Hydrological Modeling in Water Cycle Processes
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Paul, A. The Importance of Hydrological Cycle on Earth. Bhatter Coll. J. Multidiscip. Stud. 2014, 4, 8. [Google Scholar]
- Singh, V.P. Hydrologic Modeling: Progress and Future Directions. Geosci. Lett. 2018, 5, 15. [Google Scholar] [CrossRef]
- Wang, W.; Liu, J.; Li, C.; Liu, Y.; Yu, F.; Yu, E. An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time. Water 2020, 12, 1209. [Google Scholar] [CrossRef]
- Szilagyi, J. Water Balance Backward: Estimation of Annual Watershed Precipitation and Its Long-Term Trend with the Help of the Calibration-Free Generalized Complementary Relationship of Evaporation. Water 2020, 12, 1775. [Google Scholar] [CrossRef]
- Zhu, B.; Huang, Y.; Zhang, Z.; Kong, R.; Tian, J.; Zhou, Y.; Chen, S.; Duan, Z. Evaluation of TMPA Satellite Precipitation in Driving VIC Hydrological Model over the Upper Yangtze River Basin. Water 2020, 12, 3230. [Google Scholar] [CrossRef]
- Zhao, C.; Ren, L.; Yuan, F.; Zhang, L.; Jiang, S.; Shi, J.; Chen, T.; Liu, S.; Yang, X.; Liu, Y.; et al. Statistical and Hydrological Evaluations of Multiple Satellite Precipitation Products in the Yellow River Source Region of China. Water 2020, 12, 3082. [Google Scholar] [CrossRef]
- Dang, C.; Zhang, H.; Singh, V.P.; Yu, Y.; Shao, S. Investigating Hydrological Variability in the Wuding River Basin: Implications for Water Resources Management under the Water–Human-Coupled Environment. Water 2021, 13, 184. [Google Scholar] [CrossRef]
- Wang, W.; Wang, T.; Cui, W.; Yao, Y.; Ma, F.; Chen, B.; Wu, J. Changes of Flow and Sediment Transport in the Lower Min River in Southeastern China under the Impacts of Climate Variability and Human Activities. Water 2021, 13, 673. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Ji, G.; Yue, Y. Quantifying the Impacts of Climate Change and Human Activities on Runoff in the Lancang River Basin Based on the Budyko Hypothesis. Water 2020, 12, 3501. [Google Scholar] [CrossRef]
- Wen, Q.; Sun, P.; Zhang, Q.; Li, H. Nonstationary Ecological Instream Flow and Relevant Causes in the Huai River Basin, China. Water 2021, 13, 484. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, C.-Y.; Hao, Z.; Zhang, L.; Ju, Q.; Lai, X. Variation of Melt Water and Rainfall Runoff and Their Impacts on Streamflow Changes during Recent Decades in Two Tibetan Plateau Basins. Water 2020, 12, 3112. [Google Scholar] [CrossRef]
- Cui, Y.; Ning, S.; Jin, J.; Jiang, S.; Zhou, Y.; Wu, C. Quantitative Lasting Effects of Drought Stress at a Growth Stage on Soybean Evapotranspiration and Aboveground BIOMASS. Water 2020, 13, 18. [Google Scholar] [CrossRef]
- Wang, J.; Sun, M.; Gao, X.; Zhao, X.; Zhao, Y. Spatial and Temporal Characteristics of Precipitation and Potential Influencing Factors in the Loess Plateau before and after the Implementation of the Grain for Green Project. Water 2021, 13, 234. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Jin, J.; Zhou, P.; Zhang, D.; Ning, S.; Cui, Y. Stepwise Identification of Influencing Factors and Prediction of Typhoon Precipitation in Anhui Province Based on the Back Propagation Neural Network Model. Water 2021, 13, 550. [Google Scholar] [CrossRef]
- Yao, Y.; Qu, W.; Lu, J.; Cheng, H.; Pang, Z.; Lei, T.; Tan, Y. Responses of Hydrological Processes under Different Shared Socioeconomic Pathway Scenarios in the Huaihe River Basin, China. Water 2021, 13, 1053. [Google Scholar] [CrossRef]
- Fernández-Nóvoa, D.; García-Feal, O.; González-Cao, J.; de Gonzalo, C.; Rodríguez-Suárez, J.A.; Ruiz del Portal, C.; Gómez-Gesteira, M. MIDAS: A New Integrated Flood Early Warning System for the Miño River. Water 2020, 12, 2319. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, J.; Wang, G.; Jin, J.; Liu, C.; Liu, Y.; He, R.; Bao, Z. Uncertainty Analysis of SWAT Modeling in the Lancang River Basin Using Four Different Algorithms. Water 2021, 13, 341. [Google Scholar] [CrossRef]
- Moges, E.; Demissie, Y.; Larsen, L.; Yassin, F. Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water 2020, 13, 28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Chen, L.; Xu, C.-Y. Hydrological Modeling in Water Cycle Processes. Water 2021, 13, 1882. https://doi.org/10.3390/w13141882
Wang W, Chen L, Xu C-Y. Hydrological Modeling in Water Cycle Processes. Water. 2021; 13(14):1882. https://doi.org/10.3390/w13141882
Chicago/Turabian StyleWang, Weiguang, Lu Chen, and Chong-Yu Xu. 2021. "Hydrological Modeling in Water Cycle Processes" Water 13, no. 14: 1882. https://doi.org/10.3390/w13141882
APA StyleWang, W., Chen, L., & Xu, C. -Y. (2021). Hydrological Modeling in Water Cycle Processes. Water, 13(14), 1882. https://doi.org/10.3390/w13141882