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Abstract: Freshwater and hypersaline lakes in arid and semi-arid environments are crucial from agri-
cultural, industrial, and ecological perspectives. The purpose of this paper was to investigate the
effect of salinity on evaporation from water surfaces. The main achievement of this research is the
successful capture of simulated climate–surface interactions prevalent in the Canadian Prairies using a
custom-built bench-scale atmospheric simulator. Test results indicated that the evaporative flux has a
large variation during spring (water/brine: 1452/764 10−4 g·s−1·m−2 and 613/230× 10−4 g·s−1·m−2

night) and summer (1856/1187 × 10−4 g·s−1·m−2 day and 1059/394 × 10−4g·s−1·m−2 night), and
small variation in the fall (1591/915 × 10−4 g·s−1·m−2 and 1790/1048 × 10−4 g·s−1·m−2 night). The
primary theoretical contribution of this research is that the evaporation rate from distilled water
is twice that of saturated brine. The measured data for water correlated well with mathematical
estimates; data scatter was evenly distributed and within one standard deviation of the equality line,
whereas the brine data mostly plotted above the equality line. The newly developed 2:1 water–brine
correlation for evaporation was found to follow the combination equations with the Monteith model
best matching the measurements.

Keywords: evaporative fluxes; distilled water; saturated brine; bench-scale atmospheric simulator

1. Introduction

Freshwater and hypersaline lakes in arid and semi-arid environments are crucial from
agricultural and ecological perspectives and for harvesting aquatic food, salt production,
and thermal energy [1]. Given that such regions are characterized by a scarcity of surface
water, an accurate determination of evaporative flux is paramount to estimate water avail-
ability in such facilities. The chemical composition and endorheic drainage (topographical
depressions with no apparent outlets) in waterbodies variably affect evaporation [2]. Gen-
erally, evaporative flux is governed by several factors such as meteorological parameters,
surface temperature, and water salinity [3]. Numerous mathematical formulations have
been proposed to estimate freshwater lake evaporation [4]. Although most equations are
not adequate to capture the effect of hyper-salinity, some of these can be adjusted by ac-
counting for a reduced saturation vapor pressure [5]. Field studies to validate the accuracy
of predictions are affected by complex spatial and temporal variations in atmospheric
parameters, water chemistry, and physiographic features [6]. Laboratory experimentation
can create a simplified environment by isolating selected influencing parameters provided
they are adequately replicated [7].

The Canadian Prairies represent an inland region that experiences minimal precip-
itation and weather that promotes evaporation from spring to fall [8]. The semi-arid
Canadian Prairies has the highest water demand-to-availability ratio in Canada [9] because
of low and spatiotemporally variable precipitation [10], a reliance on seasonally variable
glacial runoff [11], interprovincial water use agreements [12], and competing municipal
and industrial requirements [13]. Evaporation from one of the largest freshwater reservoirs
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accounts for more water loss than all other users combined; a 10 mm elevation drop re-
moves 1–4.3 × 106 m3 of water from the surface [14]. Where freshwater is not available,
natural saline lakes often become critical areas for waterfowl and wildlife habitats [15].
Evaporation from saline lakes has negative ecological implications as water loss increases
dissolved ion concentration [16]. Furthermore, the potash industry uses freshwater for
processing and contains hypersaline residual brine in surface ponds [17]. Evaporation from
such storage facilities is critical for mine water recycling [18] and results in a gradually
increased level of salt concentration [19].

Figure 1 shows the geographical distribution of freshwater lakes (with less than
0.5 g·L−1 dissolved salts) and saline lakes (with at least 3.0 g·L−1 dissolved salts) in
Saskatchewan, Canada. Derived from the Wisconsinan Glaciation (2.5× 106 to 17,000 years
B.P.), the terrain is flat and undulating with the last melt of the Laurentide ice sheet (from
17,000 to 8000 years B.P), creating thousands of freshwater lakes with shallow depths
and large exposed areas [20]. Likewise, there are approximately 500 saline lakes of at
least 1 km2 areas [1], with high concentrations of dissolved salt [21]. These salts originate
from the dissolution of ions as groundwater moved through geologic formations [22].
Alternating carbonate and evaporite formations have led to the development of lean
and shallow aquifers (3 g·L−1 salts comprising Na+, Ca2+, Mg2+, and SO4

2−), as well as
concentrated and deep aquifers (300 g·L−1 salts of Na+ and Cl−) [2]. Furthermore, several
potash tailing ponds exist in the area containing slimes with dissolved salt contents of
up to 360 g·L−1 [19]. In addition, the area is undergoing extensive changes due to the
development of an irrigation system with a significant impact on agricultural practices. To
ensure sustainable water use in the region (freshwater bodies, saline lakes, and tailings
ponds), there is an exigent need to understand the effect of salinity on water evaporation
under the prevalent climate.Water 2021, 13, x FOR PEER REVIEW 3 of 13 
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The main objective of this research was to investigate the effect of salinity on evapo-
ration using laboratory bench-scale testing. The evaporative fluxes from distilled water
and saturated brine were measured under the imposed surface and atmospheric condi-
tions representative of the Canadian Prairies. The two data sets were cross-examined and
compared with predictions from established empirical equations.

2. Research Methodology

Evaporative flux tests were conducted using a bench-scale atmosphere simulator de-
veloped by Suchan and Azam [23], which replicated six different environmental scenarios
in the study area. Table 1 provides the average atmospheric and surface parameters for
the selected scenarios (spring, summer, and fall), showing both daytime and nighttime
values. Winter was not included because freezing conditions are prevalent during this
season. The atmospheric parameters (hourly land-based measurements) were obtained
from the Canadian Weather Energy and Engineering Datasets (CWEEDS), based on data
from 1998 to 2014. Details on the selection of surface–atmosphere parameters and standard
deviations are given in Suchan and Azam [24].

Table 1. Selected atmospheric parameters in the study area, modified after Suchan and Azam [24].

Weather
Scenario

Date
Range

(Month)

Duration
(Hours)

Air
Velocity
(m·s−1)

Air
Humidity
(g·m−3)

Air
Temperature

(◦C)

Solar
Irradiance
(W·m−2)

Surface
Temperature

(◦C)

Day March–November 3706
Spring March–May 883 1.7 5.0 10.0 325 12

Summer May–September 1755 1.3 9.0 19.0 325 22
Fall September–November 541 1.6 5.0 9.0 210 13

Night April–November 1827
Spring April–May 206 1.3 5.0 9.0 0 6

Summer May–September 761 1.3 8.5 13.0 0 17
Fall September–November 277 1.5 5.5 9.0 0 16

The tests were conducted using 15 mL of sample (distilled water and saturated brine)
in a clean and air-dried container mounted on an analytical scale balance. The freshwater
stock was composed of distilled water containing less than 0.3 g·L−1 of dissolved salts. A
saturated hypersaline brine stock was prepared by adding 100 mL of distilled water with
35.7 g of NaCl (TDS of 357 g·L−1) and stirring until all the solids were completely dissolved.
The evaporative flux tests with water were conducted for approximately 3 h similar to İnan
and Özgür [25], whereas the brine tests were conducted for approximately 6 h to account
for the anticipated reduction in evaporation rate [26]. This generated approximately
1100 measurements for the distilled water and approximately 2200 measurements for the
saturated brine at 10 s intervals. The average evaporative flux over the course of each
experiment was determined using the change in sample mass over time and the surface
area of the sample.

3. Results and Discussion

Table 2 provides a summary of the measured average atmospheric conditions and
surface parameters for distilled water and saturated brine tests for the investigated weather
scenarios. All of the target weather conditions (air velocity, air pressure, relative humidity,
air temperature, and incoming solar irradiance) were achieved. The outgoing shortwave
flux was similar between fluids and was found to not exceed 2 W m−2 (1% of incoming solar
irradiance). This is primarily attributed to the stationary and perpendicular flux source
in the atmospheric simulator that does not capture the moving and angular direction of
the sun [27] or the effects of latitude [28]. The rate of mass change due to evaporation was
obtained from the best fit to measured data (not given in this paper). The resulting values
were found to range between 0.9 × 10−4 g·s−1 and 2.8 × 10−4 g·s−1. Finally, the surface
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temperature was achieved for each weather scenario, thereby capturing the long-term heat
storage in deep water bodies [29].

Table 2. Summary of the measured average atmospheric and surface parameters.

Parameter Unit

Sy
m

bo
l

Day Night

Spring Summer Fall Spring Summer Fall

W B W B W B W B W B W B

Count n 1102 1988 1236 2161 1184 2161 1250 2158 1084 1777 1232 2161
Atmosphere
Momentum

Velocity m·s−1 v 1.7 1.7 1.3 1.3 1.6 1.6 1.3 1.3 1.3 1.3 1.5 1.5
Mass

Air Pressure Pa ea 94,294 95,893 95,397 95,134 93,414 95,293 94,484 95,845 94,407 93,256 95,060 92,866
Relative

Humidity
Upwind,

High % hUH 50.8 50.7 51.3 52.0 55.1 53.9 54.4 54.5 75.2 76.0 60.7 64.8

Downwind,
High % hDH 53.5 53.0 51.9 52.9 57.5 56.4 55.5 55.7 80.5 76.6 61.2 66.1

Upwind, Low % hUL 52.7 53.2 55.0 55.3 56.5 56.4 56.6 56.7 75.1 74.9 62.3 62.2
Downwind,

Low % hDL 55.7 56.2 57.6 57.8 59.9 59.6 59.5 59.5 80.5 80.3 66.2 68.4

Energy
Temperature

Upwind,
High

◦C TaUH 10.8 11.0 20.7 20.5 9.5 9.8 9.7 9.6 13.7 13.7 9.7 9.4

Downwind,
High

◦C TaDH 10.3 10.5 20.4 20.2 9.0 9.3 9.5 9.4 13.0 13.6 9.4 9.1

Upwind, Low ◦C TaUL 10.1 10.1 19.0 19.0 8.9 9.1 9.1 8.9 12.9 13.1 8.9 9.0
Downwind,

Low
◦C TaDL 9.9 10.0 19.2 19.1 8.8 9.0 9.0 8.9 13.0 13.1 8.9 9.0

Shortwave
Flux (↓) W·m−2 Si 325 325 325 325 210 210 0 0 0 0 0 0

Surface
Mass

Mass Rate
Change
(× 10−4)

g·s−1 ∆M 2.17 1.12 2.79 1.72 2.39 1.34 0.93 0.34 1.60 0.59 2.68 1.54

Energy
Shortwave

Flux (↑) W·m−2 So 2 2 2 2 1 2 0 0 0 0 0 0

Temperature ◦C Ts 12 12 22 22 13 13 6 6 17 17 16 16

Note. Surface materials are distilled water (W) and saturated brine (B).

Table 3 gives a summary of the analyzed data of average atmospheric and surface
parameters for the investigated weather scenarios. The corresponding transient data (not
given in this paper) were found to be steady. The aerodynamic resistance was found to
be inversely related to air velocity and ranged from 41 s·m−1 to 47 s·m−1. Likewise, the
absolute humidity was represented by the lower-upwind hygrometer, and the target results
were achieved in the setup. The vapor pressure deficits (atmospheric and surface) were
nearly the same for water and brine surfaces because the analyzed values are based on
the controlled parameters of humidity, air temperature, and surface temperature. The
atmospheric vapor pressure deficit followed the air temperature trends with high diurnal
variation in summer (989 Pa and 938 Pa) and negligible variation in spring (83 Pa and
81 Pa) and fall (67 Pa and 69 Pa); values in parentheses are for water and brine, respectively.
Similarly, the surface vapor pressure deficit followed the surface temperature trends, with
high diurnal variation in summer (685 Pa and 606 Pa) and spring (468 Pa and 438 Pa) and
low variation in fall (−256 Pa and −252 Pa).

The determination of energy fluxes was based on an infinitely thin surface with no heat
storage [30], such that inputs and outputs were categorized as either radiant, evaporative,
sensible, or ground flux, with details provided by Suchan and Azam [24]. The available
energy (difference between net radiant flux and ground flux) at the water surface was
generally twice that at the brine surface because the presence of salt decreases fluid chemical
potential, thereby reducing the latent heat energy of the brines [5]. The diurnal pattern of
the available energy was found to be similar to surface vapor pressure deficit, namely: high
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variation in the spring (359 J·s−1·m−2 and 194 J·s−1·m−2) and summer (179 J·s−1·m−2 and
195 J·s−1·m−2), and low in the fall (−90 J·s−1·m−2 and −72 J·s−1·m−2); values presented
in parentheses are for water and brine, respectively.

Table 3. Summary of the analyzed average atmospheric and surface parameters.

Parameter Unit
Sy

m
bo

l
Day Night

Spring Summer Fall Spring Summer Fall

W B W B W B W B W B W B

Atmosphere
Momentum
Aero. Resistance s·m−1 ra 41.4 41.4 46.6 46.8 42.6 42.6 46.6 46.6 46.6 46.6 43.9 43.9
Mass
Vapor Density g·m−3 ρv 5.0 5.0 9.0 9.0 5.0 5.0 5.0 5.0 8.5 8.5 5.5 5.5
Vapor Pressure
Partial Pa ev 650 658 1209 1215 646 651 652 648 1117 1126 712 715
Saturated Pa es 1234 1211 2198 2152 1144 1131 1153 1121 1488 1473 1144 1125
Deficit Pa ed 584 554 989 938 498 480 501 473 371 347 431 411
Energy
Longwave Flux (↓) J·s−1·m−2 Li 284 284 340 340 279 280 280 280 313 314 282 283

Surface
Mass
Vapor Pressure
Saturated Pa e f 1402 1375 2646 2593 1498 1468 936 927 1938 1899 1820 1784
Deficit Pa eu 752 717 1437 1379 852 817 284 279 821 773 1108 1069
Energy
Longwave Flux (↑) J·s−1·m−2 Lo 367 367 422 422 373 373 337 338 394 394 389 388
Net Radiant Heat Flux J·s−1·m−2 R 241 241 241 242 117 118 −58 −59 −80 −79 −107 −106
Evaporative Heat Flux J·s−1·m−2 λE 359 189 464 291 398 226 160 57 258 97 432 258
Sensible Heat Flux J·s−1·m−2 H 46 24 47 29 112 60 −114 −39 74 28 167 100
Ground Heat Flux J·s−1·m−2 G −164 28 −270 −78 −393 −168 −104 −77 −412 −204 −706 −464
Available Energy J·s−1·m−2 Q 405 213 511 320 509 286 46 19 332 125 599 358
Evaporative Flux
(×10−4) J·s−1·m−2 φ 1452 764 1856 1187 1591 915 613 230 1059 394 1790 1048

Note. Surface materials are distilled water (W) and saturated brine (B).

Evaporative flux was obtained from the measured rate of change in mass and the surface
area. The data followed seasonal patterns similar to the surface vapor pressure deficit and the
available energy, namely large diurnal variation during spring (839 × 10−4 g·s−1·m−2 and
534 × 10−4 g·s−1·m−2) and summer (797 × 10−4 g·s−1·m−2 and 793 × 10−4 g·s−1·m−2),
and small variation in the fall (−199 × 10−4 g·s−1·m−2 and −133 × 10−4 g·s−1·m−2);
values presented in parentheses are for water and brine, respectively.

Figure 2 presents the results of the bench-scale testing in the form of evaporation rate
with respect to time. As expected, the water loss from distilled water exceeded brine for
all of the investigated weather scenarios. The evaporative flux from water surfaces was
found to be stable, with data scatter (standard deviation) of 45–64 × 10−4 g·s−1·m−2 during
the day and 23–27 × 10−4 g·s−1·m−2 at night. With the exception of summer day and
fall night, a similarly stable flux was observed from brine surfaces with data scatter of
35–45 × 10−4 g·s−1·m−2 during the day and 6–57 × 10−4 g·s−1·m−2 at night. The evapora-
tive flux gradually increased for brine surfaces during summer day (±162 × 10−4 g·s−1·m−2)
and fall night (±94 × 10−4 g·s−1·m−2) and is attributed to the formation of NaCl crystals.
The lower emissivity of solid crystals (ε = 0.87) compared with that of brine fluid (ε = 0.96)
interfered with the infrared thermometer, thereby resulting in lower surface temperature
readings [31]. These lower readings caused a gradual temperature increase in the silicon
heating pad, thereby inadvertently increasing evaporative flux. In each weather scenario,
the rate of evaporation from saturated brine surfaces is typically half the distilled water
value. In the spring and summer, evaporation is twice as high during the day as compared
to night for distilled water and three times higher for brine. Conversely, in the fall scenario,
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evaporative fluxes for both water and brine are approximately the same during the day
and night.
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Figure 3 compares evaporative flux from distilled water and saturated brine surfaces.
For the investigated range of surface-atmosphere conditions, the evaporative water flux was
more than double that of brine (that is, 2:1 relationship) following a logarithmic equation
(R2 = 0.99). This relationship, along with the associated scatter in data, is primarily related
to the effect of NaCl on the measurement of the various parameters during testing.
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Figure 4 compares the measured evaporative flux values with estimates based on
empirical relationships relevant to measured data. Table 4 provides a summary of the
mass transfer equations such as Himus and Hinchley [32], Meyer [33], and Penman [34]
and the combination equations by Monteith [35], De Bruin and Keijman [36], and Duan
and Bastiaanssen [37]. The equations are modified to estimate evaporation from saturated
brines, under the assumption that dissolved salt reduces the saturation vapor pressure by
lowering the activity [5], and can be accommodated in mathematical equations using the
concentration of sodium chloride (m) to determine the water activity coefficient [38]:

aw = −0.0011m2 − 0.0319m (1)

For distilled water (Figure 4a), the data are plotted on both sides of the equality line
and mostly within one standard deviation of the water data. In contrast, the saturated brine
(Figure 4b) is exclusively plotted above the equality line and mostly within one standard
deviation of the brine data.
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Table 4. Summary of empirical equations for estimation of evaporative flux, modified after Suchan
and Azam [24].

Type and Reference Vapor Flux Equation (g·m−2·s−1)

Mass-Transfer

[32] 1× 10−6(64.58 + 28.06v)ed

[33] 1.06317× 10−7ρw(1 + 0.1v)(ed/1000)

[34] 3.3828× 10−8ρw(1 + 0.24v)(ed/1000)
Combination

[35]
1
λ

(
∆Q+1.01ρaeu/ra

∆+γ

)
[36]

1
λ

[
∆Q

(0.85∆)+(0.63γ)

]
[37] 1

λ

[
Q−(1.01ρa [−0.17Ta+4.27][1+0.536v])

251

]

Figure 5 and Table 5 compare the estimated evaporative flux values of distilled wa-
ter and saturated brine for the above-mentioned equations. The mass transfer models
were best fitted with linear regressions that remained close to the 1:1 line (R2 = 0.99 and
TSS = 1 × 10−2) because only measured parameters of air velocity and atmospheric vapor
pressure deficit are taken into consideration. The trend lines for the Penman and the Meyer
equations were found to overlap. All these equations included unique fit parameters that
were calculated based on measured data. In contrast, the combination models were best
fitted with logarithmic regressions that remained close to the 2:1 line (R2 ranging from 0.96
to 0.98, and TSS from 1 × 10−2 to 5 × 10−2), attributed to the inclusion of surface vapor
pressure, latent heat, and available energy parameters. These models, which took both
mass and energy flux into account, were found to be closer to measured data and captured
the logarithmic trend.
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0.98, and TSS from 1 × 10−2 to 5 × 10−2), attributed to the inclusion of surface vapor pressure, 
latent heat, and available energy parameters. These models, which took both mass and 
energy flux into account, were found to be closer to measured data and captured the log-
arithmic trend. 
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Table 5. Comparative statistical summary of evaporative fluxes from distilled water and saturated
brine surfaces using various methods.

Method Best Fit
Coefficient of

Determination
(R2)

Residual
Sum of
Squares

(SSE)

Regression
Sum of
Squares

(SSR)

Total Sum of
Squares

(TSS)

BAS2 Logarithmic 0.9910 1 × 10−4 0.0112 0.0113
[32] Linear 0.9997 3 × 10−6 0.0080 0.0080
[33] Linear 0.9994 6 × 10−6 0.0102 0.0102
[34] Linear 0.9997 8 × 10−6 0.0129 0.0129
[35] Logarithmic 0.9616 5 × 10−4 0.0129 0.0134
[36] Logarithmic 0.9778 2 × 10−3 0.0433 0.0453
[37] Logarithmic 0.9559 1 × 10−3 0.0313 0.0327

4. Summary and Conclusions

A thorough comprehension of evaporative flux from water and brine surfaces in
semi-arid climates is necessary to estimate water losses. Laboratory evaporation tests
on distilled water and saturated brine were conducted using a custom-built bench-scale
atmospheric simulator with climatic parameters and surface conditions representative of
the Canadian Prairies. The main conclusions of this study are given as follows:

The test results using a bench-scale atmosphere simulator indicated that the evaporative
flux had a large variation during spring (water/brine: 1452/764 × 10−4 g·s−1·m−2 day
and 613/230 × 10−4 g·s−1·m−2 night) and summer (1856/1187 × 10−4 g·s−1·m−2 day and
1059/394× 10−4 g·s−1·m−2 night), and small variation in the fall (1591/915× 10−4 g·s−1·m−2

day and 1790/1048 × 10−4 g·s−1·m−2 night).
The primary theoretical contribution of this research is that the evaporation rate from

the distilled water surface is twice that of the saturated brine surface. The measured data
for water correlated well with mathematical estimates; data scatter was evenly distributed
and within one standard deviation of the equality line, whereas the brine data mostly
plotted above the equality line.

The newly developed 2:1 correlation between evaporation rates from water surfaces
versus brine surfaces was found to follow the trend lines of the combination equations, and
the Monteith model best matched the measure data. In contrast, the mass transfer models
were best fitted with linear regressions that remained close to the 1:1 line for water and
brine evaporation.
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