

Article

Current Challenges and Advancements on the Management of Water Retreatment in Different Production Operations of Shale Reservoirs

Rahmad Syah¹, Alireza Heidary², Hossein Rajabi², Marischa Elveny^{3,*}, Ali Akbar Shayesteh^{4,*}, Dadan Ramdan¹ and Afshin Davarpanah⁵

- ¹ Data Science and Computational Intelligence Research Group, Universitas Medan Area, Medan 20223, Indonesia; rahmadsyah@staff.uma.ac.id (R.S.); dadan@uma.ac.id (D.R.)
- ² Department of Civil and Environmental Engineering, Shiraz University, Shiraz 71348-14336, Iran; alireza.heidary66@gmail.com (A.H.); rajabi.hossein1986@gmail.com (H.R.)
- ³ Data Science and Computational Intelligence Research Group, Universitas Sumatera Utara, Medan 20155, Indonesia
- ⁴ School of Environment, College of Engineering, University of Tehran, Tehran 14174, Iran
- ⁵ Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; afshindpe@gmail.com
- * Correspondence: marischaelveny@usu.ac.id (M.E.); shayesteh.ali@ut.ac.ir (A.A.S.)

Citation: Syah, R.; Heidary, A.; Rajabi, H.; Elveny, M.; Shayesteh, A.A.; Ramdan, D.; Davarpanah, A. Current Challenges and Advancements on the Management of Water Retreatment in Different Production Operations of Shale Reservoirs. *Water* **2021**, *13*, 2131. https://doi.org/10.3390/ w13152131

Academic Editor: Licínio M. Gando-Ferreira Received: 23 April 2021 Accepted: 31 July 2021 Published: 2 August 2021 Corrected: 25 July 2024

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Abstract:** Nowadays, water savings on industrial plants have become a significant concern for various plants and sections. It is vitally essential to propose applicable and efficient techniques to retreat produced water from onshore and offshore production units. This paper aimed to implement the PFF (Photo Fenton Flotation) method to optimize the water treatment procedure, as it is a two-stage separation technique. The measurements were recorded for the HF (hydraulic fracturing) and CEOR (chemically enhanced oil recovery) methods separately to compare the results appropriately. To assure the efficiency of this method, we first recorded the measurements for five sequential days. As a result, the total volume of 2372.5 MM m³/year of water can be saved in the HF process during the PFF treatment procedure, and only 20% of this required fresh water should be provided from other nand, the total volume of 7482.5 MM m³/year of water can be saved in CEOR processes during the PFF treatment procedure, and only 38% of this required fresh water should be provided from other resources. Therefore, the total water volume of 9855 MM m³ can be saved each year, indicating the efficiency of this method in supplying and saving the water volume during the production operations from oilfield units.

Keywords: water treatment; CEOR; HF; PFF method; water saving

1. Introduction

Regarding the enormous demand of various industrial plants for water supplies and the dependency of human life on water, it is essential to be more conservative and careful about its consumption [1–5]. Moreover, it can cause droughts worldwide due to the lack of water supply to feed forests [6–10]. This is the main issue that researchers have tried to address in current decades, to increase the efficiency and accuracy of water treatment methods [11–13]. One of the most practical ways to reduce the water demand for industrial plants is to treat produced water to eliminate virtually the high water supply expenses from other resources [14–18]. For example, petroleum industries are one of the largest industrial plants worldwide that require water for their operations [19,20]. As the produced water contains hazardous materials and can pose significant environmental problems, it cannot be reused without retreatment [21–30]. Therefore, the use of treated water to continue the operations should be strictly promoted by the World Health Organization to [31–40]. These

hazardous materials consisted of solid and heavy metals, chemical agents in produced water that might be highly toxic to the environment [41–51].

There are two main processes in petroleum industries that require large quantities of water to proceed with operations [51–55]. These procedures aim to increase the oil production to supply the necessary demand for industrial plants to crude oil [56–58]. Hydraulic fracturing is an essential process in petroleum industries that requires a large volume of water to create a fracturing fluid [59–63]. In this process, oil production has been increased by enlarging the previous and tight pores or creating new pore channels to simplify the oil mobilization through porous media [64–68]. As the fracturing fluid has been returned to the surface after the HF process, it should be treated in surface treatment facilities to remove solid and chemical particles in flow backwater. Therefore, an optimum and efficient method would be essential to provide the maximum water savings in the treatment performances [69–71]. These water savings can ensure the survival of several inhabitant and reduce the unnecessary expenses of freshwater supply. Another production operation that required water to continue its processes is CEOR, as water would be an essential part of preparing chemical agents such as polymers, foams, and surfactants [72–74]. The reason for this concerns the aqueous solution that needs to be provided for CEOR methods, as polymers and surfactants are in the form of powders [75–77]. Therefore, to control the processes in underground formations, it is crucial to use chemical agents as aqueous solutions [77]. Due to chemical agents' inflow backwater, which might be combined with reservoir chemical components, it is necessary to have adequate separation and treatment processes to remove most of these components [78]. This can help eliminate the hazardous impact of these materials when disposed of in the environment. The PFF method is considered the applicable method for onshore and offshore plants, as they treat water in two primary and secondary stages in different sections [79–84].

Coonrod et al. (2020) proposed an analytic review on the efficient and applicable treatment processes for Bakken shale oilfield to define the proper technique in water treatment performances among various separation and treatment techniques. They found that the U-PW method is the most applicable and efficient technique for water treatment in shale oilfields, rather than floatation, desalination, and oxidation methods [85]. Due to the lack of experimental and field application data for water treatment processes, especially in onshore plants, we aimed to implement the PFF method to optimize the water treatment procedure as a two-stage separation technique. The measurements were recorded for the HF and CEOR methods separately to compare the results appropriately. To assure the efficiency of this method, we first recorded the measurements for five sequential days.

2. Methods

One of the most efficient and applicable water treatment processes in onshore and offshore drilling operation plants is the PFF (Photo Fenton Flotation) method. In this method, ultraviolent hydrogen peroxide radiation was simultaneously implemented to treat the produced water from production wells. In this method, the degradation of organic pollutants was done by the generation of hydroxyl radicals during the processes, and it can help treat the water. Furthermore, the following steps were done sequentially to retreat the water during the production operations, and the facility services should be near the production wells to virtually eliminate the unnecessary expenses of water transfer (see Figure 1).

- (1) Produced flow-back water from production wells was transferred to the system. Specific gauges measured the volume of produced water to measure the final stages of water retreatment accurately. The produced water was transferred to API (American Petroleum Institute) separators to separate solid phases, gas, water, and other simple components from produced water. This stage is called primary treatment.
- (2) Then, the water separated at this stage reacted with chemical additives to adsorb small ions and settle them.

- (3) Next, the treated water is moved to the dissolved gas floatation section, which can cause the elimination of the gas content by the floatation method in the system. Again, a chemical additive has been added to the system in this section to settle the ions.
- (4) In this stage, the treated water moves toward the metal removal section consisting of several screen packs with various meshes.
- (5) Then, it is transferred to the sand filtrations section to eliminate the micro- and nanoparticles in the water content. This section is known as the second separation section, and the treated water has been measured by sensitive gauges that can be used in the calculation of treated water.

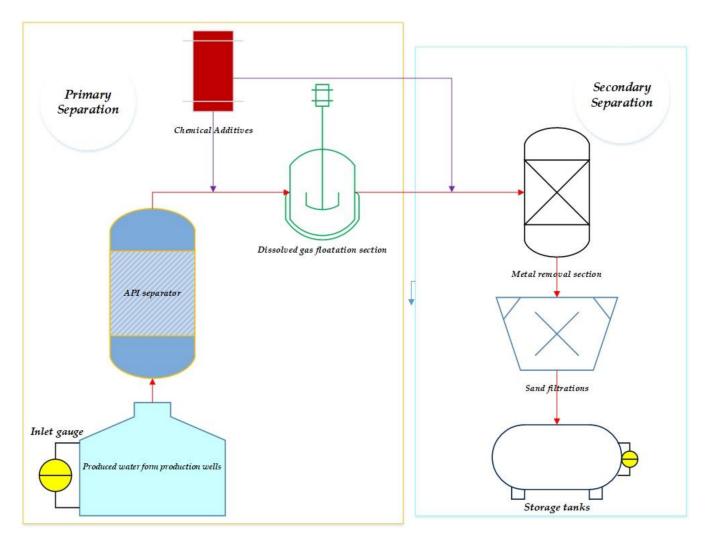


Figure 1. PFF method to retreat produced water.

In the PFF method, we used gauges at the inlet and outlet of the system to measure produced water. We repeated the measurements several times to check the accuracy of the implemented system. Therefore, the total volume of treated water is calculated as the following equation. It should be noted that produced water after each process is calculated separately to distinguish the efficiency and adequacy of the PFF treatment method.

Total treated water (MM m^3) = (Produced water before entering the primary separation) – (Produced water after the secondary separation) (1)

Finally, the total treated water is the summation of the treated water in each method to overview the total produced water and how much of this water volume can be saved to remove the required freshwater.

3. Results and Discussion

3.1. Water Treatment from HF Method

Regarding the water supply requirement for the commencement of the HF procedure, it is vitally essential to estimate the required water not to postpone the operations. Therefore, production engineers should adequately define the required water, as water is the central part of fracturing fluid. In this part, we have focused on the water retreatment after the HF procedure to estimate how much water volume can be saved and how much freshwater volume is required in the system. First, we divided the wells into oil and gas wells to be more distinguishable for each well. Then, as the treatment process may take a long time, we recorded our measurement for five sequential days by entering the specific produced water volume in the PFF system to check the system's accuracy. This is shown in more detail in Table A1, in the Appendix A. Next, the average volume after these five sequential daily measurements is calculated and statistically depicted in Table 1.

Well no.	Avg. Pro. Water in PFF System (MM m ³ /Day)	The Total Volume of Required Water (MM m ³ /Day)	Saving Water (MM m ³ /Day)	Saving Water (MM m ³ /Year)	Saving Water (%)	Required Freshwater (%)
W_Oil#A	3.25	4.5	1.25	456.25	72	28
W_Oil#B	4	5.25	1.25	456.25	76	24
W_Oil#C	4.75	6	1.25	456.25	79	21
W_Oil#D	3	4	1	365	75	25
W_Oil#E	3	3.5	0.5	182.5	86	14
W_Gas#F	3.5	3.75	0.25	91.25	93	7
W_Gas#G	2	2.5	0.5	182.5	80	20
W_Gas#H	2.25	2.75	0.5	182.5	82	18
Total volume	25.75	32.25	6.5	2372.5	-	-
Average Percent	-	-	-	-	80	20

Table 1. A summary of water treatment savings for HF procedure.

As shown in Table 1, in this field, the total volume of 2372.5 MM m³ of water can be saved during the PFF treatment procedure, and only 20% of this required fresh water should be provided from other resources. It is indicated that this method is efficient in onshore and offshore plants.

3.2. Water Treatment from CEOR Methods

CEOR (Chemical enhanced oil recovery) methods are considered methods to improve the oil production from underground formations. In this part, we calculate the treated water for each well (see Table 2). As shown in Table 2, in this field, the total volume of 7482.5 MM m³ of water can be saved during the PFF treatment procedure, and only 38% of this required fresh water should be provided from another resource. It is indicated that this method is efficient in onshore and offshore plants.

The summary of results was shown schematically in Figure 2. As shown in Figure 2, due to the large volume of chemical agents in CEOR methods mixed with formation chemical components, the value of saving water is lower than in the HF processes.

Well no.	Avg. Pro. Water in PFF System (MM m ³ /Day)	The Total Volume of Required Water (MM m ³ /Day)	Saving Water (MM m ³ /Day)	Saving Water (MM m ³ /Year)	Saving Water (%)	Required Freshwater (%)
W_Oil#A	10	15.5	5.5	2007.5	65	35
W_Oil#B	10	13.75	3.75	1368.75	73	27
W_Oil#C	5.25	13.25	8	2920	40	60
W_Oil#D	3.75	5	1.25	456.25	75	25
W_Oil#E	4.75	6.75	2	730	70	30
Total volume	33.75	54.25	20.5	7482.5	-	-
Average Percent	-	-	-	-	62	38

Table 2. A summary of water treatment savings for the CEOR procedure.

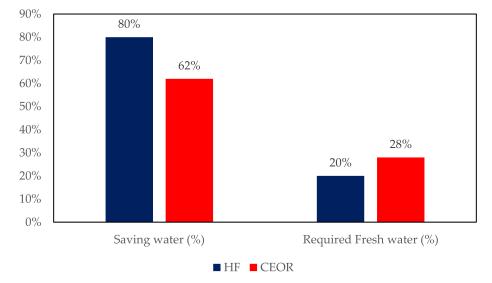


Figure 2. Summary of results.

4. Conclusions

The PFF (Photo Fenton Flotation) treatment method is considered efficient and applicable to improve water retreatment processes, as providing sustainable freshwater management is essential in onshore and offshore plants. To assure the efficiency of this method, we first recorded the measurements for five sequential days. As a result, the total volume of 2372.5 MM m³ of water can be saved in the HF process during the PFF treatment procedure, and only 20% of this required fresh water should be provided from other resources. On the other hand, the total volume of 7482.5 MM m³ of water can be saved in CEOR processes during the PFF treatment procedure, and only 38% of this required fresh water should be provided from other resources.

Author Contributions: Conceptualization, R.S. and D.R.; methodology, A.D.; software, H.R.; validation, A.H., A.A.S. and M.E.; formal analysis, A.A.S.; investigation, A.D.; resources, A.D.; data curation, H.R.; writing—original draft preparation, R.S.; writing—review and editing, A.D.; visualization, A.D.; supervision, A.D.; project administration, D.R.; funding acquisition, M.E. All authors have read and agreed to the published version of the manuscript."

Funding: There is no funding for this project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data, models, and code generated or used during the study appear in the submitted article.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appendix A

Well no.	Day #1	Day #2	Day #3	Day #4	Day #5
W_Oil#A	3.12	3.24	3.04	3.49	3.63
W_Oil#B	3.89	4.17	4.11	3.94	4.35
W_Oil#C	4.62	4.52	4.86	4.93	4.58
W_Oil#D	2.78	3.16	2.89	3.06	3.3
W_Oil#E	3.01	2.84	2.94	2.93	3.13
W_Gas#F	3.43	3.56	3.24	3.37	3.32
W_Gas#G	1.86	1.75	1.89	1.94	1.97
W_Gas#H	2.14	2.35	2.28	2.23	2.08

Table A1. Daily measurement of produced water in PFF system in HF process in MM m³.

References

- 1. Panagopoulos, A. Study and evaluation of the characteristics of saline wastewater (brine) produced by desalination and industrial plants. *Environ. Sci. Pollut. Res.* **2021**, *29*, 23736–23749. [CrossRef]
- 2. Corominas, L.; Foley, J.; Guest, J.S.; Hospido, A.; Larsen, H.F.; Morera, S.; Shaw, A. Life cycle assessment applied to wastewater treatment: State of the art. *Water Res.* **2013**. [CrossRef] [PubMed]
- 3. He, L.; Chen, Y.; Zhao, H.; Tian, P.; Xue, Y.; Chhen, L. Game-based analysis of energy-water nexus for identifying environmental impacts during Shale gas operations under stochastic input. *Sci. Total Environ.* **2018**. [CrossRef] [PubMed]
- 4. He, L.; Chen, Y.; Li, J. A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains. *Resour. Conserv. Recycl.* **2018**. [CrossRef]
- 5. Cheng, X.; He, L.; Lu, H.; Chen, Y.; Ren, L. Optimal water resources management and system benefit for the Marcellus shale-gas reservoir in Pennsylvania and West Virginia. *J. Hydrol.* **2016**. [CrossRef]
- 6. Gitis, V.; Hankins, N. Water treatment chemicals: Trends and challenges. J. Water Process. Eng. 2018. [CrossRef]
- 7. Tran, T.; Sinurat, P.; Wattenbarger, R.A. *Production characteristics of the Bakken shale oil. In SPE Annual Technical Conference and Exhibition?* SPE: Kuala Lumpur, Malaysia, 2011; p. SPE-145684.
- 8. Chen, Y.; He, L.; Li, J.; Zhang, S. Multi-criteria design of shale-gas-water supply chains and production systems towards optimal life cycle economics and greenhouse gas emissions under uncertainty. *Comput. Chem. Eng.* **2018**. [CrossRef]
- Chen, Y.; He, L.; Guan, Y.; Lu, H.; Li, J. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. *Energy Convers. Manag.* 2017. [CrossRef]
- 10. Chen, Y.; Li, J.; Lu, H.; Yan, P. Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains. *J. Clean. Prod.* **2021**. [CrossRef]
- 11. Sillanpää, M.; Shestakova, M. Electrochemical Water Treatment Methods. In *Fundamentals, Methods and Full Scale Applications*; Elsevier: Amsterdam, The Netherlands, 2017. [CrossRef]
- 12. Lu, H.; Tian, P.; He, L. Evaluating the global potential of aquifer thermal energy storage and determining the potential worldwide hotspots driven by socio-economic, geo-hydrologic and climatic conditions. *Renew. Sustain. Energy Rev.* **2019**. [CrossRef]
- 13. Zhang, K.; Wang, Q.; Chao, L.; Ye, J.; Li, Z.; Yu, Z.; Yang, T.; Ju, Q. Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China. *J. Hydrol.* **2019**. [CrossRef]
- 14. Conrad, C.L.; Yin, Y.B.; Hanna, T.; Atkinson, A.J.; Alvarez, P.J.; Tekavec, T.N.; Reynolds, M.A.; Wong, M.S. Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. *Water Res.* **2020**, *173*, 115467. [CrossRef] [PubMed]
- 15. Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. *Res.* **2015**, 51, 4823–4839.
- 16. Stefanakis, A.I. Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East. *Water* **2020**, *12*, 1665. [CrossRef]
- 17. Zhou, Q.; Deng, X.; Wu, F. Impacts of water scarcity on socio-economic development: A case study of Gaotai County, China. *Phys. Chem. Earth Parts A/B/C* 2017, 101, 204–213. [CrossRef]
- 18. Finster, M.; Clark, C.; Schroeder, J.; Martino, L. Geothermal produced fluids: Characteristics, treatment technologies, and management options. *Renew. Sustain. Energy Rev.* 2015, *50*, 952–966. [CrossRef]
- 19. Jiménez, S.M.; Micó, M.M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the art of produced water treatment. *Chemosphere* **2018**, 192, 186–208. [CrossRef] [PubMed]
- 20. De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? *Science* **2019**, *364*, eaav3506. [CrossRef]
- Wu, X.; Xia, J.; Guan, B.; Liu, P.; Ning, L.; Yi, X.; Yang, L.; Hu, S. Water scarcity assessment based on estimated ultimate energy recovery and water footprint framework during shale gas production in the Changning play. *J. Clean. Prod.* 2019, 241, 118312. [CrossRef]

- 22. Fito, J.; Tefera, N.; Van Hulle, S.W. Sugarcane biorefineries wastewater: Bioremediation technologies for environmental sustainability. *Chem. Biol. Technol. Agric.* 2019, 6, 6. [CrossRef]
- 23. Pyne, R.D. Groundwater Recharge and Wells: A Guide to Aquifer Storage Recovery; CRC Press: Boca Raton, FL, USA, 2017.
- 24. Adewumi, J.R.; Oguntuase, A.M. Planning of wastewater reuse programme in Nigeria. Consilience 2016, 15, 1–33.
- 25. Duraisamy, R.T.; Beni, A.H.; Henni, A. State of the art treatment of produced water. *Water Treat.* **2013**, *199*, 186–208.
- Rahman, I.U.; Mohammed, H.J. Produced water treatment through an integrated system: A case study. In Proceedings of the 5th Online International Conference on Sustainability in Process Industry (SPI-2020), Peshawar, Pakistan, 15–16 December 2021; pp. 15–16.
- 27. Vikrant, K.; Kim, K.H.; Deep, A. Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation. *Appl. Catal. B Environ.* **2019**, *259*, 118025. [CrossRef]
- 28. Sousa-Zomer, T.T.; Miguel, P.A. Sustainable business models as an innovation strategy in the water sector: An empirical investigation of a sustainable product-service system. *J. Clean. Prod.* **2018**, *171*, S119–S129. [CrossRef]
- 29. Kayhanian, M.; Tchobanoglous, G. Water reuse in Iran with an emphasis on potable reuse. *Sci. Iran.* **2016**, *23*, 1594–1617. [CrossRef]
- 30. Pandit, A.B.; Kumar, J.K. Drinking Water Treatment for Developing Countries: Physical, Chemical and Biological Pollutants; Royal Society of Chemistry: London, UK, 2019.
- 31. Shoushtarian, F.; Negahban-Azar, M. Worldwide regulations and guidelines for agricultural water reuse: A critical review. *Water* **2020**, *12*, 971. [CrossRef]
- 32. Pichel, N.; Vivar, M.; Fuentes, M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. *Chemosphere* 2019, 218, 1014–1030. [CrossRef] [PubMed]
- 33. Odhiambo, G.O. Water scarcity in the Arabian Peninsula and socio-economic implications. *Appl. Water Sci.* 2017, *7*, 2479–2492. [CrossRef]
- 34. Levänen, J.; Hossain, M.; Lyytinen, T.; Hyvärinen, A.; Numminen, S.; Halme, M. Implications of frugal innovations on sustainable development: Evaluating water and energy innovations. *Sustainability* **2015**, *8*, 4. [CrossRef]
- 35. Angelakis, A.N.; Gikas, P. Water reuse: Overview of current practices and trends in the world with emphasis on EU states. *Water Util. J.* **2014**, *8*, e78.
- 36. Paranychianakis, N.V.; Salgot, M.; Snyder, S.A.; Angelakis, A.N. Water reuse in EU states: Necessity for uniform criteria to mitigate human and environmental risks. *Crit. Rev. Environ. Sci. Technol.* **2015**, *45*, 1409–1468. [CrossRef]
- Campbell, S.J.; Savage, G.B.; Gray, D.J.; Atkinson, J.A.; Soares Magalhães, R.J.; Nery, S.V.; McCarthy, J.S.; Velleman, Y.; Wicken, J.H.; Traub, R.J.; et al. Water, sanitation, and hygiene (WASH): A critical component for sustainable soil-transmitted helminth and schistosomiasis control. *PLoS Neglected Trop. Dis.* 2014, *8*, e2651. [CrossRef] [PubMed]
- 38. Hutton, G.; Chase, C. The knowledge base for achieving the sustainable development goal targets on water supply, sanitation and hygiene. *Int. J. Environ. Res. Public Health* **2016**, *13*, 536. [CrossRef]
- 39. Gude, V.G. Desalination and water reuse to address global water scarcity. *Rev. Environ. Sci. Bio./Technol.* **2017**, *16*, 591–609. [CrossRef]
- 40. Radjenovic, J.; Sedlak, D.L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. *Environ. Sci. Technol.* **2015**, *49*, 11292–11302. [CrossRef] [PubMed]
- 41. Igunnu, E.T. and Chen, G.Z. Produced water treatment technologies. Int. J. Low-Carbon Technol. 2014, 9, 157–177. [CrossRef]
- 42. Liu, M.; Xue, Z.; Zhang, H.; Li, Y. Dual-channel membrane capacitive deionization based on asymmetric ion adsorption for continuous water desalination. *Electrochem. Commun.* 2021, 125, 106974. [CrossRef]
- 43. Sun, M.; Hou, B.; Wang, S.; Zhao, Q.; Zhang, L.; Song, L.; Zhang, H. Effects of NaClO shock on MBR performance under continuous operating conditions. *Environmental Sci. Water Res. Technol.* **2021**, *7*, 344–396. [CrossRef]
- 44. Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. *J. Environ. Chem. Eng.* **2017**, *5*, 2782–2799. [CrossRef]
- 45. He, Y.; Flynn, S.L.; Folkerts, E.J.; Zhang, Y.; Ruan, D.; Alessi, D.S.; Martin, J.W.; Goss, G.G. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water. *Water Res.* **2017**, *114*, 78–87. [CrossRef] [PubMed]
- 46. Zheng, J.; Chen, B.; Thanyamanta, W.; Hawboldt, K.; Zhang, B.; Liu, B. Offshore produced water management: A review of current practice and challenges in harsh/Arctic environments. *Mar. Pollut. Bull.* **2016**, *104*, 7–19. [CrossRef] [PubMed]
- 47. Pichtel, J. Oil and gas production wastewater: Soil contamination and pollution prevention. *Appl. Environ. Soil Sci.* 2016, 2016, 2707989. [CrossRef]
- 48. Sonone, S.S.; Jadhav, S.; Sankhla, M.S.; Kumar, R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. *Lett. Appl. NanoBioSci.* **2020**, *10*, 2148–2166.
- Abdel-Raouf, M.S.; Abdul-Raheim, A.R. Removal of heavy metals from industrial waste water by biomass-based materials: A review. J. Pollut. Eff. Control 2016, 5, 180, ISSN 2375-4397. [CrossRef]
- 50. Ghasemi, A.; Moghaddam, M. Thermodynamic and Environmental Comparative Investigation and Optimization of Landfill vs. Incineration for Municipal Solid Waste: A Case Study in Varamin, Iran. *J. Therm. Eng.* **2020**, *6*, 226–246. [CrossRef]
- 51. Afroze, S.; Sen, T.K. A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. *Water Air Soil Pollut.* **2018**, 229, 225. [CrossRef]

- 52. Zolfaghari, R.; Fakhru'l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.; Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. *Sep. Purif. Technol.* **2016**, 170, 377–407. [CrossRef]
- 53. Fakhru'l-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. *J. Hazard. Mater.* 2009, 170, 530–551. [CrossRef]
- Torres, L.; Yadav, O.P.; Khan, E. A review on risk assessment techniques for hydraulic fracturing water and produced water management implemented in onshore unconventional oil and gas production. *Sci. Total Environ.* 2016, 539, 478–493. [CrossRef]
- 55. Alzahrani, S.; Mohammad, A.W. Challenges and trends in membrane technology implementation for produced water treatment: A review. *J. Water Process Eng.* **2014**, *4*, 107–133. [CrossRef]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da'na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 2019, 28, 222–239. [CrossRef]
- 57. Munirasu, S.; Haija, M.A.; Banat, F. Use of membrane technology for oil field and refinery produced water treatment—A review. *Process Saf. Environ. Prot.* 2016, 100, 183–202. [CrossRef]
- 58. Wang, S.; Zhao, S.; Uzoejinwa, B.B.; Zheng, A.; Wang, Q.; Huang, J.; Abomohra, A.E. A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. *Energy Convers. Manag.* 2020, 222, 113253. [CrossRef]
- Peng, B.; Yao, Z.; Wang, X.; Crombeen, M.; Sweeney, D.G.; Tam, K.C. Cellulose-based materials in wastewater treatment of petroleum industry. *Green Energy Environ.* 2020, 5, 37–49. [CrossRef]
- 60. Barati, R.; Liang, J.T. A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. *J. Appl. Polym. Sci.* **2014**, *131*, 1–11. [CrossRef]
- 61. Kreipl, M.P.; Kreipl, A.T. Hydraulic fracturing fluids and their environmental impact: Then, today, and tomorrow. *Environ. Earth Sci.* **2017**, *76*, 160. [CrossRef]
- Ellafi, A.; Jabbari, H.; Tomomewo, O.S.; Mann, M.D.; Geri, M.B.; Tang, C. Future of hydraulic fracturing application in terms of water management and environmental issues: A critical review. In Proceedings of the SPE Canada Unconventional Resources Conference, Virtual, 28 September–2 October 2020; SPE: New Orleans, LA, USA, 2020; p. D053S011R001.
- 63. Fu, C.; Liu, N. Waterless fluids in hydraulic fracturing—A review. J. Nat. Gas Sci. Eng. 2019, 67, 214–224. [CrossRef]
- 64. Gregory, K.; Mohan, A.M. Current perspective on produced water management challenges during hydraulic fracturing for oil and gas recovery. *Environ. Chem.* 2015, 12, 261–266. [CrossRef]
- 65. Alzahid, Y.A.; Mostaghimi, P.; Alqahtani, N.J.; Sun, C.; Lu, X.; Armstrong, R.T. Oil mobilization and solubilization in porous media by in situ emulsification. *J. Colloid Interface Sci.* 2019, 554, 554–564. [CrossRef]
- 66. Perazzo, A.; Tomaiuolo, G.; Preziosi, V.; Guido, S. Emulsions in porous media: From single droplet behavior to applications for oil recovery. *Adv. Colloid Interface Sci.* **2018**, 256, 305–325. [CrossRef]
- 67. Skauge, A.; Zamani, N.; Gausdal Jacobsen, J.; Shaker Shiran, B.; Al-Shakry, B.; Skauge, T. Polymer flow in porous media: Relevance to enhanced oil recovery. *Colloids Interfaces* **2018**, *2*, 27. [CrossRef]
- 68. Almajid, M.M.; Kovscek, A.R. Pore-level mechanics of foam generation and coalescence in the presence of oil. *Adv. Colloid Interface Sci.* **2016**, 233, 65–82. [CrossRef] [PubMed]
- 69. Kolawole, O.; Wigwe, M.; Ispas, I.; Watson, M. How will treatment parameters impact the optimization of hydraulic fracturing process in un-conventional reservoirs? *SN Appl. Sci.* 2020, *2*, 1865. [CrossRef]
- Cao, K.; Siddhamshetty, P.; Ahn, Y.; Mukherjee, R.; Kwon, J.S. Economic model-based controller design framework for hydraulic fracturing to optimize shale gas production and water usage. *Ind. Eng. Chem. Res.* 2019, 58, 12097–12115. [CrossRef]
- Hernández-Pérez, L.G.; Lira-Barragán, L.F.; Ponce-Ortega, J.M. Hybrid multiobjective optimization using deterministic and metaheuristic techniques for flowback water reusing in hydraulic fracturing processes. *Ind. Eng. Chem. Res.* 2020, 59, 15298–15308. [CrossRef]
- 72. Pal, S.; Mushtaq, M.; Banat, F.; Al Sumaiti, A.M. Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: Challenges and future perspectives. *Pet. Sci.* 2018, 15, 77–102. [CrossRef]
- 73. Tackie-Otoo, B.N.; Mohammed, M.A.; Yekeen, N.; Negash, B.M. Alternative chemical agents for alkalis, surfactants and polymers for enhanced oil recovery: Research trend and prospects. *J. Pet. Sci. Eng.* **2020**, *187*, 106828. [CrossRef]
- Ayirala, S.C.; Yousef, A.A. A state-of-the-art review to develop injection-water-chemistry requirement guidelines for IOR/EOR projects. SPE Prod. Oper. 2015, 30, 26–42. [CrossRef]
- 75. Olajire, A.A. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. *Energy* **2014**, 77, 963–982. [CrossRef]
- 76. Rellegadla, S.; Prajapat, G.; Agrawal, A. Polymers for enhanced oil recovery: Fundamentals and selection criteria. *Appl. Microbiol. Biotechnol.* **2017**, *101*, 4387. [CrossRef]
- 77. Davarpanah, A.; Shirmohammadi, R.; Mirshekari, B. Experimental evaluation of polymer-enhanced foam transportation on the foam stabilization in the porous media. *Int. J. Environ. Sci. Technol.* **2019**. [CrossRef]
- 78. Davarpanah, A.; Mirshekari, B. A mathematical model to evaluate the polymer flooding performances. *Energy Rep.* **2019**. [CrossRef]
- 79. Ahmad, N.A.; Goh, P.S.; Yogarathinam, L.T.; Zulhairun, A.K.; Ismail, A.F. Current advances in membrane technologies for produced water desalination. *Desalination* **2020**. [CrossRef]

- 80. Al-Maamari, R.S.; Sueyoshi, M.; Tasaki, M.; Okamura, K.; Al-Lawati, Y.; Nabulsi, R.; Al-Battashi, M. Flotation, filtration, and adsorption pilot trials for oilfield produced water treatment. In Proceedings of the Abu Dhabi International Petroleum Conference and Exhibition Conference 2012, Abu Dhabi, United Arab Emirates, 11–14 November 2012. [CrossRef]
- 81. Bhojwani, S.; Topolski, K.; Mukherjee, R.; Sengupta, D.; El-Halwagi, M.M. Technology review and data analysis for cost assessment of water treatment systems. *Sci. Total Environ.* **2019**. [CrossRef]
- 82. Cai, H.; Shen, C.; Ren, M.; Cao, F. Loop flotation for oil-containing water treatment. Huagong Xuebao/CIESC J. 2015. [CrossRef]
- 83. Chang, H.; Liu, B.; Wang, H.; Zhang, S.Y.; Chen, S.; Tiraferri, A.; Tang, Y.Q. Evaluating the performance of gravity-driven membrane filtration as desalination pretreatment of shale gas flowback and produced water. *J. Memb. Sci.* **2019**. [CrossRef]
- da Silva, S.S.; Chiavone-Filho, O.; de Barros Neto, E.L.; Foletto, E.L. Oil removal from produced water by conjugation of flotation and photo-Fenton processes. J. Environ. Manag. 2015. [CrossRef] [PubMed]
- 85. Sun, Y.; Wang, D.; Tsang, D.C.; Wang, L.; Ok, Y.S.; Feng, Y. A critical review of risks, characteristics, and treatment strategies for potentially toxic elements in wastewater from shale gas extraction. *Environ. Int.* **2019**, *125*, 452–469. [CrossRef]