Experimental Study on the Streaming Potential Phenomenon Response to Compactness and Salinity in Soil–Rock Mixture
Abstract
:1. Introduction
2. Apparatus and Methodology
2.1. Apparatus
2.2. Material Design and Preparation
2.3. Test Procedure
3. Results
3.1. Potential of SRM Changes with Pressure
3.2. Influence of Compactness on Streaming Potential Phenomenon
3.3. Influence of Salinity on Streaming Potential Phenomenon
3.4. Influence of Compactness and Salinity on the Effective Excess Charge Density
3.5. Comparing the Measured and Predicted Effective Excess Charge Density
4. Discussion
4.1. Streaming Potential Phenomenon in SRM
4.2. Evolution with the Compactness
4.3. Evolution with the Salinity
5. Conclusions
- (1)
- When the content of clay in soil matrix is slight, the seepage follows Darcy’s law. However, when the content of clay in soil matrix is rich, it is necessary to understand the seepage characteristics of SRM before the application of self-potential method. This will improve the measurement accuracy of the self-potential method.
- (2)
- The apparent streaming potential coupling coefficient is inversely proportional to the compactness. Different structures (compactness) of SRM have different streaming potential responses, which lays a foundation for the self-potential method to monitor the SRM structure. It is helpful to evaluate and predict the internal structural safety of dams.
- (3)
- The composition, morphology and the thickness of the bound water layer (electric double layer) of clay minerals determine the permeability of SRM in different salinities. Further research on the streaming potential phenomenon of dispersive clay materials can expand the application range of the self-potential method.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Revil, A. Transport of water and ions in partially water-saturated porous media. Part 1. Constitutive equations. Adv. Water Resour. 2017, 103, 119–138. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, H.; Wan, Z.H.; Liu, B.C. Computational model for electrical resistivity of soil-rock mixtures. J. Mater. Civ. Eng. 2016, 28, 06016009. [Google Scholar] [CrossRef]
- Chen, T.; Yang, Y.; Zheng, H.; Wu, Z. Numerical determination of the effective permeability coefficient of soil-rock mixtures using the numerical manifold method. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 381–414. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Revil, A.; Hort, R.D.; Munakata-Marr, J.; Atekwana, E.A.; Kulessa, B. Resistivity and self-potential tomography applied to groundwater remediation and contaminant plumes: Sandbox and field experiments. J. Hydrol. 2015, 530, 1–14. [Google Scholar] [CrossRef] [Green Version]
- MacAllister, D.J.; Jackson, M.D.; Butler, A.P.; Vinogradov, J. Remote detection of saline intrusion in a coastal aquifer using borehole measurements of self-potential. Water Resour. Res. 2018, 54, 1669–1687. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Tao, C.; Shen, J.; Revil, A.; Deng, X.; Liao, S.; Yu, J. Self-Potential Tomography of a Deep-Sea Polymetallic Sulfide Deposit on Southwest Indian Ridge. J. Geophys. Res. 2020, 125, e2020JB019738. [Google Scholar] [CrossRef]
- Von Smoluchowski, M. Contribution to the theory of electro-osmosis and related phenomena. Bull. Int. Acad. Sci. Cracovie 1903, 3, 184–199. [Google Scholar]
- Hunter, R.J. Zeta Potential in Colloid Science; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Pengra, D.B.; Li, S.X.; Wong, P.Z. Determination of rock properties by low-frequency AC electrokinetics. J. Geophys. Res. 1999, 104, 29485–29508. [Google Scholar] [CrossRef]
- Guichet, X.; Jouniaux, L.; Pozzi, J.P. Streaming potential of a sand column in partial saturation conditions. J. Geophys. Res. 2003, 108, 2141. [Google Scholar] [CrossRef]
- Morgan, F.D.; Williams, E.R.; Madden, T.R. Streaming potential properties of westerly granite with applications. J. Geophys. Res. 1989, 94, 12449–12461. [Google Scholar] [CrossRef]
- Revil, A.; Saracco, G.; Labazuy, P. The volcano-electric effect. J. Geophys. Res. 2003, 108, 2251. [Google Scholar] [CrossRef]
- Jaafar, M.Z.; Vinogradov, J.; Jackson, M.D. Measurement of streaming potential coupling coefficient in sandstones saturated with high salinity NaCl brine. Geophys. Res. Lett. 2009, 36, L21306. [Google Scholar] [CrossRef]
- Vinogradov, J.; Jaafar, M.Z.; Jackson, M.D. Measurement of streaming potential coupling coefficient in sandstones saturated with natural and artificial brines at high salinity. J. Geophys. Res. 2010, 115, B12204. [Google Scholar] [CrossRef] [Green Version]
- Walker, E.; Glover, P.W.J. Measurements of the relationship between microstructure, pH, and the streaming and zeta potentials of sandstones. Transp. Porous Med. 2017, 121, 183–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, E.; Glover, P.W.J.; Ruel, J. A transient method for measuring the DC streaming potential coefficient of porous and fractured rocks. J. Geophys. Res. 2014, 119, 957–970. [Google Scholar] [CrossRef]
- Dukhin, A.; Dukhin, S.; Goetz, P. Electrokinetics at high ionic strength and hypothesis of the double layer with zero surface charge. Langmuir 2005, 21, 9990–9997. [Google Scholar] [CrossRef] [PubMed]
- Alkafeef, S.F.; Alajmi, A.F. The electrical conductivity and surface conduction of consolidated rock cores. J. Colloid Interface Sci. 2007, 309, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Tosha, T.; Matsushima, N.; Ishido, T. Zeta potential measured for an intact granite sample at temperatures to 200 °C. Geophys. Res. Lett. 2003, 30, 1295. [Google Scholar] [CrossRef]
- Revil, A.; Cathles, L.M. Permeability of shaly sands. Water Resour. Res. 1999, 35, 651–662. [Google Scholar] [CrossRef]
- Rowlands, W.N.; O’Brien, R.W.; Hunter, R.J.; Patrick, V. Surface properties of aluminum hydroxide at high salt concentration. J. Colloid Interface Sci. 1997, 188, 325–335. [Google Scholar] [CrossRef]
- Jougnot, D.; Mendieta, A.; Leroy, P.; Maineult, A. Exploring the effect of the pore size distribution on the streaming potential generation in saturated porous media, insight from pore network simulations. J. Geophys. Res. 2019, 124, 5315–5335. [Google Scholar] [CrossRef]
- Dang, F.; Liu, H.W.; Wang, X.W.; Xue, H.B.; Ma, Z.Y. Empirical formulas of permeability of clay based on effective pore ratio. Chin. J. Rock. Mech. Eng. 2015, 34, 1909–1917. [Google Scholar] [CrossRef]
- Wang, L.; Mao, Z.Q.; Sun, Z.C.; Luo, X.P.; Song, Y.; Wang, Z.L. A new method for calculating fluid permeability of shaly sandstone. Chin. J. Geophys. 2015, 58, 3837–3844. [Google Scholar] [CrossRef]
- Jouniaux, L.; Pozzi, J.P. Permeability dependence of streaming potential in rocks for various fluid conductivities. Geophys. Res. Lett. 1995, 22, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Jouniaux, L.; Pozzi, J.P. Streaming potential and permeability of saturated sandstones under triaxial stress: Consequences for electrotelluric anomalies prior to earthquakes. J. Geophys. Res. 1995, 100, 10197–10209. [Google Scholar] [CrossRef]
- Glover, P.W.J.; Déry, N. Streaming potential coupling coefficient of quartz glass bead packs: Dependence on grain diameter, pore size, and pore throat radius. Geophysics 2010, 75, F225–F241. [Google Scholar] [CrossRef]
- Glover, P.W.J. Modelling pH-dependent and microstructure-dependent streaming potential coefficient and zeta potential of porous sandstones. Transp. Porous Med. 2018, 124, 31–56. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Leroy, P. Constitutive equations for ionic transport in porous shales. J. Geophys. Res. 2004, 109, B03208. [Google Scholar] [CrossRef]
- Revil, A.; Jardani, A. The Self-Potential Method: Theory and Applications in Environmental Geosciences; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Jougnot, D.; Roubinet, D.; Guarracino, L.; Maineult, A. Modeling streaming potential in porous and fractured media, description and benefits of the effective excess charge density approach. In Advances in Modeling and Interpretation in Near Surface Geophysics; Springer: Cham, Switzerland, 2020; pp. 61–96. [Google Scholar]
- Guarracino, L.; Jougnot, D. A physically based analytical model to describe effective excess charge for streaming potential generation in water saturated porous media. J. Geophys. Res. 2018, 123, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Tao, M.; Chen, X.; Binley, A. Evaluation of electrical resistivity tomography (ERT) for mapping the soil–rock interface in karstic environments. Environ. Earth Sci. 2019, 78, 1–14. [Google Scholar] [CrossRef] [Green Version]
- De Carlo, L.; Caputo, M.C.; Masciale, R.; Vurro, M.; Portoghese, I. Monitoring the Drainage Efficiency of Infiltration Trenches in Fractured and Karstified Limestone via Time-Lapse Hydrogeophysical Approach. Water 2020, 12, 2009. [Google Scholar] [CrossRef]
- Brindt, N.; Rahav, M.; Wallach, R. ERT and salinity—A method to determine whether ERT-detected preferential pathways in brackish water-irrigated soils are water-induced or an artifact of salinity. J. Hydrol. 2019, 574, 35–45. [Google Scholar] [CrossRef]
- Ikard, S.J.; Revil, A.; Jardani, A.; Woodruff, W.F.; Parekh, M.; Mooney, M. Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments. Water Resour. Res. 2012, 48, W04201. [Google Scholar] [CrossRef]
- Jougnot, D.; Linde, N.; Haarder, E.B.; Looms, M.C. Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, Voulund, Denmark. J. Hydrol. 2015, 521, 314–327. [Google Scholar] [CrossRef] [Green Version]
- Panthulu, T.V.; Krishnaiah, C.; Shirke, J.M. Detection of seepage paths in earth dams using self-potential and electrical resistivity methods. Eng. Geol. 2001, 59, 281–295. [Google Scholar] [CrossRef]
- Sheffer, M.R.; Oldenburg, D.W. Three-dimensional modelling of streaming potential. Geophys. J. Int. 2007, 169, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Bolève, A.; Janod, F.; Revil, A.; Lafon, A.; Fry, J.J. Localization and quantification of leakages in dams using time-lapse self-potential measurements associated with salt tracer injection. J. Hydrol. 2011, 403, 242–252. [Google Scholar] [CrossRef]
- Soueid Ahmed, A.; Revil, A.; Bolève, A.; Steck, B.; Vergniault, C.; Courivaud, J.R.; Jougnot, D.; Abbas, M. Determination of the permeability of seepage flow paths in dams from self-potential measurements. Eng. Geol. 2020, 268, 105514. [Google Scholar] [CrossRef]
- Soueid Ahmed, A.; Revil, A.; Steck, B.; Vergniault, C.; Jardani, A.; Vinceslas, G. Self-potential signals associated with localized leaks in embankment dams and dikes. Eng. Geol. 2019, 253, 229–239. [Google Scholar] [CrossRef]
- Qiu, Z.F.; Wang, J.J. Experimental study on the anisotropic hydraulic conductivity of a sandstone–mudstone particle mixture. J. Hydrol. Eng. 2015, 20, 04015029. [Google Scholar] [CrossRef]
- Jougnot, D.; Linde, N. Self-potentials in partially saturated media: The importance of explicit modeling of electrode effects. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Yang, H.; Wang, X.; Liu, B. Model development and experimental verification for permeability coefficient of soil-rock mixture. Int. J. Geomech. 2017, 17, 04016106. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluid in Porous Media; Elsevier: New York, NY, USA, 1972. [Google Scholar]
- Liu, X.R.; Tu, Y.L.; Wang, P.; Zhong, Z.L.; Tang, W.B.; Du, L.B. Particle breakageof soil-rock aggregate based on large-scale direct shear tests. Chin. J. Geotech. Eng. 2017, 39, 1425–1434. [Google Scholar] [CrossRef]
- Bolève, A.; Crespy, A.; Revil, A.; Janod, F.; Mattiuzzo, J.L. Streaming potentials of granular media: Influence of the Dukhin and Reynolds numbers. J. Geophys. Res. 2007, 112, B08204. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Schwaeger, H.; Cathless, L.M.; Manhardt, P.D. Streaming potential in porous media 2. Theory and application to geothermal systems. J. Geophys. Res. 1999, 104, 20033–20048. [Google Scholar] [CrossRef]
- Phillips, S.L.; Ozbek, H.; Otto, R.J. Basic energy properties of electrolytic solutions database. In Proceedings of the Sixth International CODATA Conference, Palermo, Italy, 22 May 1978. [Google Scholar]
- Glover, P.W.J.; Walker, E.; Jackson, M.D. Streaming-potential coefficient of reservoir rock: A theoretical model. Geophysics 2012, 77, D17–D43. [Google Scholar] [CrossRef] [Green Version]
- Winsauer, W.O.; Shearin, H.M.; Masson, P.H.; Williams, M. Resistivity of brine-saturated sands in relation to pore geometry. AAPG Bull. 1952, 36, 253–277. [Google Scholar]
- Tyler, S.W.; Wheatcraft, S.W. Fractal processes in soil water retention. Water Resour. Res. 1990, 26, 1047–1054. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zheng, B.; Mao, T.Q.; Hu, R.L. Investigation of the effect of soil matrix on flow characteristics for soil and rock mixture. Géotech. Lett. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Lorne, B.; Perrier, F.; Avouac, J.-P. Streaming potential measurements 1. properties of the electrical double layer from crushed rock samples. J. Geophys. Res. 1999, 104, 17857–17877. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Katagishi, Y. Deviation of linear relation between streaming potential and pore fluid pressure difference in granular material at relatively high Reynolds numbers. Earth Planets Space 2006, 58, 1045–1051. [Google Scholar] [CrossRef] [Green Version]
- Kuwano, O.; Nakatani, M.; Yoshida, S. Effect of the flow state on streaming current. Geophys. Res. Lett. 2006, 33, L21309. [Google Scholar] [CrossRef]
- Van Beek, V.M.; Van Essen, H.M.; Vandenboer, K.; Bezuijen, A. Developments in modelling of backward erosion piping. Géotechnique 2015, 65, 740–754. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Pezard, P.A.; Glover, P.W.J. Streaming potential in porous media. I. Theory of the zeta-potential. J. Geophys. Res. 1999, 104, 20021–20031. [Google Scholar] [CrossRef]
Grouping Scheme | Compactness (%) | Concentration (M) |
---|---|---|
A1–A5 | 75, 80, 85, 90, 95 | 0.01 |
B1–B5 | 85 | 0.0001, 0.001, 0.01, 0.1, 1 |
Compactness | 75% | 80% | 85% | 90% | 95% |
---|---|---|---|---|---|
Porosity | 0.38 | 0.34 | 0.30 | 0.26 | 0.22 |
Temperature (°C) | 25 | 22 | 23 | 24 | 21 |
Electrolyte conductivity (S m−1) | 0.089 | 0.086 | 0.088 | 0.086 | 0.084 |
Sample conductivity (S m−1) | 1.42 × 10−3 | 1.36 × 10−3 | 1.33 × 10−3 | 1.25 × 10−3 | 1.20 × 10−3 |
Formation factor | 63.73 | 64.22 | 67.02 | 69.71 | 71.33 |
Dynamic viscosity (Pa s) | 8.74 × 10−4 | 9.38 × 10−4 | 9.16 × 10−4 | 8.95 × 10−4 | 9.62 × 10−4 |
Relative permittivity | 78 | 79 | 79 | 79 | 80 |
Zeta potential (mV) | −62.01 | −68.98 | −74.92 | −81.98 | −89.67 |
Surface conductivity (S m−1) | 1.23 × 10−3 | 1.60 × 10−3 | 1.25 × 10−3 | 1.33 × 10−3 | 1.45 × 10−3 |
Coupling coefficient (mV cm−1) | −0.0543 | −0.0587 | −0.0641 | −0.0734 | −0.0773 |
Concentration | 0.0001 M | 0.001 M | 0.01 M | 0.1 M | 1 M |
---|---|---|---|---|---|
Porosity | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
Temperature (°C) | 25 | 23 | 23 | 24 | 25 |
Electrolyte conductivity (S m−1) | 0.0028 | 0.013 | 0.088 | 0.997 | 8.135 |
Sample conductivity (S m−1) | 1.02 × 10−3 | 1.10 × 10−3 | 1.33 × 10−3 | 1.49 × 10−2 | 1.21 × 10−1 |
Formation factor | 67.02 | 67.02 | 67.02 | 67.02 | 67.02 |
Dynamic viscosity (Pa s) | 8.73 × 10−4 | 9.15 × 10−4 | 9.16 × 10−4 | 9.03 × 10−4 | 9.73 × 10−4 |
Relative permittivity | 78 | 79 | 79 | 77 | 66 |
Zeta potential (mV) | −112.32 | −105.86 | −74.92 | −67.43 | N/A |
Coupling coefficient (mV cm−1) | −0.1306 | −0.1093 | −0.0641 | −0.0051 | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhao, M.; Wang, K. Experimental Study on the Streaming Potential Phenomenon Response to Compactness and Salinity in Soil–Rock Mixture. Water 2021, 13, 2071. https://doi.org/10.3390/w13152071
Zhang X, Zhao M, Wang K. Experimental Study on the Streaming Potential Phenomenon Response to Compactness and Salinity in Soil–Rock Mixture. Water. 2021; 13(15):2071. https://doi.org/10.3390/w13152071
Chicago/Turabian StyleZhang, Xin, Mingjie Zhao, and Kui Wang. 2021. "Experimental Study on the Streaming Potential Phenomenon Response to Compactness and Salinity in Soil–Rock Mixture" Water 13, no. 15: 2071. https://doi.org/10.3390/w13152071
APA StyleZhang, X., Zhao, M., & Wang, K. (2021). Experimental Study on the Streaming Potential Phenomenon Response to Compactness and Salinity in Soil–Rock Mixture. Water, 13(15), 2071. https://doi.org/10.3390/w13152071