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Abstract: There are many studies on the nonlinear relationship between seepage velocity and
hydraulic gradient in coarse granular materials, using different approaches and variables to define
the resistance formula applicable to that type of granular media. On the basis of an analysis of the
existing formulations developed in different studies, we propose an approach for comparing the
results obtained by some of the most important studies on state-of-the-art seepage flow in coarse
granular media.

Keywords: porous media; Forchheimer equation; non-Darcy flow; high velocity; crushed rock;
rounded materials; hydraulic mean radius; intrinsic permeability; shape of particles; angularity of
particles; surface roughness of particles

1. Introduction and Objectives

It is essential to know the relationship between filtration speed and hydraulic gra-
dient to understand the interactions that occurs between infiltrated water and structures
composed of gravel or rockfill, such as dams, levees, drainage structures, and coastal dikes.
These porous media, made up of coarse particles, possess special characteristics due to their
large pores which, under certain conditions, may give rise to non-laminar seepage flow,
invalidating Darcy’s Law. Calculating the seepage flow through this type of porous media
requires the use of so-called nonlinear resistance formulas. The flow regime in which this
is applied is known as non-Darcy flow.

Various nonlinear relationships have been proposed to describe the flow in coarse
porous media. They can be grouped into two types of equations as follows:

i = a·Vb (1)

i = r·V + s·V2 (2)

where V is the seepage velocity, defined as the average fluid velocity in the whole transver-
sal section; i is the hydraulic gradient; a and r are parameters depending on the characteris-
tics of the porous medium and of the fluid; s is only a function of the characteristics of the
porous medium; and b is a function parameter of the conditions of the flow.

Equation (1) is the so-called exponential equation and Equation (2) is the quadratic
equation. To obtain relationships among the parameters a, b, r, and s, different physical
parameters have been considered; experimental data with different intervals of size, shape,
and particle angularity have been used, as well as a wide range of gradient intervals.
However, there is currently no formula that can completely create Equations (1) and (2)
and combine the determination criteria of their coefficients based on physical parameters.
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In order to have a unified vision of the relationships between gradients and seepage
velocity developed in different studies, we conduct an analysis of the existing formulations
and identify similarities by mathematically comparing the physical parameters considered
in these studies. These relationships make it easier to compare the results and formulations
obtained by each of the studies considered in this article.

2. Review of Resistance Formulas in Nonlinear Porous Media
2.1. Conceptual Approach

Various studies have been completed with the aim of developing expressions for
parameters r (linear coefficient) and s (quadratic coefficient) of Forchheimer’s Law (1901) [1]
Equation (2), which defines a macroscopic hydraulic behaviour. The first term of Equation (2)
(i.e., the term with coefficient r) represents the loss of energy due to the viscous forces and
depends on the properties of both the porous medium and the fluid. The second term of
Equation (2) (i.e., the term with coefficient s) considers the loss of energy due to the forces
of inertia, and depends only on the properties of the porous medium.

In most of these studies, the development of formulas was based on the analogy of
the flow in pipes, through the application of two dimensionless groups that, in this paper,
are referred to as the generalised friction factor f of the Darcy–Weisbach Equation (3) and
generalised Reynolds number Re Equation (4) represented as:

f = Lc·2g· i
V2

p
(3)

Re =
Lc·Vp

v
(4)

where Lc is the characteristic length adopted in each case, g is the gravitational accelera-
tion, i is the hydraulic gradient, v is the kinematic viscosity, and Vp is the pore velocity,
determined by Equation (5):

Vp =
V
n

(5)

being n the porosity of the porous medium.
The characteristic lengths, on which most studies have been based, can be grouped

into three types:

(a) the representative size of the particle (D)
(b) the square root of the intrinsic permeability (K0), as a macroscopic property of the

porous medium. For the laminar regime, it is determined by Equation (6):

K0 =
v
g
·1

i
·V (6)

(c) the hydraulic mean radius Rh that was first defined by Taylor (1948) [2] and deter-
mined by Equation (7):

Rh =
n

Se·(1− n)
(7)

where Se is the average specific surface area of the solid particles that make up the
porous medium and depends on the shape, angularity, and surface roughness of the
particles (Crawford, C.W. et al., 1986 [3]; Sabin G.C.W. and Hansen D., 1994 [4]) and
is defined by the Equation (8):

Se =
SP
VP

(8)

where SP is the average particle surface area and VP is the average particle volume.

Among the first studies are those developed by Blake (1922) [5] and S.P. Burke and
W.B. Plumer (1928) [6], who used dimensionless groups defined by Equations (3) and (4),
adopting Lc as the characteristic length, and S as the specific surface area of the packing
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of porous medium. The relationship with the average particle specific surface area Se
determined by Equation (9) as follows:

S = Se·(1− n) (9)

In their tests, they used commercial porous media (glass beads, glass rings, solid
glass cylinders, and Raschig rings), and the experimental data corresponding to a porous
medium with the same geometry and size. The results were represented a generalised
diagram [Re, f , Equation (10) and the values fitted to a smooth curve:

f =
A1

Re
+ A2 (10)

where A1 is referred to as a linear generalised dimensionless coefficient, and A2 as a
quadratic generalised dimensionless coefficient.

Equation (10) is referred to as a generalised equation [Re, f ].
Figure 1 shows a [Re, f ], schematic diagram similar to that used by Bear (1988) [7]

with asymptotic values for increased Reynolds numbers Re.
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Figure 1. Schematic diagram of [Re, f ] Equation (10). Adapted from Bear (1988) [7].

As indicated by Sabri Ergun and A. A. Orning (1949) [8] “This transition from the
dominance of viscous to kinetic effects, for most packed systems, is smooth, indicating that
there should be a continuous function relating pressure drop to flow rate.”

Ward (1964) [9] stated the same thing when he asserted, “The smooth transition from
laminar to turbulent flow in porous media is expected. In the laminar flow region, the flow
is laminar in all parts of the porous media. In the laminar transition region, the flow is
laminar in most parts of the porous medium, but there are parts where the flow is turbulent.
In the turbulent transition region, the flow is turbulent in most parts of the porous medium,
but there are still parts where laminar flow conditions persist. Finally, turbulent flow
exists in all parts of the porous medium at high values of Rk. Simultaneous existence of
laminar and turbulent flow in different parts of a porous medium is possible because of
the irregularities and variation in pore size.”

Dudgeon (1966) [10] indicated that “the only likely solution to the problem of a
generalised [Re, f ] plot is in terms of a set of graphs for each family of geometrically similar
porous media.”

Other authors (Blake (1922) [5] and S.P. Burke and W.B. Plumer (1928) [6]; Morcon
A.R. (1946) [11]; Ergun (1952) [12], Kadlec, H.R., and Knight, L.R. (1966) [13]; Ahmed and
Sunada (1969) [14]; Kovacs (1969) [15], Arbhabhirama and Dinoy (1973) [16]; Stephenson
(1979) [17]; Li, B et al. (1998) [18];and more recently Sidiropuolou et al. (2007) [19];
Moutsopoulos et al. (2009) [20]; Sedghi-Asl and Rahimi (2013) [21]; and Salahi et al.



Water 2021, 13, 1967 4 of 24

(2015) [22]), obtained continuous curves such as those given by Equation (10) through the
corresponding adjustment of the experimental data used, always within the range of the
Reynolds number Re on which the tests were developed.

The existence of these continuous curves in porous media contrasts with the turbulent
flow in pipes where there are sudden jumps in the Reynolds number interval Re between
2000 and 4000 (White, F.W. (2003) [23]).

If we substitute the generalised values of f and Re, given by Equations (3) and (4) in
Equation (10) we get Equation (11):

Lc·2·g·
i

V2
p
=

A1·v
Lc·Vp

+ A2 (11)

Resolving i in Equation (11) we get what we refer to as a quadratic generalised
equation, i.e., Equation (12):

i =
v

2·g ·A1·
1
L2

c
·Vp +

1
2·g ·A2·

1
Lc
·V2

p (12)

In accordance with the Equation (12) the parameters r and s of the Forchheimer
equation, i.e., Equation (2) determine Equations (13) and (14):

r =
v

2·g ·A1·
1
L2

c
· 1
n

(13)

s =
1

2·g ·A2·
1
Lc
· 1
n2 (14)

In the case of the fully developed turbulent regime, it may be possible to disregard the
linear expression r, in such a way that we could obtain the exponential equation, Equation
(2), considering the coefficient a as equal to the quadratic expression s and the exponent b
as equal to 2.

Various researchers have worked on the exponential law, Equation (1), in regimes of
transition, and therefore with the exponent values b below 2: Wilkins (1956) [24], b = 1.85;
Dudgeon (1966) [10], 1.2 < b < 1.91; Parkin (1991) [25], b = 1.85; Moutsopoulos K. N. et al.
(2009) [20], 1.280 < b < 1.687; Sedhi-Asl et al. (2013) [21] 1.479 < b < 1.804.

In this respect, Stephenson (1979) [17] pointed out the fact that not obtaining an
adjustment of b equal to 2, with the experimental data, is due to “the tests being carried
out on a small scale and as a result of low Reynolds numbers.” Ferdos, F. et al. (2015) [26]
obtained an exponent b equal to 2 in their tests as a result of using elevated Reynolds
numbers Re. These studies both used the particle Reynolds number Rd determined by
Equation (15) as follows:

Rd =
D·Vp

v
(15)

They achieved values of Rd = 220,000 for the size interval of 100–160 mm and
Rd = 320,000 for the range of 160–240 mm. The values were both very much higher as
compared with the value proposed by Stephenson (i.e., Rd = 10,000) in order to reach the
fully developed turbulent flow.

It is important to consider that the flow through for highly permeable porous media
may contain various flow regimes, as the generalised Reynolds number Re increases. In
general, most of the studies have shown that there are four flow regimes: laminar, nonlinear
laminar, turbulent transition, and fully developed turbulent flow (Ward, 1964 [9]; Wright
(1968) [27]; Kovacks (1969) [15], Dybbs and Edwards (1975) [28]; R.M. Fand et al. (1987) [29];
H. Huang and S. Ayoub (2007) [30]) and, consequently, there is a debate regarding whether
the dimensionless coefficients A1 and A2 considered in Equations (10) and (12) for a
determined porous medium, are constants throughout a wide range of seepage velocity
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spanning the four flow regimes, in other words maintaining the relationship determined
by Equation (10) without producing sudden jumps as occurred in the flow in tubes.

For that purpose, it is interesting to linearise Equation (10) multiplying both parts of
the equation by Re to obtain Equation (16):

λ = A1 + A2·Re (16)

where λ, the linearised generalised friction faction, is determined by Equation (17):

λ = f ·Re (17)

Equation (16) is referred to as a linearised generalised equation [Re, λ].
Figure 2 shows a [Re, λ] diagram similar to that used by R.M Fand et al. (1987) [29].

In accordance with Equation (16), each porous material is represented by a line whose
curve corresponds with the quadratic generalised dimensionless coefficient A2; the cut on
the ordinate axis corresponds to the linear generalised dimensionless coefficient A1. The
laminar regime is represented by a horizontal line. This type of graph is used to check if,
for the same porous material, each non-Darcy flow regime remains determined by their
corresponding value pairs [A1, A2] or, on the contrary, such values are constant for the
three non-Darcy flow regimes.
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In this debate, the following studies stand out: McCorquodale et al. (1978) [31]
and Fand et al. (1987) [29]. The first group used granular materials, of various sizes,
shapes, and angularity, whereas the second worked with spheres with a range of sizes
from 2.00 mm < D < 4.00 mm. The studies both proposed different coefficient values, A1
and A2, for the transition zones that they detected in their tests: nonlinear laminar and
turbulent transition.

2.2. Resistance Formulas

Next, we describe the main nonlinear resistance formulas based on the adopted
characteristic length Lc.

2.2.1. Resistance Formulas Based on the Representative Diameter of the Particles

In 1952, Sabri Ergun [12] carried out a study to develop a formula for general applica-
tion based on the dimensionless groups:
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fE = Dp·g·
n3

(1− n)
· i
V2 (18)

RE =
Dp·V

v
(19)

where fE is Ergun’s friction factor and RE is Ergun’s Reynolds number. The parameter Dp
was adopted as the representative diameter of the particles, that is, the average effective
diameter of the granular material and determined by Equation (20):

Dp =
6
Se

(20)

where Dp corresponds with the diameter of a sphere that has the same specific surface area,
Se, as the particle.

The continuous curve, as determined by Equation (10) and defined by the author, we
refer to it as the Ergun equation [RE, fE] as follows:

fE = 72·α· (1− n)
RE

+
6
8
·β (21)

where α is the linear dimensionless coefficient and β is the quadratic dimensionless coeffi-
cient (by Sabri Ergun and A. A. Orning).

Finally, substituting the values of fE and RE of Equations (18) and (19) into Equation
(21) we get the quadratic equation from Ergun (1952) [12] as Equation (22):

i =
v
g
·72·α· 1

D2
p
· (1− n)2

n3 ·V +
1
g
·6
8
·β· (1− n)

n3 · 1
Dp
·V2 (22)

This equation proposed by Ergun (1952) [12] had, in fact, been previously developed by
Sabri Ergun and A. A. Orning (1949) [8] who adopted as characteristic length Lc, the specific
surface area of the particles Se. The equation is obtained by substituting in Equation (22)
the value of the effective diameter Dp defined by Equation (20). These authors developed
this equation based on Kozeny’s (1927) hypothesis [32], which is based on a capillary
model that, as the authors show “the granular bed is equivalent to a group of parallel and
equal-sized channels, such that the total internal surface and the free internal volume, are
equal to the total packing surface area and the void volume, respectively, of the randomly
Packed bed.” However, they added that “For a packed bed, the flow path is sinuous, and
the stream lines frequently converge and diverge. The kinetic losses, which occur only
once for the capillary, occur with a frequency that is statistically related to the number of
particles per unit length. For these reasons, a correction factor must be applied to each
term. These factors may be designated as α and β.” For these reasons, in agreement with
the authors, it is essential to consider some correction factors in each linear and quadratic
expression of Equation (22) to consider these characteristics of the porous medium. The
authors designated them as α and β, respectively.

Equation (22) considers the existence of a function of porosity for each expression: fL
for the linear expression (r) and fT for the quadratic expression (s) of Equation (2) where:

fL =
(1− n)2

n3 (23)

fT =
(1− n)

n3 (24)

As per Ergun, Leva M., and Grimmer M. (1947) [33] they confirmed these functions of
porosity. Ergun himself carried out various tests on a wide range of porosity variation n to
check the validity of these functions.
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With respect to the shape, angularity, and surface roughness of the particles, these
physical parameters seem implicit in the effective diameter, Dp, which relate to the specific
surface area Se through Equation (20).

Finally, with respect to the packed porous material he indicates that “the orientation
of the randomly packed beds is not susceptible to exact mathematical formulation”, and,
consequently, “the effect of the orientation was not included.”

Ergun, worked on 640 experiments including his own, made up of crushed porous
solids, and those obtained through other authors such as Burke and Plummer (1928) [6],
who worked with lead shot (spherical shape) of reduced sizes 1.48, 3.08, and 6.34 mm and
Morcon (1949) [11], who worked with capsules, cylinders, nodules, and spheres. Ergun
represented the three series of data in the diagram [RE, fE] checking that they correctly
matched Equation (21) The fluids used in this case were the gases of CO2, N2, CH4, and H2.
As a result of this, he obtained the universal values of α = 2.08 and β = 2.33 applicable to all
porous media.

According to Ergun, most dispersions happen with porous materials that include a
mixture of sizes (non-uniform materials), and with those in which the relationship between
the diameter of the permeameter (Dx) and the representative size of the particle D is
less than 10 (influence of the wall effect). In such cases, the corresponding tests were
not considered.

Although the author did not analyse the theoretical significance of the parameters α
and β, he did confirm that over a wide range of porosities he found no relationships of α
and β with the porosity.

Later, Frank Engelund (1953) [34] carried out a study to analyse the influence of
turbulence in subterranean waters on uniform limestone sands, working on his own tests
and those of other authors (Lindquist, 1933 [35] and Chardabellas, 1940 [36,37]). For his
tests, he worked only on three samples, two of them were with D = 2.6 mm and one with
D = 1.4 mm. The proposed quadratic equation Equation (25) was:

i =
v
g
·α0·

1
D2

e
· (1− n)3

n2 ·V +
1
g
·β0

(1− n)
n3 · 1

De
·V2 (25)

He used as the representative diameter of particle D the parameter De, which is the
equivalent diameter that corresponds to the diameter of a sphere with the same volume of
the particle; α0 is the linear dimensionless coefficient of Engelund and β0 is the quadratic di-
mensionless coefficient of Engelund. According to the author, “α0 and β0 are dimensionless
numerical constants depending, for uniform soil, on the structure and the grain shape.”

The structure of Equation (25) is remarkably similar to Equation (22) given by Ergun
(1952) [12]. The difference in the representative diameter D of the adopted particle, Dp by
Ergun (1952) [12] and De by Engelund (1953) [34], and the function of linear porosity f ′L
obtained as:

f ′L =
(1− n)3

n2 (26)

According to Frank Engelund (1953) [34], this porosity function f ′L of the linear ex-
pression fits better than the function fL from Ergun Equation (23) to the measurements
obtained by Rose (1953) [37] and Franzini (1951) [38], especially the latter, who worked
with a wide interval of porosities 0.270 < n < 0.476.

Ergun (1952) [12] proposed universal values for the dimensionless coefficients α
and β. However, Engelund (1953) [34] did consider the shape and angularity of the
particles through the dimensionless coefficients α0 and β0 for which he proposed the
following values:

α0 = 780 for uniform spherical particles (using data from Lindquist (1933)); α0 = 1000
for uniform rounded sands (using data from Chardabellas (1940)), and α0 = 1500 or above
for angular sands, (using own experimental data).
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β0 = 1.8 for uniform spherical particles (using data from Lindquist (1933)); β0 = 2.8 for
uniform rounded sands (using data from Chardabellas (1940)), and β0 = 3.6 or above for
angular and uniform sands, (using own experimental data).

Finally, we must point out that it is simpler to measure as representative diameter of
the particle D the value of De than the value of Dp, which requires the measurement of the
particle specific surface area Se, in accordance with Equation (20).

In 1979, Stephenson carried out a study whose main purpose was to research the
fully developed turbulent flow regime. On the basis of an analogy with the flow in pipes
(Darcy–Weisbach equation), he considered that the gradient i was proportional to the
expression Equation (27):

i ∝
1

Rh
·
V2

p

2·g (27)

As the hydraulic mean radius Rh is proportional to the size of the particle D (Leps
(1973)) [39] and, furthermore, this variable is more easily measured, he suggested using the
exponential equation, i.e., Equation (1) with coefficient b equal to 2 for Equation (28):

i =
1
g
· fd·

1
D
· 1
n2 ·V

2 (28)

where fd is the particle friction factor and, as the author noted, “is actually the function of
the Reynolds number Rd”. The author used as the representative diameter of the particle
D, the parameter D50 for lack of other data in the bibliography. However, for conceptual
reasons, we will continue working with the representative diameter of the particles D.

He considered the dimensionless groups [Rd, fd] where:

fd = D·g· i
V2

p
(29)

and Rd is defined by the Equation (15).
He represented the data of three types of porous materials: smooth spheres, river

gravel, and crushed aggregates on the diagram from Stephenson (1979) [17] [Rd, fd]. This
data came from tests carried out by the same author and by various researchers: Dudgeon
(1966) [10], Volker (1969) [40], Leps (1973) [39], and Cedergren (1977) [41]. With this
experimental data and their corresponding ranges of particle sizes and hydraulic gradients,
he matched three smooth curves whose lines coincided in the laminar regime. From
this line, they gradually separate in the transition regime towards turbulence with three
asymptotic values: f d = 1 for smooth spheres, f d = 2 for river gravel, and f d = 4 for crushed
aggregate (see Figure 3).
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For laminar flow, considering the analogy with the flow in pipes and based on data
from Dudgeon (1966) [10] and Cedergren (1977) [41], he proposed the relationship:

fd =
Kl
Rd

(30)

where Kl is the linear dimensionless coefficient from Stephenson (1979) [17]. The value of
Kl obtained from the experimental data was 800. The limit of the Reynolds number Rd for
the laminar regime proposed by Stephenson was Rd = 10−4.

In the transition zone, he proposed Equation (31) of the type given by Equation (10):

fd =
Kl
Rd

+ Kt (31)

where Kt is the quadratic dimensionless coefficient from Stephenson (1979) [17]. According
to the author, Reynolds numbers of Rd > 10,000 produce the fully developed turbulent flow
regime and, in this case, the author indicated that it was only a function of the shape and
angularity of the particles.

Ultimately, Equation (31) (similar to the generalised equation Equation (10)), the Ergun
equation, i.e., Equation (21), and by implication Equation (25) by Frank Engelund, represent
continuous curves for each porous medium in a generalised diagram [Re, f ] that tend to an
asymptotic value for fully developed turbulent regime (see Figures 1 and 3).

Finally, substituting Equations (15), (29) and (31), we get the quadratic equation
Equation (32):

i =
v
g
·Kl ·

1
D2 ·

1
n
·V +

1
g
·Kt·

1
D
· 1
n2 ·V

2 (32)

Equation (32), according to Li B. et al. (1998), was not initially proposed by Stephenson
(1979) [17] and these authors termed it as the modified Stephenson equation.

2.2.2. Resistance Formulas Based on Intrinsic Permeability

Ward (1964) [9] obtained a quadratic formula for general application taking
√

K0 as
the characteristic length. For this, he worked with the dimensionless groups expressed in
Equations (33) and (34):

fk =
√

K0·g·
i

V2 (33)

Rk =

√
K0·V
v

(34)

where fk is Ward’s friction factor and Rk is Ward’s Reynolds number.
For the transition zone, in a [Rk, fk] diagram of the type produced by Equation (10),

Ward (1964) [9] proposed Equation (35):

fk =
1

Rk
+ C (35)

where C is the quadratic dimensionless coefficient of Ward which, as indicated by Ahmed
and Sunada (1969) [14], “Previous investigators have interpreted the term C as a constant
reflecting geometric properties of the medium.”

Considering the three previous equations, the author obtained the quadratic equation,
i.e., Equation (36):

i =
v
g
· 1
K0
·V +

1
g
·C· 1√

K0
·V2 (36)

Ward (1964) [9] had the same aim as Ergun (1952) [12], to adjust a single value of C so
that Equation (35) might be generally applicable. Engelund (1953) [34], and Stephenson
(1979) [17], in fact, proposed three equations also for general application, but depending
on the structure of the porous material and the shape of the particles.
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Ward (1964) [9] used 20 different porous media: glass bead, ion exchange resin, sands,
gravel, granular activated carbon, and anthracite. The size of each porous medium was
defined through the geometric mean of the particle sizes Mg in each porous medium. The
size interval was 0.27 mm < Mg < 16.10 mm. In total, 53 tests were carried out and the
fluid used was water. The Reynolds number interval was 0.122 < Rk < 18.10, with the
size interval of Mg studied, he obtained an adjusted value for C of 0.55 with a standard
deviation σs of 0.024.

The author noted that “D.K. Todd (1959) [42] showed a plot similar to Figure 1, except
that an average grain diameter is used in place of the square root of the permeability in
Equations (10) and (16). Because the average grain diameter is not sufficient to characterize
a porous medium, there is considerable scatter in the plotted points.”

Regardless of the existence of the smooth transition curve (see Figure 1), Ward
(1964) [9] proposed, for engineering applications, the division into four types of flow
regimes: laminar, nonlinear laminar, turbulent transition, and fully developed turbulent;
with the following limits of the Reynolds number Rk among them: laminar Rk < 0.0182,
nonlinear laminar Rk < 1.82, and turbulent transition Rk < 182.

To conclude, we must point out that Ward attributes, in some cases, the deviations
seen in respect of Equation (35) to an inadequate determination of the intrinsic permeability
K0, which must be obtained with very low gradients to be in a laminar regime in accordance
with Equation (6).

Continuing with Ward’s study (1964) [9], Ahmed and Sunada (1969) [14] developed
the same quadratic equation, i.e., Equation (36) from the Navier–Stokes’ equations, based
on the hypothesis that the porous medium is homogeneous and isotropic on a macroscopic
scale, and that the chemical and thermodynamic effects are small. His study focused
specifically on the nonlinear laminar regime.

Ahmed and Sunada (1969) [14] stated that “for flow through porous media, convective
accelerations are always present, whereas turbulence is a random phenomenon dependent
upon of flow velocity and space geometry.” According to the authors, “This fact was
demonstrated experimentally by Schneebeli (1955) [43] who used dye to identify the flow.
He injected dye into the flow at various velocities (steady-state conditions) and found
that, even though measurements of gradients and velocities indicated nonlinear flow, the
dye assumed laminar characteristics, i.e., stream-lined flow. Increasing the flow velocities
approximately four times caused the dye from one channel to mix with the dye of another,
indicating that departure from Darcy’s Law should be the result of convective acceleration
of the fluid within the pores space.”

More recently, H. Huang and J. Ayoub (2007) [30], concluded, “Derivation of the
Forchheimer equation from the Navier–Stokes’ equation reveals that the nature of the
Forchheimer flow regime is laminar with inertial effect. The inertia resistance factor β

can be used to characterize this flow regime and is therefore an intrinsic property of the
porous media.”

Along the same lines, Balhoff, M.T. et al. (2009) [44] indicated, “The constant, β, is
referred to us as the non-Darcy coefficient and, like permeability, is an empirical value
specific to the porous medium. It represents the additional inertial resistance caused by the
converging/diverging and tortuous medium geometry.”

The phenomenon of the turbulence in porous media is very complex. Recently,
Sidiripoulou, M.G. et al. (2007) [19] referred to studies by Skjetne and Auriault (1998) [45],
Panfilov et al. (2003) [46], and Fourar et al. (2004) [47] on the mechanisms of turbulence,
which were related to the separation of the layer limit and the recircularisation of the
vortices formed.
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2.2.3. Resistance Formulas Based on the Hydraulic Mean Radius

In 1998, Li B et al. (1998) [18], based on an analogy with the flow in pipes and using
as characteristic length Lc and the hydraulic mean radius Rh defined by Equation (7),
proposed the dimensionless groups Equations (37) and (38):

fp = 4·Rh·2g· i
V2

p
(37)

R′p =
Rh·Vp

v
(38)

where fp is the pore friction factor and R′p is the Reynolds number based on Rh.
The transition curve proposed in the pore diagram

[
R′p, fp

]
was determined by

Equation (39):

fp =
α′

Rp
+ β′ (39)

where α’ and β’ were dimensionless coefficients of the pores from the linear and quadratic
expressions, respectively.

Substituting Equations (37)–(39), the authors obtained the quadratic equation:

i =
v

8·g ·α
′· 1

R2
h
·Vp +

1
8·g ·β

′· 1
Rh
·V2

p (40)

With the experimental data provided by the University of Ottawa (Hansen (1992)) [48],
which included materials for rockfill dams in intervals of 16.0 mm < D < 40.0 mm, they
obtained values of 98 for α’ and 3 for β’. The permeameter used had a diameter Dx of
300 mm. The pore Reynolds number R′p, from which the total turbulent regime was
developed, was 200.

They subsequently extended this data, with that supplied by Stephenson (1979) [17]
and Li and Hu (1988) [18] obtaining a value of 1279 for the nonlinear dimensionless
coefficient Kl and 3.84 for the quadratic dimensionless coefficient Kt which is shown in
the modified Stephenson equation, i.e., Equation (32). These values are in the same order
of magnitude as those obtained by Stepheson for crushed aggregate, i.e., Kl = 800 and
Kt = 4.00.

More recently, Mohammad-Bagher Salahi et al. (2015) [22], working on rounded
granular materials (2.10 mm < D < 17.78 mm) and aggregate (1.77 mm < D < 16.62 mm),
obtained values Kl = 488 and Kt = 4725 for rounded aggregate Kl = 588 and Kt = 5550
for crushed aggregate. Both values of kt are higher than those proposed by Stephenson
(kt = 2.00 for rounded aggregate and Kt = 4.00 for crushed aggregate). The Reynolds
number interval, Rd, with which they developed the tests, was 10 < Rd < 1882.

Additionally, Li B et al. (1998) [18] represented the experimental data in the diagram
from Stephenson [Rd, fd]. According to an analysis of this diagram, they proposed that
the fully developed turbulent regime (asymptotic curve) should be obtained for values of
Rd > 2000. This value is consistent with the data previously obtained for the pore Reynolds
number R′p > 200 if we consider that the hydraulic mean radius Rh is approximately 10%
of the representative size of the particle D (Parkin, 1991) [25]. However, this limit value of
Rd is lower to that proposed by Stephenson of Rd = 10,000.

2.2.4. On the Physical Parameters r and s of the Forchheimer Equation

Sidiropoulou et al. (2007) [19] obtained empirical relationships for a general applica-
tion to any porous medium for the coefficients r and s in the function of physical parameters
such as representative particle size D and porosity n on the basis of an analysis of multiple
regression using the data from various authors: Ward (1964) [9], Ahmed and Sunada
(1969) [14], Arbhabhirama and Dinoy (1973) [16], Ranganadha Rao and Suresh (1979) [49],
Tyagi and Todd (1970) [50] who used the data from Dudgeon (1966) [10], Venkataraman
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and Rao (1988) [51], and Bordier and Zimer (2000) [52]. The number from the available
experimental data (N) was 115. However, in many cases, the complete data needed for the
adjustment was not available, that is, r, s, D and n.

They obtained three different empirical relationships for the expressions r and s to
study how the porosity influenced parameters r and s:

r = 0.00333·D−1.500403·n0.060350 (R2 = 0.9108; N = 55) (41a)

s = 0.194325·D−1.265775·n−1.141417 (R2 = 0.8715; N = 49) (41b)

r = 0.0002789·D−1.502361·(1− n)−0.216014 (R2 = 0.9142; N = 55) (42a)

s = 1.228873·D−1.263314·(1− n)−1.532475 (R2 = 0.8762; N = 49) (42b)

r = 6.527953·10−15·D−1.54745·n−16.068711·(1− n)−23.157232 (R2 = 0.9188; N = 55) (43a)

s = 1.107768·10−10·D−1.30182·n−13.836369·(1− n)−18.365290 (R2 = 0.8806; N = 49) (43b)

where D is given in metres, r in seconds per metre, and s in seconds squared per me-
tre squared.

The best adjustment obtained was for the Equation (43a,b).
The issue with the previous empirical relationships is that they were based on porous

materials made up of particles with different geometries: glass beads, granular activated
carbon, ion exchange resin, sand, gravel, anthracite coal, angular gravel, round river gravel,
blue metal, river gravel, marbles, and glass spheres.

In fact, these equations, were an attempt to provide a general application equation as
per the studies made by Ergun (1952) [12] and Ward (1964) [9]. Frank Engelund (1953) [34]
went further by proposing three general equations in the function of the shape and angular-
ity of particles through the dimensionless coefficients α0 and β0. Stephenson (1979) [17] also
proposed three different equations: smooth spheres, river gravel, and crushed aggregate
(see Figure 3).

3. Analysis of the Relationships among Parameters of the Different Formulas
of Resistance

To adequately define the filtration phenomenon through a porous medium, we use
three types of equations: the generalised equation [Re, f ] determined by Equation (10),
the quadratic generalised equation, i.e., Equation (12), and the linear generalised equation
[Re, λ] determined by Equation (16), all of them using the general characteristic length Lc.

The purpose of this section is to standardise the formulas described in the previous
section. For this, we have chosen the quadratic generalised equation as a base in accordance
with Equation (12), it includes the generalised characteristic length Lc and the generalised
dimensionless coefficient A1 (linear term) and A2 (quadratic term).

To arrive at this standardisation, the following mathematical relationships were studied:

(a) Among the characteristic lengths, Rh,
√

K0, and D;
(b) Among the Reynolds numbers Rp, Rk and Rd;
(c) Among the different laminar dimensionless coefficients α, α0, Kl , and α′, and quadratic

dimensionless coefficients β, β0, Kt, β′, and C.

These relationships should allow us to compare the results proposed by different
authors who use different characteristic lengths Lc and, as a result, different values for the
laminar dimensionless coefficients, (α, α′, α0, and Kl), quadratic dimensionless coefficients
(β, β0, β′, C, and Kt), and also different values for the limit of the Reynolds number Re that
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define the zones of the flow regime: laminar, nonlinear laminar, turbulent transition, and
fully developed turbulent.

The relationships that we have obtained in this section are based on uniform granular
materials where the uniformity coefficient is not included Cu.

3.1. Equations with Characteristic Length Based on the Hydraulic Diameter

In accordance with the analogy of the flow in pipes, for noncircular sections, we can
take the characteristic length to be Lc and the hydraulic mean diameter as Dh:

Dh = 4·Rh (44)

If we substitute Equation (44) in Equation (12) we get:

i =
v

2·g ·A
′
1·

1
D2

h
·Vp +

1
2·g ·A

′
2·

1
Dh
·V2

p (45)

where A′1 is the linear dimensionless coefficient corresponding to Lc = Dh and A′2 is the
quadratic dimensionless coefficient corresponding to Lc = Dh.

Substituting Equation (44) in Equation (45) we obtain Equation (46):

i =
v

2·g ·
A′1
16
· 1
R2

h
·Vp +

1
2·g ·

A′2
4
· 1
Rh
·V2

p (46)

If we compare Equation (46) with Equation (40) proposed by Li, B. et al. (1998) [18],
we get the dimensionless coefficients A′1(linear) and A′2(quadratic):

A′1 = 4·α′ (47)

A′2 = β′ (48)

Considering Equation (7), which defines the hydraulic mean radius Rh we obtain the
expression for the specific surface area Se:

Se =
n

(1− n)
· 1
Rh

(49)

Considering Equations (5) and (49), which defines the pore velocity Vp and substituting
Equation (46) we get:

i =
v

32·g ·A
′
1·

v
g
· (1− n)2

n3 ·S2
e ·V +

1
8·g ·A

′
2·

1
g
· (1− n)

n3 ·Se·V2 (50)

Equation (50) is the same as that developed by Sabri Ergun and A. A. Orning (1949) [8]
where the dimensionless coefficients A′1 and A′2 have the values:

A′1 = 64α (51)

A′2 = β (52)

Considering the Equations (47), (48), (51), and (52):

α =
α′

16
(53)

β = β′ (54)
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In addition, the specific surface area of the packing S is related to the average specific
surface area of the particles Se through Equation (9) with which we get:

S2
e =

S2

(1− n)2 (55)

Substituting this last value in Equation (50), we obtain the quadratic equation with
characteristic length Lc the surface of the packing S:

i = 2α· v
g
· 1
n3 ·S

2·V +
1
8
·β· 1

g
· 1
n3 ·S·V

2 (56)

Alternatively, S.P. Burke and W.B. Plumer (1928) [6] developed the exponential equa-
tion with exponent (2−b):

i = Kb·
1
g
·V

2

n3 ·
(

µ·S
ρ·V ·

n
(1− n)

)2−b
(57)

where Kb is a dimensionless coefficient, which according to the authors includes the shape
of the porous material and the symmetry of the packing.

The authors did not consider taking a quadratic equation from this. However, this can
be achieved by doing no more than taking b = 1 for the linear component and b = 2 for the
quadratic component. Through this approach we get the equation known as the quadratic
equation from Burke and Plumer (1928) [6]:

i = [Kb]L·
v
g
· 1
n3 ·

n
(1− n)

·S2·V + [Kb]T ·
1
g
· 1
n3 ·S·V

2 (58)

where [Kb]L is the linear dimensionless coefficient by Burke and Plumer [Kb]T is the
quadratic dimensionless coefficient by Burke and Plumer.

Now, seeing Equation (58) and comparing it with Equation (56) we see that the
dimensionless coefficients [Kb]L and [Kb]T are determined by the expression:

[Kb]L = 2α· n
(1− n)

(59)

[Kb]T =
β

8
(60)

Accordingly, the previous equations show that a mathematical relationship exists
among the formulas of the authors cited.

3.2. Equations with Characteristic Length Based on the Intrinsic Permeability

Now, if we consider, as characteristic length in Equation (12), the quadratic root of the
intrinsic permeability

√
K0 adopted by Ward (1964) [9], Ahmed and Sunada (1969) [14],

and Arbhabhirama and Dinoy (1973) [16], among others, we obtain:

i =
v

2·g ·A
′′
1 ·

1
K0
·Vp +

1
2·g ·A

′′
2 ·

1√
K0
·V2

p (61)

where A′′1 is the laminar dimensionless coefficient corresponding to Lc =
√

K0 and A′′2 is
the quadratic dimensionless coefficient corresponding to Lc =

√
K0.

If we compare Equation (61) with Equation (30) by Ward (1964), we get the dimen-
sionless coefficients A′′1 and A′′2 :

A′′1 = 2·n (62)

A′′2 = 2·C·n2 (63)
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3.3. Equations with Characteristic Length Based on the Representative Size of Particles

We are going to consider in general the representative size of the particle D, as
obviously, the formulas developed in this case can be applied for any representative size
such as De, Da, Dp, D50, Mg, etc.

For this general case of parameter D and applying Equation (12) we obtain the equation:

i =
v

2·g ·A
′′′
1 ·

1
D2 ·Vp +

1
2·g ·A

′′′
2 ·

1
D
·V2

p (64)

where A′′′1 is the linear dimensionless coefficient corresponding to Lc = D and A′′′2 is the
quadratic dimensionless coefficient corresponding to Lc = D.

If we observe Equation (64) and compare it with modified Stephenson equation, i.e.,
Equation (36), we get the dimensionless coefficients A′′′1 and A′′′2 :

A′′′1 = 2Kl (65)

A′′′2 = 2Kt (66)

Once the quadratic equations have been obtained for each characteristic length Lc
based on Equation (12), we can determine the mathematical relationships between the
main parameters.

3.4. Relationships among Characteristic Lengths

Next, we determine the relationships between Rh and
√

K0 and between Rh and D.
With regard to the first relationship, being the linear components of Equations (45) and (61):

1
2
·A′1·

v
g
· 1
D2

h
=

1
2
·A′′1 ·

v
g
· 1
K0

(67)

Substituting the values of A′1 defined in Equation (51) and A′′1 defined in Equation (62)
into Equation (67) we obtain:

32·α· 1
D2

h
= n· 1

K0
(68)

D2
h =

32·α·K0

n
(69)

Substituting the value of the hydraulic mean diameter Dh defined in Equation (44)
into Equation (69), we obtain the relationship between the hydraulic mean radius Rh and
the intrinsic permeability K0:

Rh =

√
2·α

n0.5 ·
√

K0 (70)

We determine the relationship between the hydraulic mean radius Rh and the repre-
sentative size of the particle D, by equaling the linear components of the Equation (45) and
the Equation (64):

1
2
·A′1·

v
g
· 1
D2

h
=

1
2

A′′′1 ·
v
g
· 1
D2 (71)

Substituting the values of A′1 defined in Equation (51) and A′′′1 defined in Equation (65)
in the previous expression we obtain:

32·α· 1
D2

h
= Kl ·

1
D2 (72)

D2
h =

32·α
Kl
·D2 (73)
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With which we obtain the relationship:

Rh =

√
2·α√
Kl
·D (74)

We determine the relationship between the hydraulic mean radius Rh and the rep-
resentative size of the particle D by applying Equation (7). We know that, for a sphere,
the specific surface area Se has a value of 6/D, where D is the diameter of the sphere. To
consider the shape, angularity, and surface roughness of the particles that may affect its
specific surface area Se (Crawford, C.W. et al. (1986) [3]; Sabin G. C. W. and Hansen D.
(1994) [4], we can define a coefficient F that is determined by the expression:

Se =
6·F
D

(75)

In accordance with Equation (7) that defines hydraulic mean radius Rh and considering
Equation (72) we get the relationship:

Rh =
n

6·F·(1− n)
·D (76)

Loudon (1953) [53] used a coefficient similar to F to determine the permeability of
sands. The author used D as the representative size of the particle, (Dg) defined as the
average geometry between two consecutive sieves:

Se = F· 6
Dg

(77)

where:
Dg =

√
Dn·Dn−1 (78)

where Dn and Dn−1 are the apertures in two consecutive sieves.
Loudon proposed the following values for the coefficient F:

(a) Round sand, F = 1.10;
(b) Semi angular sand, F = 1.25;
(c) Angular sand, F = 1.40.

In accordance with Martins (1990) [54] and considering the coefficient of the shape c’
we can obtain the relationship:

c′ = 6·F (79)

In accordance with the values of c′ proposed by Linford, A. and Saunders, D. (1967) [55]
and Martins, R. and Escarameria, M. (1989) [56] (according to Martins), the equivalent
values of the coefficient F are:

(a) Angular Particles c’ = 8.5 (F = 1.47).
(b) Round particles c’ = 6.3 (F = 1.05).

These values are similar to those proposed by Loudon (1953) [53].
With these values and applying Equation (76), we can estimate the value of the

hydraulic mean radius Rh.
Finally, we determine the relationships between

√
K0 and D considering the linear

components of Equations (61) and (64):

1
2
·A′′1 ·

v
g
· 1
K0

=
1
2
·A′′′1 ·

v
g
· 1
D2 (80)
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Substituting the values of A′′1 defined in Equation (62) and A′′′1 defined in Equation (65)
in the previous expression we get:

n· v
g
· 1
K0

= Kl ·
v
g
· 1
D2 (81)

Developing:
n·D2 = Kl ·K0 (82)

With which we finally get the relationship:

√
K0 =

n0.5
√

Kl
·D (83)

Summarizing above, Table 1 shows the relationships among the characteristic lengths
Rh,
√

K0 and D.

Table 1. Relationships among characteristic lengths Lc.

Lc A1 A2 Re f Rh
√

K0 D

Dh 64α β 4·Rh ·Vp
v

8Rh·g· i
V2

p
4·Rh 4·

√
2α
n ·
√

K0 4·
√

2α√
Kl
·D

√
K0 2n 2·C·n2

√
K0·Vp

v

√
K0·2g· i

V2
p

n0.5√
2α
·Rh 1

n0.5√
Kl
·D

D 2Kl 2·Kt
D·Vp

v
D·2g· i

V2
p

√
Kl√
2α
·Rh

√
Kl

n0.5 ·
√

K0 1

3.5. Relationships among Reynolds Numbers

First, we determine the relationships between the pore Reynolds number Rp and the
Ward Reynolds number Rk. Considering the pore Reynolds number Dh:

Rp =
4·Rh·Vp

v
(84)

And substituting Equation (70) in Equation (84) we obtain:

Rp = 4·
(√

2·α
n0.5 ·

√
K0

)
· V
n·v (85)

If we compare the last equation with Equation (28) that defines the Reynolds number
from Ward (Rk) we obtain the relationship:

Rp =
4·
√

2·α
n1,5 ·Rk (86)

Now, we determine the relationships between the pore Reynolds number Rp based on
Dh and the Reynolds number of the particles Rd.

Considering Equation (74) that relates to the hydraulic mean radius Rh with the
representative size of the particles D, and substituting in Equation (84) that defines pore
Reynolds number Rp based on Dh we obtain:

Rp = 4·
(√

2·α√
Kl
·D
)
·
Vp

v
= 4·
√

2·α√
Kl
·D

v
·V

n
(87)
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Alternatively, in accordance with Equation (15) that defines the Reynolds number of
the particles, and substituting this last expression into the previous expression, we obtain
the relationship between Rp and Rd:

Rp =
4·
√

2·α√
Kl
·Rd (88)

In addition, in accordance with Equation (76) that relates to the hydraulic mean radius
Rh and the representative size of the particles D, and substituting in Equation (84) that
defines Rp as:

Rp = 4·[n/(6·F·(1− n))·D]·
Vp

v
(89)

In accordance with Equation (15) we finally obtain another relationship between Rp
and Rd:

Rp =
4·n

6·F·(1− n)
·Rd (90)

Finally, we determine the relationships between the Reynolds number of Ward Rk and
the Reynolds number of the particles Rd.

In accordance with Equation (28) that defines the Reynolds number of Ward and
considering Equation (83) that relates the intrinsic permeability K0 with the representative
size of the particles D, and substituting this last equation into the definition of the Reynolds
number of Ward Rk, we obtain:

Rk =
D√
Kl
·n0.5·V

v
=

D√
Kl
·n0.5·n

n
·V

v
(91)

Finally, in accordance with the definition of the Reynolds number of the particles Rd
defined by the Equation (15) we obtain the relationship:

Rk =
n1.5
√

Kl
·Rd (92)

In accordance with the above, Table 2 shows the relationships among the Reynolds
numbers Rp, Rk and Rd.

Table 2. Relationships among the Reynolds numbers Re.

Lc Re Rp Rk Rd

4Rh Rp 1 4
√

2α
n1.5 ·Rk

4
√

2α√
Kl
·Rd

√
K0 Rk

n1,5

4
√

2α
·Rp 1 n1,5√

Kl
·Rd

D Rd
√

Kl

4
√

2α
·Rp

√
Kl

n1.5 ·Rk 1

3.6. Relationships among the Laminar Dimensionless Coefficients α, α0, Kl and α′

Considering Equations (74) and (76) and equaling both equations, we obtain:
√

2α√
Kl

=
n

6·F·(1− n)
(93)

Developing Equation (93), we obtain:

2α·36·F2(1− n)2 = Kl ·n2 (94)
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Solving the linear dimensionless coefficient α, we finally determine the relationship
between the linear dimensionless coefficients α and Kl Equation (95).

α =
n2

72·F2·(1− n)2 ·Kl (95)

Next, we relate the coefficients α and α0. If we equal the linear components of Engelund
Equation (25) considering the representative diameter of the particle D instead of De and
Equation (64), we obtain:

v
g
·α0·

1
D2 ·

(1− n)2

n2 =
v

2·g ·(2·Kl)·
1

D2 ·
1
n

(96)

We get:

Kl = α0·
(1− n)3

n
(97)

Substituting the values of Kl in Equation (95) we obtain Equation (98):

α =
α0·(1− n)·n

72·F2 (98)

Coefficient α′ relates to coefficient α through Equation (53)
Summarizing, Table 3 shows the relationships among the laminar dimensionless

coefficients α, Kl and α0.

Table 3. Relationships among the laminar dimensionless coefficients.

Lc Laminar α Kl α0

4Rh α 1 n2

72·F2·(1−n)2 ·Kl
(1−n)·n

72·F2 ·α0√
K0 1

D Kl
72·F2·(1−n)2

n2 ·α 1 (1−n)2

n ·α0
D α0

72·F2

(1−n)·n ·α
n

(1−n)3 ·Kl 1

3.7. Relationships among Turbulent Dimensionless Coefficients β, β0, Kt, β′ and C

If we equal the quadratic components of Equations (45) and (61):

1
2
·A′2·

1
g
· 1
4Rh
· 1
n2 =

1
2
·A′′2 ·

1
g
· 1√

K0
· 1
n2 (99)

Considering the values of A′2 and A′′2 defined by Equations (52) and (63) and substi-
tuting them in the first expression we get:

β· 1
4Rh

= 2·C·n2· 1√
K0

(100)

In accordance with Equation (70) that defines the relationship between the hydraulic mean
radius Rh and the intrinsic permeability K0 and substituting this equation in Equation (100):

β

4
· n0.5
√

2α
· 1√

K0
= 2·C·n2· 1√

K0
(101)

We finally get:
β = 8·

√
2·α·C·n1.5 (102)
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This last derived equation shows the dependence between the linear dimensionless
coefficient α and the quadratic dimensionless coefficient β. As indicated by Huang H. and
Ayoub J. (2007), “both expressions are intrinsically related, and the division is not arbitrary.”

If we equal the quadratic components of Equations (45) and (64) we obtain the rela-
tionship turbulent coefficients β and Kt:

1
2
·A′2·

1
g
· 1
4·Rh

· 1
n2 =

1
2
·A′′′2 ·

1
g
· 1
D
· 1
n2 (103)

If we consider Equation (76) that relates the characteristic lengths Rh and D the values
A′2 and A′′′2 given by Equations (52) and (66), substituting in the Equation (103) we obtain:

β·6·F·(1− n)
4·n · 1

D
= 2·Kt·

1
D

(104)

Therefore, we finally obtain the relationship:

β = 86·nF·(1− n)·Kt (105)

Finally, equaling Equations (104) and (105) that define the coefficient β:

8
√

2·α·C·n1,5 =
8
6
· n
F·(1− n)

·Kt (106)

By clearing C in Equation (106) we obtain the relationship between the turbulent
dimensionless coefficients C and Kt:

C =
1
6
· 1√

2α
· 1
F·n0.5(1− n)

·Kt (107)

Finally, if we equal the quadratic components of Equation (25) of Engelund (1953) and
Equation (64):

1
g
·β0·

(1− n)
n3 · 1

D
=

1
2·g ·(2·Kt)·

1
D
· 1
n2 (108)

We obtain the relationship:

Kt = β0·
(1− n)

n
(109)

And substituting in Equation (108) we obtain:

β =
8
6
· 1
F
·β0 (110)

Coefficient β′ is equal to coefficient β in accordance with Equation (54).
Accordingly, Table 4 shows the relationships among the dimensionless coefficients

β, C, Kt and β0.

Table 4. Relationships among the turbulent coefficients.

Lc Turbulent β C Kt β0

4Rh β 1 8·
√

2α·n1.5·C 8
6 ·

n
F(1−n) ·Kt

8
6 ·

1
F ·β0√

K0 C 1
8·
√

2α·n1.5 ·β 1 1
6·
√

2α·Fn0.5(1−n)
·β 1

6·
√

2α·F·n1.5 ·β0

D Kt
6·F(1−n)

8n ·β 6·
√

2α·F·n0.5·(1− n)·C 1 (1−n)
n ·β0

D β0
6
8 ·F·β 6·

√
2α·F·n1.5·C n

(1−n) ·Kt 1

4. Conclusions

The seepage process in a coarse porous medium can be represented by three types
of equation: a generalized equation [Re, f ], i.e., Equation (10), a generalized quadratic
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equation, i.e., Equation (12), and a generalized linear equation [Re, λ], i.e., Equation (16);
all these equations consider a characteristic length Lc.

The linearized equation, i.e., Equation (16), allows one to check whether the coefficients
A1 and A2 remain constant or, on the contrary, vary throughout the three non-Darcy flow
regimes: nonlinear laminar, turbulent transition, and fully developed turbulent.

On the basis of the analysis of the different relationships between the gradient and the
seepage velocity developed by different authors, all of them based on Equation (1) proposed
by Forchheimer (1901) [1], it can be concluded that all the physical parameters considered
in the different formulations are related to each other. Such parameters are the characteristic
length (Lc, Table 1), the Reynolds number (Re, Table 2), the dimensionless coefficient of
the linear term r (A1, Table 3), and the dimensionless coefficient of the quadratic term s
(A2, Table 4).

In this paper, we establish the equations that relate these parameters, thus, facilitating
comparisons among the main studies carried out to date by different authors.
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Nomenclature

a Coefficient of the exponential equation that depends on the characteristics of the
porous medium

A1 Generalised dimensionless coefficient of the linear expression r
A2 Generalised dimensionless coefficient of the quadratic expression
A′1 Linear dimensionless coefficient corresponding to Lc = Dh
A′2 Quadratic dimensionless coefficient corresponding to Lc = Dh
A′′1 Laminar dimensionless coefficient corresponding to Lc =

√
K0

A′′2 Quadratic dimensionless coefficient corresponding to Lc =
√

K0
A′′′1 Laminar dimensionless coefficient corresponding to Lc = D
A′′′2 Quadratic dimensionless coefficient corresponding to Lc = D
c’ Coefficient from Martins
b Exponent of the exponential equation function of the flow conditions
C Quadratic dimensionless coefficient of Ward
Cu Coefficient of uniformity
D Representative size of the particles in uniform materials
D50 Sieve opening through which 50% of the material passes
Da Average size of sieve openings
De Diameter equivalent or diameter of a sphere with the same volume as the particle
Dg Geometric mean between the two consecutive sieves
Dh Hydraulic mean diameter
Dm Particle mean diameter
Dp Effective diameter or diameter of a sphere with the same specific surface area as

the particle
Dx Diameter of the permeameter
F Coefficient of Loudon which considers the shape and angularity of the particles
f Generalised friction factor, by Darcy–Weisbach
f ′L Function of porosity, by Engelund
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fd Particle friction factor
fE Friction factor of Ergun
fk Friction factor of Ward
fp Function of linear porosity
fp Pore friction factor
fT Function of quadratic porosity
g Gravitational acceleration
i Hydraulic gradient
K0 Intrinsic permeability of the porous medium
Kb Coefficient of Blake that considers the shape of the porous material and the

symmetry of the packing
[Kb]L Linear dimensionless coefficient, S. P. Burke and W. B. Plummer
[Kb]T Quadratic dimensionless coefficient, S. P. Burke y W. B. Plummer
Kl Linear dimensionless coefficient, by Stephenson
Kt Quadratic dimensionless coefficient, by Stephenson
Lc Characteristic length
Mg Geometric mean of the size of the particles that constitute the porous medium
n Porosity
r Linear coefficient of the Forchheimer equation of function of the characteristics

of the porous medium and fluid.
Re Generalised Reynolds number
Rd Particle Reynolds number
RE Reynolds number, by Ergun
Rh Hydraulic mean radius
Rk Reynolds number, by Ward
Rp Pore Reynolds number of Dh
s Quadratic coefficient of the Forchheimer equation of function of the

characteristics of the porous medium.
S Surface area per volume unit of the packed porous medium
Se Average specific surface area of solid particles
SP Average surface area of the particles
V Average fluid velocity based on the transversal section
v Kinematic viscosity
VP Pore velocity
vp Average particle volume
α Linear dimensionless coefficient of the expression r, by Sabri, Ergun, and A. A. Orning
α’ Linear dimensionless coefficient of pores
α0 Linear dimensionless coefficient r, by Engelund
β Quadratic dimensionless coefficient of the expression r, by Sabri, Ergun and A. A. Orning
β’ Quadratic dimensionless coefficient of pores
β0 Quadratic dimensionless coefficient of the expression s, by Engelund
λ Linearised generalised friction factor
ρ Fluid density
σs Geometric standard desviation of the size distribution of the porous medium
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