0.793 | 20 |
Band 8—Near-infrared (NIR) | 0.7845–0.8995 | 10 |
Band 8A—Vegetation Red Edge 4 | 0.855–0.875 | 20 |
Band 9—Water Vapor | 0.935–0.955 | 60 |
Band 10—Shortwave Infrared 1 (SWIR 1) | 1.36–1.39 | 60 |
Band 11—Shortwave Infrared 2 (SWIR 2) | 1.565–1.655 | 20 |
Band 12—Shortwave Infrared 3 (SWIR 3) | 2.1–2.28 | 20 |
Study Area | Location | Satellite Type | Data Acquisition | Land Cover Description |
---|---|---|---|---|
A | Taihu Lake | Sentinel-2A | 28 February 2017 | River channel, lakes, and urban water bodies surrounded by the vegetation and buildings. |
B | Yangtze River | Sentinel-2A | 28 February 2017 | Rivers, offshore, and sediment-polluted surrounded by the farmland. |
C | Chaka Salt Lake | Sentinel-2A | 30 July 2016 | Salt water surrounded by the bare land. |
D | Chain Lake | Sentinel-2A | 9 April 2017 | Lake clusters and reservoirs surrounded by the bare land and vegetation. |
Study Area | NDWI | SWI | ||||
---|---|---|---|---|---|---|
Water | Nonwater | CV | Water | Nonwater | CV | |
Taihu Lake | 0.38 | −0.20 | 0.58 | 0.78 | −0.12 | 0.90 |
Yangtze River | 0.22 | −0.23 | 0.45 | 0.89 | −0.09 | 0.98 |
Chaka Salt Lake | 0.13 | −0.21 | 0.34 | 0.81 | −0.17 | 0.98 |
Chain Lake | 0.34 | −0.26 | 0.60 | 0.84 | −0.31 | 1.15 |
Study Area | Producer’s Accuracy | User’s Accuracy | Overall Precision | Kappa | |||
---|---|---|---|---|---|---|---|
Water | Nonwater | Water | Nonwater | Accuracy | Coefficient | ||
Taihu Lake | NDWI | 95.80% | 89.68% | 79.72% | 98.05% | 91.50% | 0.808 |
SWI | 99.11% | 90.28% | 79.86% | 99.62% | 92.75% | 0.833 | |
Yangtze River | NDWI | 96.43% | 81.63% | 72.65% | 97.83% | 86.6% | 0.722 |
SWI | 98.11% | 89.63% | 86.19% | 98.63% | 93% | 0.868 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Ni, Y.; Pang, Z.; Li, X.; Ju, H.; He, G.; Lv, J.; Yang, K.; Fu, J.; Qin, X. An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water 2021, 13, 1647. https://doi.org/10.3390/w13121647
Jiang W, Ni Y, Pang Z, Li X, Ju H, He G, Lv J, Yang K, Fu J, Qin X. An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water. 2021; 13(12):1647. https://doi.org/10.3390/w13121647
Chicago/Turabian StyleJiang, Wei, Yuan Ni, Zhiguo Pang, Xiaotao Li, Hongrun Ju, Guojin He, Juan Lv, Kun Yang, June Fu, and Xiangdong Qin. 2021. "An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery" Water 13, no. 12: 1647. https://doi.org/10.3390/w13121647
APA StyleJiang, W., Ni, Y., Pang, Z., Li, X., Ju, H., He, G., Lv, J., Yang, K., Fu, J., & Qin, X. (2021). An Effective Water Body Extraction Method with New Water Index for Sentinel-2 Imagery. Water, 13(12), 1647. https://doi.org/10.3390/w13121647