Enhancement of Solar Water Desalination Using Copper and Aluminum Oxide Nanoparticles
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
4. Economic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadoff, C.W.; Hall, J.W.; Grey, D.; Wiberg, D. Securing Water, Sustaining Growth. Available online: https://www.gwp.org/globalassets/global/about-gwp/publications/the-global-dialogue/securing-water-sustaining-growth.pdf (accessed on 16 September 2020).
- General Assembly of the United Nations, Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 16 September 2020).
- Goh, P.S.; Ismail, A.F.; Hilal, N. Nano-enabled membranes technology: Sustainable and revolutionary solutions for membrane desalination? Desalination 2016, 380, 100–104. [Google Scholar] [CrossRef] [Green Version]
- El-Dessouky, H.T.; Ettouney, H.M. Fundamentals of Salt Water Desalination; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Fath, H.E.S. Solar distillation: A promising alternative for water provision with free energy, simple technology and a clean environment. Desalination 1998, 116, 45–56. [Google Scholar] [CrossRef]
- Al-Hayeka, I.; Badran, O.O. The effect of using different designs of solar stills on water distillation. Desalination 2004, 169, 121–127. [Google Scholar] [CrossRef]
- Cooper, P.I. Solar Distillation: State of the Art and Future Prospects. Available online: http://www.worldcat.org/title/solar-energy-and-the-arab-world/oclc/9895277 (accessed on 16 September 2020).
- Sahooa, B.B.; Sahoob, N.; Mahantab, P.; Borboraa, L.; Kalitaa, P.; Sahab, U.K. Performance assessment of a solar still using blackened surface and thermocol insulation. Renew. Energy 2008, 33, 1703–1708. [Google Scholar] [CrossRef]
- Velmurugan, V.; Gopalakrishnan, M.; Raghu, R.; Srithar, K. Single basin solar still with fin for enhancing productivity. Energy Convers. Manag. 2008, 49, 2602–2608. [Google Scholar] [CrossRef]
- Shatat, M.I.M.; Mahkamov, K. Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling. Renew. Energy 2010, 35, 52–61. [Google Scholar] [CrossRef]
- Aburideh, H.; Deliou, A.; Abbad, B.; Alaoui, F.; Tassalit, D.; Tigrine, Z. An experimental study of a solar still: Application on the sea water desalination of Fouka. Procedia Eng. 2012, 33, 475–484. [Google Scholar] [CrossRef] [Green Version]
- Sadineni, S.B.; Hurt, R.; Halford, C.K.; Boehm, R.F. Theory and experimental investigation of a weir-type inclined solar still. Energy 2008, 33, 71–80. [Google Scholar] [CrossRef]
- Omara, Z.M.; Kabeel, A.E.; Younes, M.M. Enhancing the stepped solar still performance using internal and external reflectors. Energy Convers. Manag. 2014, 78, 876–881. [Google Scholar] [CrossRef]
- Badran, A.A.; Assaf, L.M.; Kayed, K.S.; Ghaith, F.A.; Hammash, M.I. Simulation and experimental study for an inverted trickle solar still. Desalination 2004, 164, 77–85. [Google Scholar] [CrossRef]
- Elango, T.; Kannan, A.; Murugavel, K.K. Performance study on single basin single slope solar still with different water nanofluids. Desalination 2015, 360, 45–51. [Google Scholar] [CrossRef]
- Sahota, L.; Tiwari, G.N. Effect of nanofluids on the performance of passive double slope solar still: A comparative study using characteristic curve. Desalination 2016, 388, 9–21. [Google Scholar] [CrossRef]
- Gomri, R. Seawater Desalination System Integrated to Single Effect and Double Effect Absorption Heat Transformers. Jordan J. Mech. Ind. Eng. 2010, 4, 217–224. [Google Scholar]
- Majeed, A.J.; Mohammed, G.J.; Abdulrazaqc, A. Sustainable Energy for Water Desalination System Relative to Basra Climate. Jordan J. Mech. Ind. Eng. 2015, 9, 129–137. [Google Scholar]
- Arunkumar, T.; Jayaprakash, R.; Denkenberger, D.; Ahsan, A.; Okundamiya, M.S.; Kumar, S.H.; Tanaka, H.; Aybar, H.S. An experimental study on a hemispherical solar still. Desalination 2012, 286, 342–348. [Google Scholar] [CrossRef]
- Dhiman, N.K. Transient analysis of a spherical solar still. Desalination 1998, 69, 47–55. [Google Scholar] [CrossRef]
- Kumar, B.S.; Kumar, S.; Jayaprakash, R. Performance analysis of a “V” type solar still using a charcoal absorber and a boosting mirror. Desalination 2008, 229, 217–230. [Google Scholar] [CrossRef]
- Wassouf, P.; Peska, T.; Singh, R.; Akbarzadeh, A. Novel and low cost designs of portable solar stills. Desalination 2011, 276, 294–302. [Google Scholar] [CrossRef]
- Fath, H.E.S.; El-Samanoudy, M.; Fahmy, K.; Hassabou, A. Thermal-economic analysis and comparison between pyramid-shaped and single-slope solar still configurations. Desalination 2003, 159, 69–79. [Google Scholar] [CrossRef]
- Gad, H.E.; Shams El-Din, S.; Hussien, A.A.; Ramzy, K. Thermal analysis of a conical solar still performance: An experimental study. Sol. Energy 2015, 122, 900–909. [Google Scholar] [CrossRef]
- Kumar, A.; Anand, J.D. Modelling and performance of a tubular multi-wick solar still. Energy 1992, 17, 1067–1071. [Google Scholar] [CrossRef]
- Nayi, K.H.; Modi, K.V. Pyramid solar still: A comprehensive review, Renew. Sustain. Energy Rev. 2018, 81, 136–148. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. 1995, 231, 99–106. [Google Scholar]
- Delfani, S.; Karami, M.; Behabadi, M.A.A. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid. Renew. Energy 2016, 87, 754–764. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 2009, 52, 4675–4682. [Google Scholar] [CrossRef]
- Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf. 2013, 57, 582–594. [Google Scholar] [CrossRef]
- Gnanadason, M.K.; Kumar, P.S.; Jemilda, G.; Jasper, S.S. Effect of nanofluids in a modified vacuum single basin solar still. Int. J. Sci. Eng. Res. 2012, 3, 2229–5518. [Google Scholar]
- Sindal, M.; Singh, N.; Sharma, A. Solar desalination using zinc oxide as photocatalyst. J. Chem. Biol. Phys. Sci. 2013, 3, 958. [Google Scholar]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A. Improving the performance of solar still by using nanofluids and providing vacuum. Energy Convers. Manag. 2014, 86, 268–274. [Google Scholar] [CrossRef]
- Hamdan, M.; Darabee, S. Enhancement of Solar Water Disinfection using Nanotechnology. Int. J. Therm. Environ. Eng. 2017, 15, 111–116. [Google Scholar]
- Mutlq, E.; Hamdan, M.; Al Asfar, J. Enhancing the Productivity of a Roof-Type Solar Still Utilizing Alumina Nanoparticles and Vacuum Pump. J. Ecol. Eng. 2019, 20. [Google Scholar] [CrossRef]
- Parsa, S.M.; Rahbar, A.; Koleini, M.H.; Javadi, Y.D.; Afrand, M.; Rostami, S.; Amidpour, M. First approach on nanofluid-based solar still in high altitude for water. Desalination and solar water disinfection (SODIS). Desalination 2020, 491, 114592. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, D.B.; Dwivedi, V.K.; Tiwari, G.N.; Gupta, A. Water purification using solar still with/without nano-fluid: A review. Mater. Today Proc. 2020, 21, 1700–1706. [Google Scholar] [CrossRef]
Material Unit | Cost of Conventional Solar Still [$] | Cost of Modified Solar Still with Nanoparticles [$] |
---|---|---|
galvanized steel sheet (1.25 mm thick) | 80 | 80 |
Glass cover | 20 | 20 |
Paints | 5 | 5 |
Insulation | 10 | 10 |
Support legs | 10 | 10 |
Fabrication cost | 30 | 30 |
Nanoparticles | - | 45 |
Total fixed costs (F) | 155 | 200 |
without Nanoparticles | with CuO Nanoparticles | |
---|---|---|
Initial Cost ($) | 155 | 200 |
Annual Cost ($) | 15.5 | 20.0 |
Maintenance and Operating cost ($) | 4.65 | 6.0 |
Annual Total Cost ($) | 20.15 | 26 |
Water production (L·m2/y) | 736.125 | 843.75 |
Total cost per liter of fresh water, $/L | 0.0274 | 0.0308 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdan, M.A.; Al Momani, A.M.; Ayadi, O.; Sakhrieh, A.H.; Manzano-Agugliaro, F. Enhancement of Solar Water Desalination Using Copper and Aluminum Oxide Nanoparticles. Water 2021, 13, 1914. https://doi.org/10.3390/w13141914
Hamdan MA, Al Momani AM, Ayadi O, Sakhrieh AH, Manzano-Agugliaro F. Enhancement of Solar Water Desalination Using Copper and Aluminum Oxide Nanoparticles. Water. 2021; 13(14):1914. https://doi.org/10.3390/w13141914
Chicago/Turabian StyleHamdan, Mohammad A., Anas M. Al Momani, Osama Ayadi, Ahmad H. Sakhrieh, and Francisco Manzano-Agugliaro. 2021. "Enhancement of Solar Water Desalination Using Copper and Aluminum Oxide Nanoparticles" Water 13, no. 14: 1914. https://doi.org/10.3390/w13141914
APA StyleHamdan, M. A., Al Momani, A. M., Ayadi, O., Sakhrieh, A. H., & Manzano-Agugliaro, F. (2021). Enhancement of Solar Water Desalination Using Copper and Aluminum Oxide Nanoparticles. Water, 13(14), 1914. https://doi.org/10.3390/w13141914