Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Wastewater Treatment Plants and Sites of Agricultural Use of Sewage Sludge
2.1.1. Determination of pH
2.1.2. Sewage Sludge Analysis
2.2. Mobility of Heavy Metals of Sewage Sludge
2.3. Risk Indicators for Accumulation of Heavy Metals
2.3.1. Geoaccumulation Index of Heavy Metal in Soil (GAI)
2.3.2. Risk Assessment Code (RAC)
2.3.3. Potential Environmental Risk Index (PERI)
2.3.4. Environmental Risk Determinant (ERD)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Waste Management Plan 2016. Available online: https://bip.mos.gov.pl/fileadmin/user_upload/bip/strategie_plany_programy/DGO/Krajowy_plan_gospodarki_odpadami_2022_____M.P._poz._784_.pdf (accessed on 30 May 2021).
- Eurostat. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 30 May 2021).
- Durdević, D.; Trstenjak, M.; Hulenić, I. Sewage sludge thermal treatment technology selection by utilizing the analytical hierarchy process. Water 2020, 12, 1255. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Latosińska, J. Influence of temperature and time of sewage sludge incineration on the mobility of heavy metals. Environ. Prot. Eng. 2017, 43, 105–122. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Mijangos, I.; Epelde, L.; Garbisu, C. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Sci. Total. Environ. 2019, 10, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Latosińska, J. Risk assessment of soil contamination with heavy metals from sewage sludge and ash after its incineration. Desalin Water Treat. 2020, 199, 297–306. [Google Scholar] [CrossRef]
- Act on Waste of 14 December 2012 Journal of Laws. Item 21; 2013. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20130000021/T/D20130021L.pdf (accessed on 10 May 2021).
- Minister of the Environment. Regulation of the Minister of the Environment of 6 February 2015 on the Municipal Sewage Sludge (J. L. 2015, No. 0, Item. 257); Minister of the Environment: Warsaw, Poland, 2015.
- Minister of the Economy. Regulation of the Minister of the Economy of 16 of 16 July 2015 on the Acceptance of Waste for Landfilling (J.L. 2015, No.0, Item. 1277); Minister of the Economy: Warsaw, Poland, 2015.
- Minister of Agriculture and Rural Development. Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (J.L. 2008, No. 119, item.765); Minister of Agriculture and Rural Development: Warsaw, Poland, 2008.
- Andreoli, C.V.; Pegorini, E.S.; Fernandes, F.; Santos, H.F. Land Application of Sewage Sludge. In Sludge Treatment and Disposal; Von Sperling, M., Andreoli, C.V., Fernandes, F., Eds.; IWA Publishing: London, UK, 2007; pp. 162–206. [Google Scholar]
- European Commission. Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge Is Used in Agriculture (86/278/EEC); European Commission: Brussels, Belgium, 1986. [Google Scholar]
- Ministry of Environmental Protection of the People’s Republic of China. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2002. [Google Scholar]
- Code of Federal Regulations. Title 40—Protection of Environment; § 503.13—Pollutant limits. Washington; 2018. Available online: https://www.ecfr.gov/cgi-bin/text-idx?node=pt40.32.503&rgn=div5#se40.32.503_113 (accessed on 10 May 2021).
- Snyman, H.G.; Herselman, J.E. Requirements for the Agricultural Use of Wastewater Sludge (Vol. 2). Guidelines for the Utilisation and Disposal of Wastewater Sludge; WRC Report No: TT 262/06; WRC: Pretoria, South Africa, 2009. [Google Scholar]
- Siuta, J. Przyrodnicze Użytkowanie Odpadów; Instytut Ochrony Środowiska: Warsaw, Poland, 2002. [Google Scholar]
- Alexakis, D.; Bathrellos, G.; Skilodimou, H.; Gamvroula, D. Spatial Distribution and Evaluation of Arsenic and Zinc Content in the Soil of a Karst Landscape. Sustainability 2021, 13, 6976. [Google Scholar] [CrossRef]
- Bezak-Mazur, E. Specjacja w Ochronie i Inżynierii Środowiska; Polska Akademia Nauk: Kielce, Poland, 2014. [Google Scholar]
- Jones, C.A.; Jacobsen, J. Micronutrients: Cycling, testing and fertilizer recommendations. Environ. Sci. 2009, 7, 1–16. [Google Scholar]
- Hussain, A.; Priyadarshi, M.; Dubey, S. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl. Water Sci. 2019, 9, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Naz, H.; Naz, A.; Ashraf, S. Impact of heavy metal toxicity to plant growth and nodulation in Chickpea grown under heavy metal stress. Int. J. Res. Emerg. Sci. Technol. 2015, 2, 2349–7610. [Google Scholar]
- Alexakis, D.; Gamvroula, D.; Theofili, E. Environmental Availability of Potentially Toxic Elements in an Agricultural Mediterranean Site. Environ. Engin. Geosci. 2019, 25, 169–178. [Google Scholar] [CrossRef]
- Aneggi, E.; Khakbaz, A.; Nobili, M.; Mainardis, M.; Contin, M.; Mattiussi, M.; Cabras, I.; Busut, M.; Goi, D. Monitoring of heavy metals, EOX and LAS in sewage sludge for agricultural use: A case study. Detritus 2020, 12, 160–168. [Google Scholar]
- Offiong, N.; Inam, E.; Etuk, H.; Ebong, G.; Inyangudoh, A.; Addison, F. Trace Metal Levels and Nutrient Characteristics of Crude Oil-Contaminated Soil Amended with Biochar—Humus Sediment Slurry. Pollutants 2021, 1, 119–126. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, V.; Adams, R.; Vargas-Almeida, M.; Zavala-Cruz, J.; Romero-Frasca, E. Fertility Deterioration in a Remediated Petroleum-Contaminated Soil. Int. J. Environ. Res. Public Health 2020, 17, 382. [Google Scholar] [CrossRef] [Green Version]
- Offiong, N.; Inam, E.; Etuk, H. Biochar and humus sediment mixture attenuates crude oil-derived PAHs in a simulated tropical ultisol. SN Appl. Sci. 2020, 2, 1930. [Google Scholar] [CrossRef]
- Waqas, M.; Li, G.; Khan, S.; Shamshad, I.; Reid, B.J.; Qamar, Z.; Chao, C. Application of sewage sludge and sewage sludge biochar to reduce polycyclic aromatic hydrocarbons (PAH) and potentially toxic elements (PTE) accumulation in tomato. Environ. Sci. Pollut. Res. 2015, 22, 12114–12123. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals from Contaminated Mining Sites: A Review. Environ. Sci. Tech. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Sheoran, A.S.; Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Engin. 2006, 19, 105–116. [Google Scholar] [CrossRef]
- Maila, M.D.; Maree, J.P.; Cele, L.M. Acid mine water neutralisation with ammonium hydroxide and desalination with barium hydroxide. Water 2014, 40, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Bejan, D.; Bunce, N.J. Erratum to: Acid mine drainage: Electrochemical approaches to prevention and remediation of acidity and toxic metals. J. Appl. Electrochem. 2016, 46, 423. [Google Scholar] [CrossRef] [Green Version]
- Matlock, M.M.; Henke, K.R.; Atwood, D.A. Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs. J. Hazard. Mater. 2002, 92, 129–142. [Google Scholar] [CrossRef]
- Pohl, A. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut. 2020, 231, 503–521. [Google Scholar] [CrossRef]
- The Chief Inspectorate of Environmental Protection. Available online: http://www.gios.gov.pl/pl/stan-srodowiska/monitoring-jakosci-gleby-i-ziemi (accessed on 19 December 2019).
- Gawdzik, J. Mobility of Selected Heavy Metals in Sewage Sludge; Kielce University of Technology: Kielce, Poland, 2013. [Google Scholar]
- The Chief Inspectorate of Environmental Protection. Available online: https://www.gios.gov.pl/chemizm_gleb/index.php?mod=pomiary&w=26 (accessed on 19 December 2019).
- ISO 10694: Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elemental Analysis). Available online: https://www.iso.org/standard/18782.html (accessed on 10 June 2021).
- ISO 13878: Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis). Available online: https://www.iso.org/standard/23117.html (accessed on 10 June 2021).
- Gawdzik, J. Mobility of heavy metals in sewage sludge on the example of a selected sewage treatment plan. Eng. Environ. Prot. 2012, 15, 5–15. [Google Scholar]
- Mizerna, K.; Król, A. Sequential extraction of heavy metals in mineral-organic composite. Ecol. Eng. Environ. Technol. 2018, 19, 23–29. [Google Scholar] [CrossRef]
- Karwowska, B.; Dąbrowska, L. Bioavailability of heavy metals in the municipal sewage sludge. Ecol. Chem. Eng. A 2017, 24, 75–86. [Google Scholar]
- Jasińska, A. The importance of heavy metal speciation from the standpoint of the use of sewage sludge in nature. Eng. Prot. Environ. 2018, 21, 239–250. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1101. [Google Scholar] [CrossRef]
- Xiao, Z.; Yuan, X.; Leng, L.; Jiang, L.; Chen, X.; Zhibin, W.; Xin, P.; Jiachao, Z.; Zeng, G. Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge. Environ. Sci. Pollut. Res. 2016, 23, 3934–3942. [Google Scholar] [CrossRef] [PubMed]
- Czaplicka, A.; Ślusrczyk, Z.; Szarek-Gwiazda, E.; Bazan, S. Spatial distribution of iron and manganese in bottom sediments of the Goczałkowice Reservoir. Environ. Prot. 2017, 39, 47–54. [Google Scholar]
- Tytła, M.; Widzewicz, K.; Zielewicz, E. Heavy metals and its chemical speciation in sewage sludge at different stages of processing. Environ. Technol. 2016, 37, 899–908. [Google Scholar] [CrossRef]
- Yuan, X.; Huang, H.; Zeng, G.; Li, H.; Wang, J.; Zhou, C.; Zhu, H.; Pei, X.; Liu, Z. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge. Bioresour. Technol. 2011, 102, 4104–4110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, Y.; Zhang, J.; Li, N.; Kong, L.; Yu, M.; Zuo, W. Distribution and risk assessment of heavy metals in sewage sludge after ozonation. Environ. Sci. Pollut. Res. 2017, 24, 5118–5125. [Google Scholar] [CrossRef] [PubMed]
- Latosińska, J.; Czapik, P. The ecological risk assessment and the chemical speciation of heavy metals in ash after the incineration of municipal sewage sludge. Sustainability 2020, 12, 6517. [Google Scholar] [CrossRef]
- Plum, L.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latosińska, J.; Kowalik, R.; Gawdzik, J. Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Appl. Sci. 2021, 11, 548. [Google Scholar] [CrossRef]
- Shrivastava, S.K.; Banerjee, D.K. Speciation of metals in sewage sludge and sludge—Amended soils. Water. Air. Soil. Pollut. 2004, 152, 219–232. [Google Scholar] [CrossRef]
- Singh, J.; Lee, B. Reduction of environmental availability and ecological risk of heavy metals in automobile shredder residues. Ecol. Eng. 2015, 81, 76–81. [Google Scholar] [CrossRef]
Wastewater Treatment Plant | |||||
---|---|---|---|---|---|
WWTP1 | WWTP2 | WWTP3 | WWTP4 | WWTP5 | |
Location of WWTP | Sitkówka-Nowiny | Cedzyna | Pacanów | Sandomierz | Jędrzejów |
Type of WWTP | Mech.-biol. PUB | Mech.-biol. EvU-Pearl | Mech.-biol. EvU-Pearl | Mech.-biol. | Mech.-biol. PUB |
Equivalent Number of Residents | 172,569 | 9466 | 1400 | 29,550 | 48,272 |
SS treatment | Fermentation | Oxygen stab. | Oxygen stab. | Oxygen stab. | Liming |
Agricultural Use of Sewage Sludge | |||||
Location of potential use of SS: -district -commune | P1 | P2 | P3 | P4 | P5 |
Wola Kopcowa | Rzędów | Winiarki | Dyminy | Olszówka Nowa | |
kielecki | buski | sandomierski | kielecki | jedrzejowski | |
Masłów | Tuczępy | Dwikozy | Morawica | Wodzisław | |
Distance of the WWTP from the point use of SS (km) | 21.5 | 9.1 | 21.3 | 12.0 | 24.2 |
Soil type | leached brown soils | deer soils | brown soils appropriate | deer soils | deer soils |
Bonitation class | IVa medium quality arable land | IIIb average good arable land | IIIb average good arable land | IIIb average good arable land | IIIb average good arable land |
Complex | 5 (rye good) | 4 (rye very good) | 3 (wheat defective) | 4 (rye very good wheat-rye) | 4 (rye very good) |
Soil species | light clay sand | light clay sand | clay dust | clay dust | sandy clay dusty |
Parameter | Sites of Sewage Sludge Agricultural Use | |||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | IDL * | |
pH (H2O) | 4.5 | 5.2 | 6.3 | 5.9 | 6.2 | 0.01 |
Humus, % | 1.08 | 0.95 | 1.55 | 2.13 | 1.38 | 0.1 |
Organic carbon, % | 0.63 | 0.55 | 0.90 | 1.24 | 0.80 | 0.05 |
Total nitrogen, % | 0.08 | 0.10 | 0.10 | 0.15 | 0.10 | 0.01 |
C/N ratio | 7.9 | 5.5 | 9.0 | 8.2 | 8.0 | 0.004 |
Cu, mg·kg−1 | 3.2 | 5.3 | 8.5 | 4.6 | 6.2 | 0.003 |
Cr, mg·kg−1 | 4.5 | 3.8 | 14.3 | 7.4 | 9.5 | 0.003 |
Cd, mg·kg−1 | 0.12 | 0.11 | 0.12 | 0.37 | 0.31 | 0.005 |
Ni, mg·kg−1 | 2.6 | 3.0 | 13.7 | 4.6 | 8.0 | 0.008 |
Pb, mg·kg−1 | 12.1 | 10.3 | 9.5 | 22.4 | 15.0 | 0.006 |
Zn, mg·kg−1 | 20.4 | 18.0 | 29.6 | 39.6 | 38.2 | 0.005 |
Fraction | Form of Metal | Parameters of Fractionation | Time of Extraction, h |
---|---|---|---|
FI | Carbonate bound | 0.11 M CH3COOH, pH = 7.0, T = 20 °C | 16 |
FII | Fe/Mn oxides bound | 0.1 M NH2OH·HCl pH = 2.0 | 16 |
FIII | Organic | 30% H2O2 + 8.8 M H2O2 pH = 2.0, T = 85 °C | 16 |
FIV | Residual | 10 M HNO3 + 10 M HCl, T = 100 °C | 3 |
Level of Risk | GAI | Level of Risk | RAC |
---|---|---|---|
<0 | No pollution | <1 | No risk |
0–1 | No pollution to moderate pollution | 1–10 | Low risk |
1–2 | Moderate pollution | 11–30 | Medium risk |
2–3 | Moderate pollution to high pollution | 31–50 | High risk |
3–4 | High pollution | >50 | Very high risk |
PERI | ||
---|---|---|
PERI | Potential Environmental Risk | |
<40 | <150 | Low |
40–80 | 150–300 | Medium |
80–320 | 300–600 | High |
>320 | >600 | Very high |
Heavy Metal (mg/kg s.m.) | ||||||
---|---|---|---|---|---|---|
Fraction | Cu | Cr | Cd | Ni | Pb | Zn |
Sewage sludge—S1 | ||||||
Fraction I | 0.8 ± 0.1 | 5.3 ± 0.6 | 0.3 ± 0.1 | 1.3 ± 0.2 | 3.5 ± 0.1 | 144.1 ± 15.9 |
Fraction II | 0.0 ± 0.1 | 2.8 ± 0.4 | 0.5 ± 0.1 | 0.0 ± 0.1 | 4.0 ± 0.4 | 98.3 ± 10.3 |
Fraction III | 60.9 ± 1.5 | 93.8 ± 1.7 | 2.5 ± 0.1 | 1.3 ± 0.3 | 3.4 ± 0.2 | 832.6 ± 24.6 |
Fraction IV | 21.7 ± 0.6 | 136.5 ± 9.5 | 2.3 ± 0.2 | 49.2 ± 5.1 | 56.8 ± 3.7 | 240.5 ± 24.4 |
ΣFI…IV | 83.5 ± 1.6 | 238.5 ± 9.7 | 5.6 ± 0.3 | 51.8 ± 5.1 | 67.7 ± 3.7 | 1315.0 ± 39.5 |
Sewage sludge—S2 | ||||||
Fraction I | 0.2 ± 0.1 | 7.7 ± 0.3 | 1.2 ± 0.1 | 1.9 ± 0.1 | 7.0 ± 0.7 | 244.0 ± 0.8 |
Fraction II | 0.2 ± 0.1 | 4.2 ± 0.2 | 1.5 ± 0.2 | 3.0 ± 0.3 | 11.0 ± 0.9 | 335.2 ± 0.9 |
Fraction III | 10.4 ± 0.4 | 20.0 ± 0.9 | 3.9 ± 0.2 | 8.0 ± 0.6 | 16.0 ± 0.9 | 169.0 ± 0.8 |
Fraction IV | 5.9 ± 0.3 | 54.0 ± 3.3 | 5.0 ± 0.4 | 9.0 ± 0.5 | 335.1 ± 9.9 | 726.1 ± 7.9 |
ΣFI…IV | 16.7 ± 0.5 | 85.9 ± 3.4 | 11.6 ± 0.5 | 21.9 ± 0.8 | 369.1 ± 10.0 | 1474 ± 8.0 |
Sewage sludge—S3 | ||||||
Fraction I | 1.5 ± 0.1 | 0.0 ± 0.1 | 0.0 ± 0.1 | 2.6 ± 0.1 | 3.7 ± 0.4 | 328.9 ± 0.9 |
Fraction II | 25.6 ± 0.2 | 24.1 ± 0.3 | 4.2 ± 0.1 | 19.6 ± 0.3 | 14.0 ± 2 | 743.2 ± 2.3 |
Fraction III | 551.4± 0.9 | 45.1 ± 0.4 | 5.1 ± 0.1 | 57.0 ± 0.6 | 6.0 ± 0.7 | 152.3 ± 0.9 |
Fraction IV | 4.7 ± 0.1 | 4.7 ± 0.1 | 0.8 ± 0.1 | 4.3 ± 0.2 | 26.7 ± 3 | 3.1 ± 0.1 |
ΣFI…IV | 583.3 ± 0.9 | 74.0 ± 0.5 | 10.1 ± 0.2 | 83.5 ± 0.7 | 50.3 ± 3.7 | 1228 ± 2.6 |
Sewage sludge—S4 | ||||||
Fraction I | 47.8 ± 0.5 | 9.7 ± 0.3 | 4.6 ± 0.5 | 16.1 ± 0.3 | 103.4 ± 8.0 | 699.0 ± 7.0 |
Fraction II | 86.9 ± 0.8 | 54.3 ± 0.9 | 2.5 ± 0.2 | 22.4 ± 0.5 | 177.3 ± 8.5 | 280.0 ± 3.0 |
Fraction III | 83.3 ± 0.8 | 38.5 ± 0.7 | 1.3 ± 0.1 | 11.1 ± 0.3 | 73.1 ± 0.7 | 91.0 ± 0.8 |
Fraction IV | 6.2 ± 0.1 | 23.7 ± 0.5 | 1.5 ± 0.1 | 9.8 ± 0.2 | 45.5 ± 0.4 | 31.0 ± 0.4 |
ΣFI…IV | 224.3 ± 1.2 | 126.2 ± 1.3 | 9.9 ± 0.6 | 59.3 ± 0.7 | 399.4 ± 11.7 | 1101 ± 7.7 |
Sewage sludge—S5 | ||||||
Fraction I | 16.3 ± 0.2 | 1.4 ± 0.2 | 1.1 ± 0.2 | 1.9 ± 0.3 | 5.0 ± 0.4 | 4.0 ± 0.3 |
Fraction II | 1.4 ± 0.2 | 0.2 ± 0.1 | 1.0 ± 0.1 | 1.3 ± 0.2 | 3.6 ± 0.5 | 3.9 ± 0.3 |
Fraction III | 15.1 ± 0.3 | 0.1 ± 0.1 | 0.1 ± 0.1 | 1.8 ± 0.3 | 0.4 ± 0.2 | 20.5 ± 1.7 |
Fraction IV | 73.5 ± 0.7 | 82.8 ± 0.9 | 3.5 ± 0.3 | 4.8 ± 0.3 | 90.5 ± 9.2 | 1208 ± 13 |
ΣFI…IV | 106.4 ± 0.8 | 84.6 ± 0.9 | 5.8 ± 0.4 | 9.7 ± 0.6 | 99.4 ± 9.2 | 1237 ± 13.1 |
WWTP | GAI | RAC | PERI | ERD |
---|---|---|---|---|
WWTP1 | Ni, Zn, Cu, Cr, Cd | — | Cu, Cd | — |
WWTP2 | Zn, Cr, Cd, Pb | — | Cd, Pb | — |
WWTP3 | Ni, Zn, Cu, Cr, Cd | — | Ni, Cu, Cd | Zn, Cu |
WWTP4 | Zn, Cu, Cd, Pb | Cd, Zn | Cu, Cd, Pb | Zn, Cd |
WWTP5 | Zn, Cu, Cd | — | Cu, Cd | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalik, R.; Latosińska, J.; Gawdzik, J. Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland. Water 2021, 13, 2070. https://doi.org/10.3390/w13152070
Kowalik R, Latosińska J, Gawdzik J. Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland. Water. 2021; 13(15):2070. https://doi.org/10.3390/w13152070
Chicago/Turabian StyleKowalik, Robert, Jolanta Latosińska, and Jarosław Gawdzik. 2021. "Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland" Water 13, no. 15: 2070. https://doi.org/10.3390/w13152070
APA StyleKowalik, R., Latosińska, J., & Gawdzik, J. (2021). Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland. Water, 13(15), 2070. https://doi.org/10.3390/w13152070