A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment
Abstract
:1. Introduction
2. Classification of NPs
2.1. Inorganic Based NPs
2.1.1. Metal NPs
2.1.2. Metal Oxide NPs
2.2. Organic-Based NPs
2.3. Carbon-Based NPs
2.3.1. Fullerenes
2.3.2. Graphene
2.3.3. Carbon Nanotubes
2.3.4. Nanofibers of Carbon
2.3.5. Black Carbon
3. Various Methods Used for the Synthesis of NPS
3.1. Physical Methods of Synthesis
3.2. Chemical Methods of Synthesis
3.3. Biological or Green Methods for the Synthesis of AgNPs
3.4. Photochemical Method for AgNP Synthesis
4. Biological Applications of AgNPs
4.1. Antibacterial Potency of AgNPs
4.2. Antifungal Activity of AgNPs
4.3. Antiviral Activity of AgNPs
4.4. Anti-Inflammatory Activity of AgNPs
4.5. Anti-Angiogenic Activity of AgNPs
4.6. Anticancer Activity of AgNPs
5. Water Purification and Treatment
5.1. The Catalytic Efficiency of AgNPs for Water Pollution Monitoring Using Different Treatment Methods
5.2. Role of the Antibacterial and Antifungal Potency of AgNPs in Water Treatment
6. Potential Hazardous Effects of AgNPs
7. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, M.; Chakraborty, B.; Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Kotresha, D.; Pallavi, S.; Dhanyakumara, S.; Shashiraj, K.; Nayaka, S. Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. J. King Saud Univ. Sci. 2021, 33, 101296. [Google Scholar] [CrossRef]
- Ghojavand, S.; Madani, M.; Karimi, J. Green Synthesis, Characterization and Antifungal Activity of Silver Nanoparticles Using Stems and Flowers of Felty Germander. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2987–2997. [Google Scholar] [CrossRef]
- Nayak, S.; Sajankila, S.P.; Rao, C.V. Green synthesis of gold nanoparticles from banana pith extract and its evaluation of an-tibacterial activity and catalytic reduction of malachite green dye. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 641–645. [Google Scholar]
- El-Dein, M.M.N.; Baka, Z.A.M.; Abou-Dobara, M.I.; El-Sayed, A.K.; El-Zahed, M.M. Extracellular biosynthesis, optimization, characterization and antimicrobial potential of Escherichia coli d8 silver nanoparticles. J. Microbiol. Biotechnol. Food Sci. 2021, 10, 648–656. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, T.; Wu, W.; Hossain, A.; Hafeez, R.; Masum, M.I.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in plant and microbe-based synthesis of metallic nanoparticles and their antimicrobial activity against plant pathogens. Nanomaterials 2020, 10, 1146. [Google Scholar] [CrossRef]
- Brycki, B.; Szulc, A.; Babkova, M. Synthesis of Silver Nanoparticles with Gemini Surfactants as Efficient Capping and Stabilizing Agents. Appl. Sci. 2021, 11, 154. [Google Scholar] [CrossRef]
- Narayanan, V.; Alam, M.; Ahmad, N.; Balakrishnan, S.B.; Ganesan, V.; Shanmugasundaram, E.; Rajagopal, B.; Thambusamy, S. Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119308. [Google Scholar] [CrossRef]
- Yasmin, S.; Nouren, S.; Bhatti, H.N.; Iqbal, D.N.; Iftikhar, S.; Majeed, J.; Rizvi, H. Green synthesis, characterization and pho-tocatalytic applications of silver nanoparticles using Diospyros lotus. Green Process. Synth. 2020, 9, 87–96. [Google Scholar] [CrossRef]
- Arteaga-Díaz, S.J.; Meramo-Hurtado, S.I.; León-Pulido, J.; Zuorro, A.; González-Delgado, A.D. Environmental assessment of large scale production of magnetite (Fe3O4) nanoparticles via coprecipitation. Appl. Sci. 2019, 9, 1682. [Google Scholar] [CrossRef] [Green Version]
- Amer, M.W.; Awwad, A.M. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and anti-bacterial activity. Chem. Int. 2021, 7, 1–8. [Google Scholar]
- Liu, X.; Liao, C.; Lin, L.; Gao, H.; Zhou, J.; Feng, Z.; Lin, Z. Research progress in the environmental application of magnesium hydroxide nanomaterials. Surf. Interfaces 2020, 21, 100701. [Google Scholar] [CrossRef]
- El-Sayed, M.E. Nanoadsorbents for water and wastewater remediation. Sci. Total Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Das, D.; Roy, A. Synthesis of diameter controlled multiwall carbon nanotubes by microwave plasma-CVD on low-temperature and chemically processed Fe nanoparticle catalysts. Appl. Surf. Sci. 2020, 515, 146043. [Google Scholar] [CrossRef]
- Deng, J.; Ding, Q.M.; Jia, M.X.; Li, W.; Zuberi, Z.; Wang, J.H.; Ren, J.L.; Fu, D.; Zeng, X.X.; Luo, J.F. Biosafety risk assessment of nanoparticles: Evidence from food case studies. Environ. Pollut. 2021, 4, 116662. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Ali, A.; Phull, A.R.; Zia, M. Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns. Nanotechnol. Rev. 2018, 7, 413–441. [Google Scholar] [CrossRef]
- Hasan, A.; Nanakali, N.M.Q.; Salihi, A.; Rasti, B.; Sharifi, M.; Attar, F.; Derakhshankhah, H.; Mustafa, I.A.; Abdulqadir, S.Z.; Falahati, M. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta 2020, 215, 120939. [Google Scholar] [CrossRef]
- Sarwarx, N.; Choi, S.H.; Dastgeer, G.; Bin Humayoun, U.; Kumar, M.; Nawaz, A.; Jeong, D.I.; Alam Zaidi, S.F.; Yoon, D.H. Synthesis of citrate-capped copper nanoparticles: A low temperature sintering approach for the fabrication of oxidation stable flexible conductive film. Appl. Surf. Sci. 2021, 542, 148609. [Google Scholar] [CrossRef]
- Tiwary, K.; Ali, F.; Choubey, S.; Mishra, R.; Sharma, K. Doping effect of Ni2+ ion on structural, morphological and optical properties of Zinc sulfide nanoparticles synthesized by microwave assisted method. Optik 2021, 227, 166045. [Google Scholar] [CrossRef]
- Jena, P.; Bhattacharya, M.; Bhattacharjee, G.; Satpati, B.; Mukherjee, P.; Senapati, D.; Srinivasan, R. Bimetallic gold–silver nanoparticles mediate bacterial killing by disrupting the actin cytoskeleton MreB. Nanoscale 2020, 12, 3731–3749. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhao, H.; Liang, J.; Wang, Y.; Li, T.; Luo, Y.; Shi, X.; Lu, S.; Feng, Z.; Wu, Q.; et al. Noble-metal-free electrospun nanomaterials as electrocatalysts for oxygen reduction reaction. Mater. Today Phys. 2020, 15, 100280. [Google Scholar] [CrossRef]
- Tanaka, M.; Saito, S.; Kita, R.; Jang, J.; Choi, Y.; Choi, J.; Okochi, M. Array-Based Screening of Silver Nanoparticle Mineralization Peptides. Int. J. Mol. Sci. 2020, 21, 2377. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Qiao, Y.; An, X.; Tian, Y.; Zhou, H. Performance and mechanism. Int. J. Biol. Macromol. 2020, 159, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Harshiny, M.; Iswarya, C.N.; Matheswaran, M. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol. 2015, 286, 744–749. [Google Scholar] [CrossRef]
- Yu, H.; Wang, M.; Zhou, J.; Yuan, B.; Luo, J.; Wu, W.; Chen, Z.; Yu, R. Microreactor-assisted synthesis of α-alumina nanopar-ticles. Ceram. Int. 2020, 46, 13272–13281. [Google Scholar] [CrossRef]
- Sharma, S.; Virk, K.; Sharma, K.; Bose, S.K.; Kumar, V.; Sharma, V.; Focarete, M.L.; Kalia, S. Preparation of gum acacia-poly(acrylamide-IPN-acrylic acid) based nanocomposite hydrogels via polymerization methods for antimicrobial applications. J. Mol. Struct. 2020, 1215, 128298. [Google Scholar] [CrossRef]
- Singh, K.R.; Nayak, V.; Sarkar, T.; Singh, R.P. Cerium oxide nanoparticles: Properties, biosynthesis and biomedical application. RSC Adv. 2020, 10, 27194–27214. [Google Scholar] [CrossRef]
- Das, C.; Sen, S.; Singh, T.; Ghosh, T.; Paul, S.S.; Kim, T.W.; Jeon, S.; Maiti, D.K.; Im, J.; Biswas, G. Green synthesis, characteri-zation and application of natural product coated magnetite nanoparticles for wastewater treatment. Nanomaterials 2020, 10, 1615. [Google Scholar] [CrossRef]
- Cheira, M.F. Performance of poly sulfonamide/nano-silica composite for adsorption of thorium ions from sulfate solution. SN Appl. Sci. 2020, 2, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Giannakis, S.; Liu, S.; Carratalà, A.; Rtimi, S.; Amiri, M.T.; Bensimon, M.; Pulgarin, C. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size. J. Hazard. Mater. 2017, 339, 223–231. [Google Scholar] [CrossRef]
- Laad, M.; Jatti, V.K.S. Titanium oxide nanoparticles as additives in engine oil. J. King Saud Univ. Eng. Sci. 2018, 30, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Obradović, V.; Simić, D.; Zrilić, M.; Stojanović, D.B.; Uskoković, P.S. Novel hybrid nanostructures of carbon nano-tube/fullerene-like Tungsten Disulfide as reinforcement for aramid fabric composites. Fibers Polym. 2021, 22, 1–12. [Google Scholar] [CrossRef]
- White, D.L.; Lystrom, L.; He, X.; Burkert, S.C.; Kilin, D.S.; Kilina, S.; Star, A. Synthesis of holey graphene nanoparticle compounds. ACS Appl. Mater. Interfaces 2020, 12, 36513–36522. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y. Past, Present and Future of Carbon Nanotubes and Graphene based Electrode Materials for Energy Storage Batteries. Int. J. Electrochem. Sci. 2020, 15, 10315–10329. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, S.-H.; Michael, A.; Kwok, C.Y.; Lim, S.; Pei, Y.; Kottapalli, A.G.P. Single and bundled carbon nanofibers as ultralightweight and flexible piezoresistive sensors. npj Flex. Electron. 2020, 4. [Google Scholar] [CrossRef]
- Fawole, O.G.; Cai, X.M.; Nikolova, I.; MacKenzie, A.R. Self-consistent estimates of emission factors of carboncontaining pol-lutants from a typical gas flare. Ife J. Sci. 2020, 22, 135–149. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Marandi, M.; Torabi, N. The constructive role of ZnSe passivating layer on the photovoltaic performance of the fast-fabricated CdS/CdSe quantum dot sensitized solar cells. Opt. Mater. 2020, 105, 109918. [Google Scholar] [CrossRef]
- Zhou, R.; Fu, S.; Li, H.; Yuan, D.; Tang, B.; Zhou, G. Experimental study on thermal performance of copper nanofluids in a miniature heat pipe fabricated by wire electrical discharge machining. Appl. Therm. Eng. 2019, 160, 113989. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and bi-osafety. Theranostics 2020, 10, 8996. [Google Scholar] [CrossRef]
- Menazea, A. Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiat. Phys. Chem. 2020, 168, 108616. [Google Scholar] [CrossRef]
- Duque, J.S.; Madrigal, B.M.; Riascos, H.; Avila, Y.P. Colloidal Metal Oxide Nanoparticles Prepared by Laser Ablation Technique and Their Antibacterial Test. Colloids Interfaces 2019, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.H.; Oh, H.C.; Noh, H.S.; Ji, J.H.; Kim, S.S. Metal nanoparticle generation using a small ceramic heater with a local heating area. J. Aerosol Sci. 2006, 37, 1662–1670. [Google Scholar] [CrossRef]
- Nakano, M.; Fujiwara, T.; Koga, N. Thermal Decomposition of Silver Acetate: Physico-Geometrical Kinetic Features and Formation of Silver Nanoparticles. J. Phys. Chem. C 2016, 120, 8841–8854. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, T.; Thang, D.-H.; Okazaki, Y.; Nakanishi, M.; Tsuboi, Y.; Tsuji, M. Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci. 2008, 254, 5224–5230. [Google Scholar] [CrossRef]
- Zamiri, R.; Azmi, B.Z.; Sadrolhosseini, A.R.; Ahangar, H.A.; Zaidan, A.W.; Mahdi, M.A. Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Int. J. Nanomed. 2011, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Navaladian, S.; Viswanathan, B.; Viswanath, R.P.; Varadarajan, T.K. Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2007, 2, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhim, J.-W.; Wang, L.-F.; Lee, Y.; Hong, S.-I. Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: Laser ablation method. Carbohydr. Polym. 2014, 103, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Zamiri, R.; Zakaria, A.; Ahangar, H.A.; Sadrolhosseini, A.R.; Mahdi, M.A. Fabrication of Silver Nanoparticles Dispersed in Palm Oil Using Laser Ablation. Int. J. Mol. Sci. 2010, 11, 4764–4770. [Google Scholar] [CrossRef]
- Ismail, R.A.; Sulaiman, G.M.; Mohsin, M.; Saadoon, A.H. Preparation of silver iodide nanoparticles using laser ablation in liquid for antibacterial applications. IET Nanobiotechnol. 2018, 12, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Parida, D.; Simonetti, P.; Frison, R.; Bülbül, E.; Altenried, S.; Arroyo, Y.; Balogh-Michels, Z.; Caseri, W.; Ren, Q.; Hufenus, R.; et al. Polymer-assisted in-situ thermal reduction of silver precursors: A solventless route for silver nanoparticles-polymer composites. Chem. Eng. J. 2020, 389, 123983. [Google Scholar] [CrossRef]
- Jeevanandam, P.; Srikanth, C.K.; Dixit, S. Synthesis of monodisperse silver nanoparticles and their self-assembly through simple thermal decomposition approach. Mater. Chem. Phys. 2010, 122, 402–407. [Google Scholar] [CrossRef]
- Verma, S.; Rao, B.; Srivastava, A.; Srivastava, D.; Kaul, R.; Singh, B. A facile synthesis of broad plasmon wavelength tunable silver nanoparticles in citrate aqueous solutions by laser ablation and light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 527, 23–33. [Google Scholar] [CrossRef]
- Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; del Val, J.; Pou, J. Production of silver nanoparticles by laser ablation in open air. Appl. Surf. Sci. 2015, 336, 108–111. [Google Scholar] [CrossRef]
- Togashi, T.; Tsuchida, K.; Soma, S.; Nozawa, R.; Matsui, J.; Kanaizuka, K.; Kurihara, M. Size-tunable continuous-seed-mediated growth of silver nanoparticles in Alkylamine mixture via the stepwise thermal decomposition of Silver Oxalate. Chem. Mater. 2020, 32, 9363–9370. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and bio-logical methods. Res. Pharm. Sci. 2014, 9, 385. [Google Scholar]
- Khaydarov, R.A.; Khaydarov, R.R.; Gapurova, O.; Estrin, Y.; Scheper, T. Electrochemical method for the synthesis of silver nanoparticles. J. Nanopart. Res. 2009, 11, 1193–1200. [Google Scholar] [CrossRef]
- Mohaghegh, S.; Osouli-Bostanabad, K.; Nazemiyeh, H.; Javadzadeh, Y.; Parvizpur, A.; Barzegar-Jalali, M.; Adibkia, K. A comparative study of eco-friendly silver nanoparticles synthesis using Prunus domestica plum extract and sodium citrate as reducing agents. Adv. Powder Technol. 2020, 31, 1169–1180. [Google Scholar] [CrossRef]
- Al-Awadi, A.S.; El-Toni, A.M.; Alhoshan, M.; Khan, A.; Labis, J.P.; Al-Fatesh, A.; Abasaeed, A.E.; Al-Zahrani, S.M. Impact of precursor sequence of addition for one-pot synthesis of Cr-MCM-41 catalyst nanoparticles to enhance ethane oxidative dehy-drogenation with carbon dioxide. Ceram. Int. 2019, 45, 1125–1134. [Google Scholar] [CrossRef]
- Bachhav, P.A.; Shroff, R.M.; Shirkhedkar, A.A. Silver nanoparticles: A comprehensive review on mechanism, synthesis and biomedical applications. Asian J. Pharm. Res. 2020, 10. [Google Scholar] [CrossRef]
- Zarlaida, F.; Adlim, M. Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: A review. Microchim. Acta 2017, 184, 45–58. [Google Scholar] [CrossRef]
- Xue, Y.; Zhan, X.; Sun, S.; Karuppagounder, S.S.; Xia, S.; Dawson, V.L.; Dawson, T.M.; Laterra, J.; Zhang, J.; Ying, M. Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. STEM CELLS Transl. Med. 2019, 8, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Hoang, V.-T.; Dinh, N.X.; Pham, T.N.; Hoang, T.V.; Tuan, P.A.; Huy, T.Q.; Le, A.-T. Scalable Electrochemical Synthesis of Novel Biogenic Silver Nanoparticles and Its Application to High-Sensitive Detection of 4-Nitrophenol in Aqueous System. Adv. Polym. Technol. 2021, 2021, 6646219. [Google Scholar] [CrossRef]
- Mallakpour, S.; Hussain, C.M.; Gulati, S.; Kumar, S.; Diwan, A.; Singh, P.; Mongia, A. “Nanosilver”: A Versatile and New-Generation Nanoproduct in Biomedical Applications. Available online: https://link.springer.com/referenceworkentry/10.1007%2F978-981-15-6453-6_48-1 (accessed on 18 June 2021).
- Gao, H.; Yang, H.; Wang, C. Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil. Results Phys. 2017, 7, 3130–3136. [Google Scholar] [CrossRef]
- Lin, F.; Zheng, J.; Guo, W.; Zhu, Z.; Wang, Z.; Dong, B.; Lin, C.; Huang, B.; Lu, B. Smart cellulose-derived magnetic hydrogel with rapid swelling and deswelling properties for remotely controlled drug release. Cellulose 2019, 26, 6861–6877. [Google Scholar] [CrossRef]
- Massironi, A.; Morelli, A.; Grassi, L.; Puppi, D.; Braccini, S.; Maisetta, G.; Esin, S.; Batoni, G.; Della Pina, C.; Chiellini, F. Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydr. Polym. 2019, 203, 310–321. [Google Scholar] [CrossRef]
- Ismail, M.; Jabra, R. Investigation the parameters affecting on the synthesis of silver nanoparticles by chemical reduction method and printing a conductive pattern. J. Mater. Environ. Sci. 2017, 8, 4152–4159. [Google Scholar]
- Mei, L.; Li, S.; Shao, Y.; Zhang, C.; Wang, J. Single-step synthesis of hierarchical flower-like silver structures with assistance of gallic acid. Mater. Res. Express 2021, 8, 015010. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, C.; Gong, Z.; Zhang, Z.; Wang, D.; Fan, M. Facile preparation of chitosan coated silver nanoparticles embedded cotton fabric for point-of-use water disinfection. Mater. Lett. 2020, 277, 128256. [Google Scholar] [CrossRef]
- Rahimi, M.; Noruzi, E.B.; Sheykhsaran, E.; Ebadi, B.; Kariminezhad, Z.; Molaparast, M.; Mehrabani, M.G.; Mehramouz, B.; Yousefi, M.; Ahmadi, R.; et al. Carbohydrate polymer-based silver nanocomposites: Recent progress in the antimicrobial wound dressings. Carbohydr. Polym. 2020, 231, 115696. [Google Scholar] [CrossRef]
- Murgunde, B.K.; Mulla, R.; Rabinal, M.K. A rapid synthesis of silver nanoparticle foam by ultrasonication. J. Porous Mater. 2020, 27, 1727–1733. [Google Scholar] [CrossRef]
- Diaz-Alvarez, A.; Higuchi, R.; Li, Q.; Shingaya, Y.; Nakayama, T. Associative routing through neuromorphic nanowire net-works. AIP Adv. 2020, 10, 025134. [Google Scholar] [CrossRef] [Green Version]
- Nešović, K.; Kojić, V.; Rhee, K.Y.; Mišković-Stanković, V. Electrochemical Synthesis and Characterization of Silver Doped Poly(vinyl alcohol)/Chitosan Hydrogels. Corrosion 2017, 73, 1437–1447. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Wang, Z.; Yao, Q.; Fang, S.; Zhou, X.; Yuan, X.; Xie, J. The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. J. Mater. Chem. B 2020, 8, 4846–4850. [Google Scholar] [CrossRef] [PubMed]
- Ramos, K.; Ramos, L.; Gómez-Gómez, M.M. Simultaneous characterisation of silver nanoparticles and determination of dis-solved silver in chicken meat subjected to in vitro human gastrointestinal digestion using single particle inductively coupled plasma mass spectrometry. Food Chem. 2017, 221, 822–828. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, Y.; Mu, B.; Hui, A.; Wang, A. Removal of a cationic dye from aqueous solution by a porous adsorbent templated from eco-friendly Pickering MIPEs using chitosan-modified semi-coke particles. New J. Chem. 2021, 45, 3848–3856. [Google Scholar] [CrossRef]
- Proessl, C.; Kuebler, M.; Nowroozi, M.A.; Paul, S.; Clemens, O.; Kramm, U.I. Investigation of the thermal removal steps of capping agents in the synthesis of bimetallic iridium-based catalysts for the ethanol oxidation reaction. Phys. Chem. Chem. Phys. 2021, 23, 563–573. [Google Scholar] [CrossRef]
- Wu, T.; Ding, M.; Shi, C.; Qiao, Y.; Wang, P.; Qiao, R.; Wang, X.; Zhong, J. Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chin. Chem. Lett. 2020, 31, 617–625. [Google Scholar] [CrossRef]
- Ndwandwe, B.K.; Malinga, S.P.; Kayitesi, E.; Dlamini, B.C. Advances in green synthesis of selenium nanoparticles and their application in food packaging. Int. J. Food Sci. Technol. 2020, 56, 2640–2650. [Google Scholar] [CrossRef]
- Mahmood, M.; Abid, M.; Nazar, M.F.; Zafar, M.N.; Raza, M.A.; Ashfaq, M.; Khan, A.M.; Sumrra, S.H.; Zubair, M. The wet chemical synthesis of surfactant-capped quasi-spherical silver nanoparticles with enhanced antibacterial activity. Mater. Adv. 2020, 1. [Google Scholar] [CrossRef]
- Heidari, B.; Salmani, S.; Ghamsari, M.S.; Ahmadi, M.; Majles-Ara, M.H. Ag/PVP nanocomposite thin film with giant optical nonlinearity. Opt. Quantum Electron. 2020, 52, 86. [Google Scholar] [CrossRef]
- Zhu, F.; Zheng, Y.-M.; Zhang, B.-G.; Dai, Y.-R. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. J. Hazard. Mater. 2020, 401, 123608. [Google Scholar] [CrossRef] [PubMed]
- Kuntyi, O.I.; Kytsya, A.R.; Mertsalo, I.P.; Mazur, A.S.; Zozula, G.I.; Bazylyak, L.I.; Topchak, R.V. Electrochemical synthesis of silver nanoparticles by reversible current in solutions of sodium polyacrylate. Colloid Polym. Sci. 2019, 297, 689–695. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020, 22, 612–636. [Google Scholar] [CrossRef]
- Isogai, A. Cellulose Nanofibers: Recent Progress and Future Prospects. J. Fiber Sci. Technol. 2020, 76, 310–326. [Google Scholar] [CrossRef]
- Iftikhar, M.; Zahoor, M.; Naz, S.; Nazir, N.; Batiha, G.E.S.; Ullah, R.; Bari, A.; Hanif, M.; Mahmood, H.M. Green synthesis of silver nanoparticles using Grewia optiva leaf Aqueous extract and isolated compounds as reducing agent and their bio-logical activities. J. Nanomater. 2020, 2020, 8949674. [Google Scholar] [CrossRef]
- Zarei, Z.; Razmjoue, D.; Karimi, J. Green synthesis of silver nanoparticles from Caralluma tuberculata extract and its antibac-terial activity. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4606–4614. [Google Scholar] [CrossRef]
- Goswami, T.; Bheemaraju, A.; Sharma, A.K.; Bhandari, S. Perylenetetracarboxylic acid–incorporated silver nanocluster for cost-effective visible-light-driven photocatalysis and catalytic reduction. Colloid Polym. Sci. 2021, 299, 925–936. [Google Scholar] [CrossRef]
- Li, B.J.; Li, S.; Ma, B.R.; Jing, Y.; Zhang, Z.M.; Li, Z.J.; Zhao, S.Y. Progress in the Preparation of Silver Nanometer Antibacterial Material. Mater. Sci. Forum 2020, 996, 76–81. [Google Scholar] [CrossRef]
- Verma, D.; Mudgal, B.; Chaudhary, P.; Mahakur, B.; Mitra, D.; Pant, K.; Mohapatra, P.K.D.; Thapliyal, A.; Janmeda, P. Medicinal plant of Uttarakhand (India) and their benefits in the treatment of tuberculosis: Current perspectives. J. BioSci. Biotechnol. 2020, 9, 75–85. [Google Scholar]
- Muhammad, A.; Kashere, M.A. Neem, Azadirachta indica L. (A. Juss): An eco-friendly botanical insecticide for managing farmers’ insects pest problems-a review. FUDMA J. Sci. 2020, 4, 484–491. [Google Scholar] [CrossRef]
- Abdullah, M.R.; Haque, M.E.; Sarwar, A.K.M.G.; Ashrafuzzaman, M.; Rahman, M.M. Diversity of underutilized fruits and their uses in Karnaphuli range, Rangamati, Bangladesh. Int. J. For. Ecol. Environ. 2020, 1, 10–20. [Google Scholar] [CrossRef]
- Grkovic, T.; Akee, R.K.; Thornburg, C.C.; Trinh, S.K.; Britt, J.R.; Harris, M.J.; Evans, J.R.; Kang, U.; Ensel, S.; Henrich, C.J.; et al. National Cancer Institute (NCI) program for natural products discovery: Rapid isolation and identification of biologically active natural products from the NCI prefractionated library. ACS Chem. Biol. 2020, 15, 1104–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baydoun, S.A.; Kanj, D.; Raafat, K.; Aboul Ela, M.; Chalak, L.; Arnold-Apostolides, N. Ethnobotanical and economic importance of wild plant species of Jabal Moussa Bioreserve, Lebanon. J. Ecosys. Ecograph. 2017, S7, 1. [Google Scholar] [CrossRef]
- Ali, S.; Bansal, S.; Mishra, R.P. Fumaria indica (L), a Famous Medicinal Herb of Tribal Regions of Jabalpur, Madhya Pradesh: Broad Spectrum Antibacterial and Phytochemical Profilng against Some Pathogenic Microorganisms. Pharmacogn. J. 2020, 12, 619–623. [Google Scholar] [CrossRef]
- Pollo, L.A.; Martin, E.F.; Machado, V.R.; Cantillon, D.; Wildner, L.M.; Bazzo, M.L.; Waddell, S.J.; Biavatti, M.W.; Sandjo, L.P. Search for antimicrobial activity among fifty-two natural and synthetic compounds identifies Anthraquinone and Polya-cetylene classes that inhibit Mycobacterium tuberculosis. Front. Microbiol. 2021, 11, 3619. [Google Scholar] [CrossRef]
- Sawicka, B.; Otekunrin, O.A.; Skiba, D.; Bienia, B.; Ćwintal, M. Plant-derived stimulants and psychoactive substances–social and economic aspects. Clin. Med. Res. 2020, 5, 313–335. [Google Scholar]
- Duguma, H.T. Wild Edible Plant Nutritional Contribution and Consumer Perception in Ethiopia. Int. J. Food Sci. 2020, 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, H.M.; Eldin, R.E.S.; Abu Serea, E.S.; Gomaa, N.M.; Aboelmagd, G.M.; Salem, S.A.; Elsayed, Z.A.; Edrees, A.; Shams-Eldin, E.; Shalan, A.E. Advances in nanotechnology and antibacterial properties of biodegradable food packaging materials. RSC Adv. 2020, 10, 20467–20484. [Google Scholar] [CrossRef]
- Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, M.J.; Fernández, M.D. Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials 2020, 10, 376. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.S.; Soundhararajan, R.; Akther, T.; Kashif, M.; Khan, J.; Waseem, M.; Srinivasan, H. Biogenic AgNPs synthesized via endophytic bacteria and its biological applications. Environ. Sci. Pollut. Res. 2019, 26, 26939–26946. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, M.; Shaheen, R.; Akram, B.; Abdin, Z.U.; Haq, S.; Mahsud, S.; Ali, S.; Khan, R.T. Green synthesis of cobalt oxide nanoparticles for potential biological applications. Mater. Res. Express 2020, 7, 025019. [Google Scholar] [CrossRef]
- Khan, A.U.; Malik, N.; Khan, M.; Cho, M.H.; Khan, M.M. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst. Eng. 2017, 41, 1–20. [Google Scholar] [CrossRef]
- Elbaghdady, K.; EL-Shatoury, E.I.N.; Abdallah, O.; Khalil, M. Biogenic production of silver nanoparticles by Enterobacter clo-acae Ism26. Turk. J. Biol. 2018, 42, 319–328. [Google Scholar] [CrossRef]
- Jadoun, S.; Arif, R.; Jangid, N.K.; Meena, R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2020, 19, 355–374. [Google Scholar] [CrossRef]
- Wong, X.Y.; Sena-Torralba, A.; Álvarez-Diduk, R.; Muthoosamy, K.; Merkoçi, A. Nanomaterials for Nanotheranostics: Tuning Their Properties According to Disease Needs. ACS Nano 2020, 14, 2585–2627. [Google Scholar] [CrossRef]
- Shanab, S.M.M.; Partila, A.M.; Ali, H.E.A.; Abdullah, M.A. Impact of gamma-irradiated silver nanoparticles biosynthesized from Pseudomonas aeruginosa on growth, lipid, and carbohydrates of Chlorella vulgaris and Dictyochloropsis splendida. J. Radiat. Res. Appl. Sci. 2020, 14, 70–81. [Google Scholar] [CrossRef]
- Zuorro, A.; Iannone, A.; Natali, S.; Lavecchia, R. Green Synthesis of Silver Nanoparticles Using Bilberry and Red Currant Waste Extracts. Processes 2019, 7, 193. [Google Scholar] [CrossRef] [Green Version]
- Baiocco, D.; Lavecchia, R.; Natali, S.; Zuorro, A. Production of metal nanoparticles by agro-industrial wastes: A green opportunity for nanotechnology. Chem. Eng. Trans. 2016, 47, 67–72. [Google Scholar]
- Amgoth, C.; Singh, A.; Santhosh, R.; Yumnam, S.; Mangla, P.; Karthik, R.; Guping, T.; Banavoth, M. Solvent assisted size effect on AuNPs and significant inhibition on K562 cells. RSC Adv. 2019, 9, 33931–33940. [Google Scholar] [CrossRef] [Green Version]
- Rónavári, A.; Igaz, N.; Adamecz, D.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021, 26, 844. [Google Scholar] [CrossRef] [PubMed]
- Sundarrajan, S.K.; Pottail, L. Green synthesis of bimetallic Ag@Au nanoparticles with aqueous fruit latex extract of Artocarpus heterophyllus and their synergistic medicinal efficacies. Appl. Nanosci. 2021, 11, 971–981. [Google Scholar] [CrossRef]
- Manikandan, V.; Velmurugan, P.; Jayanthi, P.; Park, J.H.; Chang, W.S.; Park, Y.J.; Cho, M.; Oh, B.T. Biogenic synthesis from Prunus × yedoensis leaf extract, characterization, and photocatalytic and antibacterial activity of TiO 2 nanoparticles. Res. Chem. Intermed. 2018, 44, 2489–2502. [Google Scholar] [CrossRef]
- Eisa, W.H.; Zayed, M.F.; Anis, B.; Abbas, L.M.; Ali, S.S.; Mostafa, A. Clean production of powdery silver nanoparticles using Zingiber officinale: The structural and catalytic properties. J. Clean. Prod. 2019, 241, 118398. [Google Scholar] [CrossRef]
- Morales-Lozoya, V.; Espinoza-Gómez, H.; Flores-López, L.Z.; Sotelo-Barrera, E.L.; Núñez-Rivera, A.; Cadena-Nava, R.D.; Alonso-Nuñez, G.; Rivero, I.A. Study of the effect of the different parts of Morinda citrifolia L. (noni) on the green synthesis of silver nanoparticles and their antibacterial activity. Appl. Surf. Sci. 2021, 537, 147855. [Google Scholar] [CrossRef]
- Mahdavi-Ourtakand, M.; Jafari, P.; Safaeijavan, R. Antibacterial activity of biosynthesized silver nanoparticles from fruit ex-tracts of Bunium persicum Boiss. Int. J. Bio-Inorg. Hybr. Nanomater. 2017, 6, 245–251. [Google Scholar]
- Thirumagal, N.; Jeyakumari, A.P. Structural, Optical and Antibacterial Properties of Green Synthesized Silver Nanoparticles (AgNPs) Using Justicia adhatoda L. Leaf Extract. J. Clust. Sci. 2020, 31, 487–497. [Google Scholar] [CrossRef]
- Farah, M.A.; Ali, M.; Chen, S.-M.; Li, Y.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Lee, J. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf. B Biointerfaces 2016, 141, 158–169. [Google Scholar] [CrossRef]
- Keijok, W.J.; Pereira, R.H.A.; Alvarez, L.A.C.; Prado, A.R.; da Silva, A.R.; Ribeiro, J.; De Oliveira, J.P.; Guimarães, M.C.C. Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci. Rep. 2019, 9, 16019. [Google Scholar] [CrossRef]
- Jahagirdar, A.S.; Shende, S.; Gade, A.; Rai, M. Bioinspired Synthesis of Copper Nanoparticles and its Efficacy on Seed Viability and Seedling Growth in Mungbean (Vigna radiata L.). Curr. Nanosci. 2020, 16, 246–252. [Google Scholar] [CrossRef]
- Chauhan, N.; Tyagi, A.K.; Kumar, P.; Malik, A. Antibacterial Potential of Jatropha curcas Synthesized Silver Nanoparticles against Food Borne Pathogens. Front. Microbiol. 2016, 7, 1748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunti, L.; Dass, R.S.; Kalagatur, N.K. Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and ex-ploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Front. Microbial. 2019, 10, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aritonang, H.F.; Koleangan, H.; Wuntu, A.D. Synthesis of Silver Nanoparticles Using Aqueous Extract of Medicinal Plants’ (Impatiens balsamina and Lantana camara) Fresh Leaves and Analysis of Antimicrobial Activity. Int. J. Microbiol. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nabikhan, A.; Kandasamy, K.; Raj, A.; Alikunhi, N.M. Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf. B Biointerfaces 2010, 79, 488–493. [Google Scholar] [CrossRef]
- Robles-Martínez, M.; Patiño-Herrera, R.; Pérez-Vázquez, F.J.; Montejano-Carrizales, J.M.; González, J.F.C.; Pérez, E. Mentha piperita as a natural support for silver nanoparticles: A new Anti- Candida albicans treatment. Colloid Interface Sci. Commun. 2020, 35, 100253. [Google Scholar] [CrossRef]
- Gopinath, V.; MubarakAli, D.; Priyadarshini, S.; Priyadharsshini, N.M.; Thajuddin, N.; Velusamy, P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces 2012, 96, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Tiwari, K.N.; Saini, R.; Kumar, P.; Mishra, S.K.; Yadav, V.B.; Nath, G. Green Synthesis of Silver Nanoparticles from Leaf Extract of Nyctanthes arbor-tristis L. and Assessment of Its Antioxidant, Antimicrobial Response. J. Inorg. Organomet. Polym. Mater. 2019, 30, 2266–2278. [Google Scholar] [CrossRef]
- Mankad, M.; Patil, G.; Patel, D.; Patel, P.; Patel, A. Comparative studies of sunlight mediated green synthesis of silver nano-paraticles from Azadirachta indica leaf extract and its antibacterial effect on Xanthomonas oryzae pv. oryzae. Arab. J. Chem. 2020, 13, 2865–2872. [Google Scholar] [CrossRef]
- Kgatshe, M.; Aremu, O.S.; Katata-Seru, L.; Gopane, R. Characterization and Antibacterial Activity of Biosynthesized Silver Nanoparticles Using the Ethanolic Extract of Pelargonium sidoides DC. J. Nanomater. 2019, 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dawodu, F.A.; Onuh, C.U.; Akpomie, K.G.; Unuabonah, E.I. Synthesis of silver nanoparticle from Vigna unguiculata stem as adsorbent for malachite green in a batch system. SN Appl. Sci. 2019, 1, 1–346. [Google Scholar] [CrossRef] [Green Version]
- Aref, M.S.; Salem, S.S. Bio-callus synthesis of silver nanoparticles, characterization, and antibacterial activities via Cin-namomum camphora callus culture. Biocatal. Agric. Biotechnol. 2020, 27, 101689. [Google Scholar] [CrossRef]
- Selvam, A.K. Preparation and Characterization of silver nanoparticle/Aloe vera incorporated PCL/PEO matrix for wound dressing application. Indian J. Biochem. Biophys. 2021, 58, 35–44. [Google Scholar]
- Nikparast, Y.; Ghorbani, R.; Ahmadzadeh, H.; Asadi, G. Green synthesis of silver nanoparticles using Amarantus retroflexus and its antibacterial effect. J. Plant Prot. 2018, 32, 139–146. [Google Scholar]
- Lykogianni, M.; Papadopoulou, E.-A.; Sapalidis, A.; Tsiourvas, D.; Sideratou, Z.; Aliferis, K.A. Metabolomics reveals differential mechanisms of toxicity of hyperbranched poly(ethyleneimine)-derived nanoparticles to the soil-borne fungus Verticillium dahliae Kleb. Pestic. Biochem. Physiol. 2020, 165, 104535. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Kumari, J.; Borah, P.; Baruah, P.; Kaman, P.K.; Das, G.; Kumari, A.; Saikia, B. Synthesis of fungus mediate silver nanoparticles (AgNP) its characterization and study the efficacy against inoculam, biomass and protein content of Fusarium oxysporum. Int. J. Chem. Stud. 2020, 8, 2619–2625. [Google Scholar] [CrossRef]
- Soltani-Horand, P.; Vaghari, H.; Soltani-Horand, J.; Adibpour, M.; Jafarizadeh-Malmiri, H. Extracellular mycosynthesis of an-tibacterial silver nanoparticles using aspergillus flavus and evaluation of their characteristics. Int. J. Nanosci. 2020, 19, 1950009. [Google Scholar] [CrossRef]
- Dar, M.A.; Ingle, A.; Rai, M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 105–110. [Google Scholar] [CrossRef]
- Netala, V.R.; Bethu, M.S.; Pushpalatha, B.; Baki, V.B.; Aishwarya, S.; Rao, J.V.; Tartte, V. Biogenesis of silver nanoparticles using endophytic fungus Pestalotiopsis microspora and evaluation of their antioxidant and anticancer activities. Int. J. Nanomed. 2016, 11, 5683–5696. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Zeng, Z.; Song, Z.; Chen, A.; Zeng, G.; Xiao, R.; He, K.; Yuan, L.; Li, H.; Chen, G. Antimicrobial efficacy and mechanisms of silver nanoparticles against Phanerochaete chrysosporium in the presence of common electrolytes and humic acid. J. Hazard. Mater. 2020, 383, 121153. [Google Scholar] [CrossRef]
- Salunkhe, R.B.; Patil, S.V.; Patil, C.; Salunke, B.K. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol. Res. 2011, 109, 823–831. [Google Scholar] [CrossRef]
- Ammar, H.A.M.; El-Desouky, T.A. Green synthesis of nanosilver particles by Aspergillus terreus HA 1N and Penicillium ex-pansum HA 2N and its antifungal activity against mycotoxigenic fungi. J. Appl. Microbiol. 2016, 121, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Musarrat, J.; Dwivedi, S.; Singh, B.R.; Al-Khedhairy, A.; Azam, A.; Naqvi, A. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 2010, 101, 8772–8776. [Google Scholar] [CrossRef] [PubMed]
- Sarsar, V.; Selwal, M.K.; Selwal, K.K. Biogenic synthesis, optimisation and antibacterial efficacy of extracellular silver nano-particles using novel fungal isolate Aspergillus fumigatus MA. IET Nanobiotechnol. 2016, 10, 215–221. [Google Scholar] [CrossRef]
- Chengzheng, W.; Jiazhi, W.; Shuangjiang, C.; Swamy, M.K.; Sinniah, U.R.; Akhtar, M.; Umar, A. Biogenic synthesis, charac-terization and evaluation of silver nanoparticles from Aspergillus niger JX556221 against human colon cancer cell line HT-29. J. Nanosci. Nanotechnol. 2018, 18, 3673–3681. [Google Scholar] [CrossRef]
- El-Gazzar, N.; Ismail, A.M. The potential use of Titanium, Silver and Selenium nanoparticles in controlling leaf blight of tomato caused by Alternaria alternata. Biocatal. Agric. Biotechnol. 2020, 27, 101708. [Google Scholar] [CrossRef]
- Kumar, R.R.; Priyadharsani, K.P.; Thamaraiselvi, K. Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamarii. J. Nanopart. Res. 2012, 14, 1–7. [Google Scholar] [CrossRef]
- AbdelRahim, K.; Mahmoud, S.Y.; Ali, A.M.; Almaary, K.S.; Mustafa, A.E.-Z.M.; Husseiny, S.M. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J. Biol. Sci. 2017, 24, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Hafez, S.I.I.; Nafady, N.A.; Abdel-Rahim, I.R.; Shaltout, A.M.; Mohamed, M.A. Biogenesis and Optimisation of Silver Nanoparticles by the Endophytic Fungus Cladosporium sphaerospermum. Int. J. Nanomater. Chem. 2016, 2, 11–19. [Google Scholar] [CrossRef]
- Momin, B.; Rahman, S.; Jha, N.; Annapure, U.S. Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: Photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess Biosyst. Eng. 2019, 42, 541–553. [Google Scholar] [CrossRef]
- Al-Turnachy, H.H.H.; Aldujaili, N.H. Isolation of metallic Klebsiella Pneumoniae HHHF1 potent for AgNPs nanobiosynthesis from iron-rich soil samples. AIP Conf. Proc. 2020, 2290, 020039. [Google Scholar] [CrossRef]
- John, M.S.; Nagoth, J.A.; Ramasamy, K.P.; Mancini, A.; Giuli, G.; Natalello, A.; Ballarini, P.; Miceli, C.; Pucciarelli, S. Synthesis of Bioactive Silver Nanoparticles by a Pseudomonas Strain Associated with the Antarctic Psychrophilic Protozoon Euplotes focardii. Mar. Drugs 2020, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- Rafińska, K.; Pomastowski, P.; Buszewski, B. Study of Bacillus subtilis response to different forms of silver. Sci. Total Environ. 2019, 661, 120–129. [Google Scholar] [CrossRef]
- Hussein, E.A.M.; Mohammad, A.A.-H.; Harraz, F.A.; Ahsan, M.F. Biologically Synthesized Silver Nanoparticles for Enhancing Tetracycline Activity against Staphylococcus aureus and Klebsiella pneumoniae. Braz. Arch. Biol. Technol. 2019, 62. [Google Scholar] [CrossRef]
- Bagherzade, G.; Tavakoli, M.M.; Namaei, M.H. Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac. J. Trop. Biomed. 2017, 7, 227–233. [Google Scholar] [CrossRef]
- Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res. Int. 2013, 2013, 287638. [Google Scholar]
- Rajeshkumar, S.; Malarkodi, C. Optimization of Serratia nematodiphila using response surface methodology to silver nano-particles synthesis for aquatic pathogen control. IOP Conf. Ser. Mater. Sci. Eng. 2017, 1, 022041. [Google Scholar] [CrossRef] [Green Version]
- Alsamhary, K.I. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 2020, 27, 2185–2191. [Google Scholar] [CrossRef]
- Li, J.; Tian, B.; Li, T.; Dai, S.; Weng, Y.; Lu, J.; Xu, X.; Jin, Y.; Pang, R.; Hua, Y. Biosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using protein extracts of Deinococcus radiodurans and evaluation of their cytotoxicity. Int. J. Nanomed. 2018, 13, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Bendary, M.A.; Afifi, S.S.; Moharam, M.E.; El-Ola, S.M.A.; Salama, A.; Omara, E.A.; Shaheen, M.N.F.; Hamed, A.A.; Gawdat, N.A. Biosynthesis of silver nanoparticles using isolated Bacillus subtilis: Characterization, antimicrobial activity, cytotoxicity, and their performance as antimicrobial agent for textile materials. Prep. Biochem. Biotechnol. 2020, 51, 4–68. [Google Scholar] [CrossRef]
- Du, R.; Zhao, F.; Peng, Q.; Zhou, Z.; Han, Y. Production and characterization of bacterial cellulose produced by Glu-conacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 2018, 194, 200–207. [Google Scholar] [CrossRef]
- Vu, X.H.; Dien, N.D.; Pham, T.T.H.; Trang, T.T.; Ca, N.X.; Tho, P.T.; Vinh, N.D.; Van Do, P. The sensitive detection of methylene blue using silver nanodecahedra prepared through a photochemical route. RSC Adv. 2020, 10, 38974–38988. [Google Scholar] [CrossRef]
- Soliwoda, K.; Tomaszewska, E.; Socha, E.; Krzyczmonik, P.; Ignaczak, A.; Orlowski, P.; Krzyzowska, M.; Celichowski, G.; Grobelny, J. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanopart. Res. 2017, 19, 1–15. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. J. Photochem. Photobiol. C Photochem. Rev. 2019, 41, 100315. [Google Scholar] [CrossRef]
- Al-Saedy, M.A.; Ali, A.A.; Sabah, R.; Hamed, W.M.; Kafi, M. Preparation method of silver nano particles. J. Adv. Sci. Technol. 2020, 3, 1–8. [Google Scholar]
- Singh, S. Synthesis of nanoparticles for biomedical applications. In Nanotoxicology: Experimental and Computational Perspectives; Dhawan, A., Anderson, D., Shanker, R., Eds.; Royal Society of Chemistry: London, UK, 2017; pp. 39–93. [Google Scholar]
- Krce, L.; Šprung, M.; Maravić, A.; Umek, P.; Salamon, K.; Krstulović, N.; Aviani, I. Bacteria Exposed to Silver Nanoparticles Synthesized by Laser Ablation in Water: Modelling E. coli Growth and Inactivation. Materials 2020, 13, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.A.; Imamura, R.; Brown, G.A.; Krishnamurthi, V.R.; Niyonshuti, I.I.; Marcelle, T.; Mathurin, L.E.; Chen, J.; Wang, Y. An experiment-based model quantifying antimicrobial activity of silver nanoparticles on Escherichia coli. RSC Adv. 2017, 7, 56173–56182. [Google Scholar] [CrossRef] [Green Version]
- Sathiyaseelan, A.; Saravanakumar, K.; Mariadoss, A.V.A.; Wang, M.-H. Biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. Int. J. Biol. Macromol. 2020, 153, 63–71. [Google Scholar] [CrossRef]
- Blasco, L.; Ambroa, A.; Trastoy, R.; Bleriot, I.; Moscoso, M.; Fernandez-Garcia, L.; Perez-Nadales, E.; Fernández-Cuenca, F.; Torre-Cisneros, J.; Oteo-Iglesias, J.; et al. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci. Rep. 2020, 10, 7163. [Google Scholar] [CrossRef]
- Jusuf, S.; Hui, J.; Dong, P.-T.; Cheng, J.-X. Staphyloxanthin Photolysis Potentiates Low Concentration Silver Nanoparticles in Eradication of Methicillin-Resistant Staphylococcus aureus. J. Phys. Chem. C 2020, 124, 5321–5330. [Google Scholar] [CrossRef]
- Parasuraman, P.; Thamanna, R.Y.; Shaji, C.; Sharan, A.; Bahkali, A.H.; Al-Harthi, H.F.; Syed, A.; Anju, V.; Dyavaiah, M.; Siddhardha, B. Biogenic Silver Nanoparticles Decorated with Methylene Blue Potentiated the Photodynamic Inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutics 2020, 12, 709. [Google Scholar] [CrossRef] [PubMed]
- Malaekeh-Nikouei, B.; Bazzaz, B.S.F.; Mirhadi, E.; Tajani, A.S.; Khameneh, B. The role of nanotechnology in combating bio-film-based antibiotic resistance. J. Drug Deliv. Sci. Technol. 2020, 60, 101880. [Google Scholar] [CrossRef]
- Hashemi, Z.; Mortazavi-Derazkola, S.; Biparva, P.; Goli, H.R.; Sadeghian, F.; Kardan, M.; Rafiei, A.; Ebrahimzadeh, M.A. Green Synthesized silver nanoparticles using Feijoa Sellowiana leaf extract, evaluation of their antibacterial, anticancer and antioxidant activities. Iran. J. Pharm. Res. 2020, 19, 306–320. [Google Scholar] [CrossRef]
- Tavakolizadeh, M.; Pourjavadi, A.; Ansari, M.; Tebyanian, H.; Tabaei, S.J.S.; Atarod, M.; Rabiee, N.; Bagherzadeh, M.; Varma, R.S. An environmentally friendly wound dressing based on a self-healing, extensible and compressible antibacterial hydrogel. Green Chem. 2021, 23, 1312–1329. [Google Scholar] [CrossRef]
- Abdalla, S.S.I.; Katas, H.; Azmi, F.; Busra, M.F.M. Antibacterial and Anti-Biofilm Biosynthesised Silver and Gold Nanoparticles for Medical Applications: Mechanism of Action, Toxicity and Current Status. Curr. Drug Deliv. 2020, 17, 88–100. [Google Scholar] [CrossRef]
- Majeed, S.; Danish, M.; Zahrudin, A.H.B.; Dash, G.K. Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int. J. Mod. Sci. 2018, 4, 86–92. [Google Scholar] [CrossRef]
- Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, S.; Mukherji, S.; Mukherji, S. Immobilized silver nanoparticles enhance contact killing and show highest efficacy: Elucidation of the mechanism of bactericidal action of silver. Nanoscale 2013, 5, 7328–7340. [Google Scholar] [CrossRef] [Green Version]
- Khurana, C.; Vala, A.; Andhariya, N.; Pandey, O.P.; Chudasama, B. Antibacterial activity of silver: The role of hydrodynamic particle size at nanoscale. J. Biomed. Mater. Res. Part A 2014, 102, 3361–3368. [Google Scholar] [CrossRef]
- Hamad, A.; Khashan, K.S.; Hadi, A. Silver Nanoparticles and Silver Ions as Potential Antibacterial Agents. J. Inorg. Organomet. Polym. Mater. 2020, 30, 4811–4828. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Naghizadeh, A.; Amiri, O.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibac-terial application. Bioorg. Chem. 2020, 94, 103425. [Google Scholar] [CrossRef]
- Guerra, J.D.; Sandoval, G.; Avalos-Borja, M.; Pestryakov, A.; Garibo, D.; Susarrey-Arce, A.; Bogdanchikova, N. Selective antifungal activity of silver nanoparticles: A comparative study between Candida tropicalis and Saccharomyces boulardii. Colloid Interface Sci. Commun. 2020, 37, 100280. [Google Scholar] [CrossRef]
- Boral, H.; Metin, B.; Döğen, A.; Seyedmousavi, S.; Ilkit, M. Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet. Biol. 2018, 111, 92–107. [Google Scholar] [CrossRef]
- Esteban-Tejeda, L.; Malpartida, F.; Esteban-Cubillo, A.; Pecharromán, C.; Moya, J.S. The antibacterial and antifungal activity of a soda-lime glass containing silver nanoparticles. Nanotechnology 2009, 20, 085103. [Google Scholar] [CrossRef]
- Omran, B.A. Inspired biological synthesis of nanomaterials using Eukaryotic microbial nano-machinery. In Nanobiotechnology: A Multidisciplinary Field of Science; Springer: New York, NY, USA, 2020; pp. 81–109. [Google Scholar] [CrossRef]
- Elamawi, R.M.; Al-Harbi, R.E.; Hendi, A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control. 2018, 28, 28. [Google Scholar] [CrossRef] [Green Version]
- Atiq, M.; Naeem, I.; Sahi, S.T.; Rajput, N.A.; Haider, E.; Usman, M.; Shahbaz, H.; Fatima, K.; Arif, E.; Qayyum, A. Nanopar-ticles: A safe way towards fungal diseases. Arch. Phytopathol. Plant Protect. 2020, 53, 781–792. [Google Scholar] [CrossRef]
- Win, T.T.; Khan, S.; Fu, P. Fungus- (Alternaria sp.) Mediated Silver Nanoparticles Synthesis, Characterization, and Screening of Antifungal Activity against Some Phytopathogens. J. Nanotechnol. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Xia, M.-Y.; Xie, Y.; Yu, C.-H.; Chen, G.-Y.; Li, Y.-H.; Zhang, T.; Peng, Q. Graphene-based nanomaterials: The promising active agents for antibiotics-independent antibacterial applications. J. Control. Release 2019, 307, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Maheshwari, S.K. Applications of Silver nanoparticles in diverse sectors. Int. J. Nano Dimens. 2019, 10, 18–36. [Google Scholar]
- Teirumnieks, E.; Balchev, I.; Ghalot, R.S.; Lazov, L. Antibacterial and anti-viral effects of silver nanoparticles in medicine against COVID-19—A review. Laser Phys. 2020, 31, 013001. [Google Scholar] [CrossRef]
- Zyıldız, F.; Seydibeyoğlu, E.A.; Seydibeyoğlu, M.Ö. The role of nanotechnology for antimicrobial agents. In Coronalogy: Multidisciplinary Academic Analysis in Perspective of Covid-19; Sciendo: Warsaw, Poland, 2021; pp. 170–185. [Google Scholar]
- Saxena, R.; Fouad, H.; Srivastava, S. Clinical study of the treatment of Klebsiella pneumoniae with comprehensive nursing intervention combined with new nano silver. J. Nanosci. Nanotechnol. 2020, 20, 6063–6069. [Google Scholar]
- Reina, G.; Peng, S.; Jacquemin, L.; Andrade, A.F.; Bianco, A. Hard Nanomaterials in Time of Viral Pandemics. ACS Nano 2020, 14, 9364–9388. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, A.M.; Ao, Z.; Chen, L.; Kalaichelvan, P.; Girilal, M.; Xiao, X.; Yao, X. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection. Int. J. Nanomed. 2012, 7, 5007–5018. [Google Scholar] [CrossRef] [Green Version]
- Lal, H.M.; Uthaman, A.; Thomas, S. Silver Nanoparticle as an Effective Antiviral Agent. In Polymer Nanocomposites Based on Silver Nanoparticles; Lal, H.M., Thomas, S., Li, T., Maria, H.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 247–265. [Google Scholar]
- Lara, H.H.; Ayala-Nuñez, N.V.; Ixtepan-Turrent, L.; Rodriguez-Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J. Nanobiotechnol. 2010, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Trefry, J.C.; Wooley, D.P. Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropino-cytosis-dependent mechanism. J. Biomed. Nanotechnol. 2013, 9, 1624–1635. [Google Scholar] [CrossRef]
- Pilaquinga, F.; Morey, J.; Torres, M.; Seqqat, R.; Piña, M.D. Silver nanoparticles as a potential treatment against SARS-CoV-2: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1707. [Google Scholar] [CrossRef]
- Galdiero, S.; Rai, M.; Gade, A.; Falanga, A.; Incoronato, N.; Russo, L.; Galdiero, M.; Gaikwad, S.; Ingle, A. Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 2013, 8, 4303–4314. [Google Scholar] [CrossRef] [Green Version]
- Elbeshehy, E.K.F.; Elazzazy, A.M.; Aggelis, G. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nano-particle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front. Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef] [Green Version]
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2020, 18, 151–166. [Google Scholar] [CrossRef]
- Wong, C.K.; Cheung, P.F.; Ip, W.K.; Lam, C.W. Intracellular signaling mechanisms regulating toll-like receptor-mediated ac-tivation of eosinophils. Am. J. Respir. Cell Mol. Biol. 2007, 37, 85–96. [Google Scholar] [CrossRef]
- Tao, B.; Xiang, W.; Li, X.; He, C.; Chen, L.; Xia, X.; Peng, T.; Peng, L.; Yang, X.; Zhong, C. Regulation of Toll-like receptor-mediated inflammatory response by microRNA-152-3p-mediated demethylation of MyD88 in systemic lupus erythematosus. Inflamm. Res. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Gestal, M.C.; Blas-Machado, U.; Johnson, H.M.; Rubin, L.N.; Dewan, K.K.; Bryant, C.; Tiemeyer, M.; Harvill, E.T. Disrupting Bordetella immunosuppression reveals a role for Eosinophils in coordinating the adaptive immune response in the respir-atory tract. Microorganisms 2020, 8, 1808. [Google Scholar] [CrossRef]
- Siczek, K.; Zatorski, H.; Fichna, J. Silver and Other Metals in the Treatment of Gastrointestinal Diseases. Curr. Med. Chem. 2015, 22, 3695–3706. [Google Scholar] [CrossRef]
- Tian, J.; Wong, K.K.Y.; Ho, C.-M.; Lok, C.-N.; Yu, W.-Y.; Che, C.M.; Chiu, J.-F.; Tam, P.K.H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. ChemMedChem 2007, 2, 129–136. [Google Scholar] [CrossRef]
- David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; et al. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces 2014, 122, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.X.; Zheng, Y.; Duan, W.; Li, X.; Yin, J.; Shigdar, S.; O’Connor, M.L.; Marappan, M.; Zhao, X.; Miao, Y.; et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. Int. J. Nanomed. 2013, 8, 4103–4113. [Google Scholar] [CrossRef] [Green Version]
- Nicolini, G.; Forini, F.; Kusmic, C.; Iervasi, G.; Balzan, S. Angiopoietin 2 signal complexity in cardiovascular disease and cancer. Life Sci. 2019, 239, 117080. [Google Scholar] [CrossRef]
- Guarischi-Sousa, R.; Monteiro, J.S.; Alecrim, L.C.; Michaloski, J.S.; Cardeal, L.B.; Ferreira, E.; Carraro, D.M.; Nunes, D.N.; Dias-Neto, E.; Reimand, J.; et al. A transcriptome-based signature of pathological angiogenesis predicts breast cancer patient survival. PLoS Genet. 2020, 15, e1008482. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, P.; Zimbone, S.; Grasso, G.; La Mendola, D.; Cossement, D.; Snyders, R.; Satriano, C. A Multifunctional Nanoplatform Made of Gold Nanoparticles and Peptides Mimicking the Vascular Endothelial Growth Factor. Appl. Sci. 2021, 11, 6333. [Google Scholar] [CrossRef]
- Saeed, B.A.; Lim, V.; Yusof, N.A.; Khor, K.Z.; Rahman, H.S.; Samad, N.A. Antiangiogenic properties of nanoparticles: A systematic review. Int. J. Nanomed. 2019, 14, 5135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakolpour, S.; Karami, F. Cancer nanomedicine: Special focus on cancer immunotherapy. In Cancer Nanomedicine: Special Focus on Cancer Immunotherapy; Rezaei, N., Ed.; Springer: Copenhagen, Denmark, 2020; pp. 465–508. [Google Scholar] [CrossRef]
- Murugesan, K.; Koroth, J.; Srinivasan, P.P.; Singh, A.; Mukundan, S.; Karki, S.S.; Choudhary, B.; Gupta, C.M. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models. Int. J. Nanomed. 2019, 14, 5257. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.V.; Ansari, M.H.D.; Rosenkranz, D.; Maharjan, R.S.; Kriegel, F.L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine. Adv. Healthc. Mater. 2020, 9, e1901862. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.-H.; Gao, F.F.; Ismail, H.A.H.A.; Yuk, J.-M.; Cha, G.-H.; Chu, J.-Q.; Lee, Y.-H. Silver Nanoparticle-Induced Apoptosis in ARPE-19 Cells Is Inhibited by Toxoplasma gondii Pre-Infection through Suppression of NOX4-Dependent ROS Generation. Int. J. Nanomed. 2020, 15, 3695–3716. [Google Scholar] [CrossRef]
- Padalia, H.; Chanda, S. Synthesis of silver nanoparticles using Ziziphus nummularia leaf extract and evaluation of their antimicrobial, antioxidant, cytotoxic and genotoxic potential (4-in-1 system). Artif. Cells Nanomed. Biotechnol. 2021, 49, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Yang, R.; Long, F.; Zhu, A. Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. J. Environ. Sci. 2019, 80, 14–34. [Google Scholar] [CrossRef] [PubMed]
- Nethi, S.K.; Mukherjee, A.; Mukherjee, S. Biosynthesized Gold and Silver nanoparticles in cancer theranostics. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar]
- Ullah, I.; Khalil, A.T.; Ali, M.; Iqbal, J.; Ali, W.; Alarifi, S.; Shinwari, Z.K. Green-Synthesized Silver Nanoparticles Induced Apoptotic Cell Death in MCF-7 Breast Cancer Cells by Generating Reactive Oxygen Species and Activating Caspase 3 and 9 Enzyme Activities. Oxid. Med. Cell. Longev. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Boca, S.; Potara, M.; Gabudean, A.-M.; Juhem, A.; Baldeck, P.; Astilean, S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011, 311, 131–140. [Google Scholar] [CrossRef]
- Guo, D.; Zhu, L.; Huang, Z.; Zhou, H.; Ge, Y.; Ma, W.; Wu, J.; Zhang, X.; Zhou, X.; Zhang, Y.; et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 2013, 34, 7884–7894. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Park, J.H.; Cho, S.G.; Lee, K.J.; Kim, J.H. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J. Ind. Eng. Chem. 2013, 19, 1600–1605. [Google Scholar] [CrossRef]
- Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J.-H. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells. BioMed Res. Int. 2013, 2013, 535796. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Jeong, J.-K.; Han, J.W.; Zhang, X.-F.; Park, J.H.; Kim, J.-H. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res. Lett. 2015, 10, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, E.; Naddaka, M.; Uboldi, C.; Loudos, G.; Fragogeorgi, E.; Molinari, V.; Pucci, A.; Tsotakos, T.; Psimadas, D.; Ponti, J.; et al. Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 2014, 9, 839–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, M. Silver nanoparticles: Synthesis and applications. Handb. Ecomat. 2018, 2343. [Google Scholar] [CrossRef]
- Chan, C.M.; Hsiao, C.Y.; Li, H.J.; Fang, J.Y.; Chang, D.C.; Hung, C.F. The inhibitory effects of gold nanoparticles on VEGF-a-induced cell migration in Choroid-retina Endothelial cells. Int. J. Mol. Sci. 2019, 21, 109. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Yang, J.; Zuo, J.; Ma, D.; Gan, L.; Xie, B.; Wang, P.; Yang, B. Graphene-supported nanoscale zero-valent iron: Removal of phosphorus from aqueous solution and mechanistic study. J. Environ. Sci. 2014, 26, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-W.; Zeng, G.-M.; Gong, J.-L.; Liang, J.; Xu, P.; Zhang, C.; Huang, B. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: A review. Sci. Total Environ. 2014, 468, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Han, L.; Gao, W.; Xue, S.; Chen, M. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresour. Technol. 2015, 175, 269–274. [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Sonawane, S.J.; Sikwal, D.; Jadhav, M.; Rambharose, S.; Mocktar, C.; Govender, T. Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf. B Biointerfaces 2015, 136, 651–658. [Google Scholar] [CrossRef]
- Li, X.; Lenhart, J.J.; Walker, H.W. Aggregation Kinetics and Dissolution of Coated Silver Nanoparticles. Langmuir 2011, 28, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.V.; Sarawade, P.; Jeon, S.J.; Kim, S.H.; Kim, J.-K.; Chai, Y.G.; Kim, H.T. Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci. 2013, 266, 280–287. [Google Scholar] [CrossRef]
- Dankovich, T.A.; Gray, D.G. Bactericidal Paper Impregnated with Silver Nanoparticles for Point-of-Use Water Treatment. Environ. Sci. Technol. 2011, 45, 1992–1998. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Smith, J.A. Retention and transport of silver nanoparticles in a ceramic porous medium used for point-ofuse water treatment. Environ. Sci. Technol. 2013, 47, 3825–3832. [Google Scholar] [CrossRef]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009, 43, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Mahendra, S.; Lyon, D.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42, 4591–4602. [Google Scholar] [CrossRef] [PubMed]
- Que, Z.G.; Torres, J.G.T.; Vidal, H.P.; Rocha, M.A.L.; Pérez, J.C.A.; López, I.C.; Romero, D.D.L.C.; Reyna, A.E.; Sosa, J.G.P.; Pavón, A.A.S.; et al. Application of silver nanoparticles for water treatment. In Silver Nanoparticles—Fabrication, Characterization and Applications; Khan, M., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Guerra-Que, Z.; Torres, J.G.T.; Vidal, H.P.; Cuauhtémoc, I.; Monteros, A.E.D.L.; Beltramini, J.; Frías-Márquez, D.M. Silver nanoparticles supported on zirconia–ceria for the catalytic wet air oxidation of methyl tert-butyl ether. RSC Adv. 2017, 7, 3599–3610. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.-J.; Kim, K.H. Parametric study of a dyeing wastewater treatment by modified sericite. Environ. Technol. 2016, 37, 2572–2579. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, X.; Du, Y.-H.; Ding, M.; Xiang, C.; Yan, N.; Jia, C.; Han, Z.; Sun, L. Nanostructured Three-Dimensional Percolative Channels for Separation of Oil-in-Water Emulsions. iScience 2018, 6, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Cao, E.; Duan, W.; Wang, F.; Wang, A.; Zheng, Y. Natural cellulose fiber derived hollow-tubular-oriented poly-dopamine: In-situ formation of Ag nanoparticles for reduction of 4-nitrophenol. Carbohydr. Polym. 2017, 158, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhang, Y.; Du, F.; Wu, Y.; Zhang, Q.; Jiang, C. Silver nanoparticles/polydopamine coated polyvinyl alcohol sponge as an effective and recyclable catalyst for reduction of 4-nitrophenol. Mater. Chem. Phys. 2019, 225, 42–49. [Google Scholar] [CrossRef]
- Cheng, D.; Zhang, Y.; Liu, Y.; Bai, X.; Ran, J.; Bi, S.; Deng, Z.; Tang, X.; Wu, J.; Cai, G.; et al. Mussel-inspired synthesis of filter cotton-based AgNPs for oil/water separation, antibacterial and catalytic application. Mater. Today Commun. 2020, 25, 101467. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, V.; Singh, P.P.; Matharu, A.S.; Zhang, W.; Kim, K.-H.; Singh, J.; Rawat, M. Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ. Int. 2020, 143, 105924. [Google Scholar] [CrossRef] [PubMed]
- Fiorati, A.; Bellingeri, A.; Punta, C.; Corsi, I.; Venditti, I. Silver Nanoparticles for Water Pollution Monitoring and Treatments: Ecosafety Challenge and Cellulose-Based Hybrids Solution. Polymers 2020, 12, 1635. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, S.; Ramaraj, R. Silver nanoparticles embedded in cyclodextrin–silicate composite and their appli-cations in Hg (II) ion and nitrobenzene sensing. Analyst 2013, 138, 1733–1739. [Google Scholar] [CrossRef]
- Sharma, P.; Mourya, M.; Choudhary, D.; Goswami, M.; Kundu, I.; Dobhal, M.P.; Tripathi, C.S.P.; Guin, D. Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sens. Actuators B Chem. 2018, 268, 310–318. [Google Scholar] [CrossRef]
- Melinte, V.; Stroea, L.; Buruiana, T.; Chibac, A.L. Photocrosslinked hybrid composites with Ag, Au or Au-Ag NPs as visible-light triggered photocatalysts for degradation/reduction of aromatic nitroderivatives. Eur. Polym. J. 2019, 121, 109289. [Google Scholar] [CrossRef]
- Roy, K.; Sarkar, C.K.; Ghosh, C.K. Rapid colorimetric detection of Hg2+ ion by green silver nanoparticles syn-thesized using Dahlia pinnata leaf extract. Green Process. Synth. 2015, 4, 455–461. [Google Scholar]
- Bhardwaj, A.K.; Sundaram, S.; Yadav, K.K.; Srivastav, A.L. An overview of silver nano-particles as promising materials for water disinfection. Environ. Technol. Innov. 2021, 23, 101721. [Google Scholar] [CrossRef]
- Márquez, J.C.M.; Partida, A.H.; del Carmen, M.; Dosta, M.; Mejía, J.C.; Martínez, J.A.B. Silver nanoparticles applications (AgNPS) in aquaculture. Int. J. Fish. Aquat. Stud. 2018, 6, 5–11. [Google Scholar]
- Dong, F.; Mohd Zaidi, N.F.; Valsami-Jones, E.; Kreft, J.U. Time-resolved toxicity study reveals the dynamic in-teractions between uncoated silver nanoparticles and bacteria. Nanotoxicology 2017, 11, 637–646. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, B.P.; Webster, T.J. Nanoparticle-impregnated biopolymers as novel antimicrobial nanofilms. In Biopolymer-Based Nano Films; Rai, M., dos Santos, C.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 269–309. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, S.; Li, R.; Chen, X.; Wang, K.; Sun, B.; Zhang, Y.; Zhu, L. New insights into the facilitated dissolution and sulfidation of silver nanoparticles under simulated sunlight irradiation in aquatic environments by extracellular polymeric substances. Environ. Sci. Nano 2021, 8, 748–757. [Google Scholar] [CrossRef]
- Paladini, F.; Pollini, M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials 2019, 12, 2540. [Google Scholar] [CrossRef] [Green Version]
- Prasath, S.; Palaniappan, K. Is using nanosilver mattresses/pillows safe? A review of potential health implications of silver nanoparticles on human health. Environ. Geochem. Health 2019, 41, 2295–2313. [Google Scholar] [CrossRef] [PubMed]
- DeAlba-Montero, I.; Ruiz-Torres, C.A.; Portales-Pérez, D.P.; Martínez-Gutierrez, F.; Echeverría, F.; Compeán-Jasso, M.E.; Cata-ño-Cañizales, Y.G.; Ruiz, F. Atmospheric corrosion, antibacterial properties, and toxicity of silver nanoparticles synthesized by two different routes. Bioinorg. Chem. Appl. 2020, 2020, 8891069. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Garraus, A.; Azqueta, A.; Vettorazzi, A.; De Cerain, A.L. Genotoxicity of silver nanoparticles. Nanomaterials 2020, 10, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budama-Kilinc, Y.; Cakir-Koc, R.; Zorlu, T.; Ozdemir, B.; Karavelioglu, Z.; Egil, A.C.; Kecel-Gunduz, S. Assessment of nano-toxicity and safety profiles of silver nanoparticles. In Silver Nanoparticles—Fabrication, Characterization and Applications; Khan, M., Ed.; IntechOpen: London, UK, 2018; p. 75645. [Google Scholar]
NP Type | Reported Physio-Chemical Properties | References |
---|---|---|
Zinc NP | Antifungal, antibacterial, anticorrosive, UV filtering | [16] |
Lead NP | Reactive, high toxicity, highly stable | [17] |
Copper NP | Highly flammable solids, ductile, very high electrical, thermal conductivity | [18] |
Cadmium NP | Insoluble, semiconductor of electricity | [19] |
Gold NP | Reactive, interactive with visible light | [20] |
Cobalt NP | Magnetic, toxic, absorb microwave, unstable | [21] |
Silver NP | Disinfectant, antibacterial, absorbs and scatters light, stable | [22] |
Aluminum NP | Large surface area, highly reactive, sensitive to sunlight, heat, moisture | [23] |
Iron NP | Sensitive to water and air (O2), reactive, unstable | [24] |
NP Type | Reported Physio-Chemical Properties | References |
---|---|---|
Aluminum oxide NP | Large surface area, increased reactivity, sensitivity to sunlight, moisture, heat | [25] |
Zinc oxide NP | UV filtering, antibacterial, anti-corrosive, antifungal | [26] |
Cerium oxide NP | Low reduction potential, antioxidant activity | [27] |
Magnetite NP | Highly reactive, magnetic | [28] |
Silicon dioxide NP | Less toxic, stable, having the ability to functionalize many molecules | [29] |
Iron oxide NP | Unstable, reactive | [30] |
Titanium oxide NP | Magnetic character inhibits bacterial growth, high surface area | [31] |
NP Type | Reported Physio-Chemical Properties | References |
---|---|---|
Fullerenes | Semiconductor, safe and inert, transmits light based on intensity, superconductor, conductor | [32] |
Graphene | Electrical and thermal conductivity, extreme strength, light absorption | [33] |
Carbon Nanotubes | Flexible and elastic, high electrical and thermal conductivity, tensile strength | [34] |
Carbon Nano-fiber | High electrical and thermal frequency, shielding and mechanical properties | [35] |
Carbon black | Resistant to UV degradation, high strength, electrical conductivity, high surface area | [36] |
Method Used | Shape | Size(nm) | References |
---|---|---|---|
Laser ablation | Spherical | 31 | [40] |
Laser ablation | Spherical | 12–29 | [41] |
Laser ablation | Irregular | 27–41 | [42] |
Small ceramic heater | Spherical | 6–21.5 | [43] |
Thermal decomposition | Spherical | 9.5 | [44] |
Laser ablation | Spherical | 27–120 | [45] |
Laser ablation | Spherical | 6.48 | [46] |
Thermal decomposition | Spherical | 14.4 | [47] |
Laser ablation | Spherical | 4–18 | [48] |
Laser ablation | Spherical | 5–13 | [49] |
Laser ablation | Spherical | 20–51 | [50] |
Thermal decomposition | Spherical | 4–7 | [51,52] |
Laser ablation | Irregular | 15–20 | [53] |
Laser ablation | Spherical | 7.9–16.2 | [54] |
Thermal decomposition | Spherical | 8 ± 1.3 | [55] |
Thermal decomposition | Spherical | 3.1–4.5 | [56] |
Thermal decomposition | Spherical | 40–50 | [57] |
Silver Salt | Reducing Agent | Capping Agent/Stabilizer | Ag Size (nm) | Reference |
---|---|---|---|---|
AgNO3 | Hydrazine hydrate and sodium citrate | Sodium dodecyl sulfate | 10–20 | [67] |
AgNO3 | D(+)-Glucose and NaOH | _ | 8–24 | [68] |
AgNO3 | Gallic acid | Gallic acid | 7–89 | [69] |
AgNO3 | Hydrazine hydrate and citrate of sodium | Sodium dodecyl sulfate | 10–20 | [70] |
AgNO3 | Sodium borohydride | Tri-sodium citrate | 5 | [71] |
AgNO3 | Aniline | Ethyltrimethylammonium bromide | 10–30 | [72] |
AgNO3 | Ethylene glycol | Poly vinyl pyrrolidone | 50–175 | [73] |
AgNO3 | Ethylene glycol | Poly vinyl pyrrolidone | 8–10 | [74] |
AgNO3 | NaOH | Polyanionic Na + poly(γ-glutamic acid) | 17.2 ± 3.4–37.3 ± 5.5 | [75] |
AgNO3 | Glucose | Poly vinyl pyrrolidone | 20–80 | [76] |
AgNO3 | Poly(vinyl pyrrolidone) and gelatin | Glucose, fructose, lactose, and sucrose | 35 | [77] |
AgNO3 | D-Glucose | Carboxy methyl cellulose, NaOH | 5–15 | [78] |
AgNO3 | Poly(ethylene glycol) | Poly(ethylene glycol) | 15–30 | [79] |
AgNO3 | Poly(ethylene glycol) | ---- | 10–80 | [80] |
AgNO3 | Ethylene glycol | Poly(vinyl pyrrolidone) | 17 ± 2 | [81] |
AgNO3 | Ethylene glycol | ---- | 17–70 | [82] |
AgNO3 | Alkali lignin(low sulfonate) | Alkali lignin(low sulfonate) | 7.3 ± 2.2–14.3 ± 1.8 | [83] |
AgNO3 | NaOH | Alkali lignin(low sulfonate) | 5–100 | [84] |
AgNO3 | Sodium borohydride | ---- | 3.5–6 | [85] |
Silver Salt | Plant Origin | Shape | Silver Size (nm) | Reference |
---|---|---|---|---|
AgNO3 | Pinus, Diospyros kaki | --- | 15–500 | [112] |
Ginkgo biloba | ||||
magnolia and Platanus | ||||
AgNO3 | Artocarpus heterophyllus lam | Irregular | 10.78 | [113] |
AgNO3 | Prunus yedoensis | Spherical and oval | 20–70 | [114] |
AgNO3 | Zingiber officinale | --- | 10–20 | [115] |
AgNO3 | Morinda citrifolia | Spherical | 30–55 | [116] |
AgNO3 | Bunium persicum | Spherical | 20–50 | [117] |
AgNO3 | Justicia Adhatoda | Spherical | 25 | [118] |
AgNO3 | Adenium obesum | Spherical | 10–30 | [119] |
AgNO3 | Coffee arabica | Spherical and ellipsoidal | 20–30 | [120] |
AgNO3 | Vigna radiata | Spherical and oval | 5–30 | [121] |
AgNO3 | Jatropha curcas | Spherical | 10–20 | [121] |
AgNO3 | Emblica officinalis | --- | 10–20 | [122] |
AgNO3 | Lantana camara | Spherical | 14–27 | [123] |
AgNO3 | Sesuvium portulacastrum L. | Spherical | 5–20 | [124] |
AgNO3 | Mentha peprita | Spherical | 90 | [125] |
AgNO3 | Tribulus terrestris L. | Spherical | 16–28 | [126] |
AgNO3 | Nyctanthes arbor-tristis L. | Spherical | 50–80 | [127] |
AgNO3 | Azadirachta indica | Spherical | 50–100 | [128] |
AgNO3 | Pelargonium sidoides DC. | Spherical | 16–40 | [129] |
AgNO3 | Vigna unguiculata | Spherical | 24.35 | [130] |
AgNO3 | Cinnamomum camphora | Spherical | 55–80 | [131] |
AgNO3 | Aloe barbadensis miller | Spherical | 15.2 ± 4.2 | [132] |
AgNO3 | Amaranthus retroflexus | Spherical | 10–32 | [133] |
Silver Salt | Fungus | Shape | Silver Size (nm) | Reference |
---|---|---|---|---|
AgNO3 | Verticillium dahliae Kleb | --- | 25 ± 12 | [134,135] |
AgNO3 | Fusarium oxysporum | Spherical | 5–15 | [136] |
AgNO3 | Aspergillus flavus | --- | 8.92 | [137] |
AgNO3 | Cryphonectria sp. | --- | 30–70 | [138] |
AgNO3 | Pestalotiopsis microspore | Spherical | 5–25 | [139] |
AgNO3 | Phanerochaete chrysosporium | Pyramidal | 50–200 | [140] |
AgNO3 | Cochliobolus lunatus | Spherical | 3–21 | [141] |
AgNO3 | Aspergillus terreus and Penicillium expansum | Spherical | 6–100 and 14–76 | [142] |
AgNO3 | Amylomyces rouxii | Spherical | 5–27 | [143] |
AgNO3 | Aspergillus fumigatus | Spherical | 17 ± 5.9 | [144] |
AgNO3 | Aspergillus niger | Spherical | 3–30 | [144] |
AgNO3 | Alternaria alternate | Spherical | 20–60 | [145] |
AgNO3 | Aspergillus fumigatus | Spherical | 5–25 | [146] |
AgNO3 | Rhizopus stolonifer | Spherical | 9.47 | [147] |
AgNO3 | Cladosporium sphaerospermum | Spherical | 15.1 ± 1.0 | [148] |
Silver Salt | Microorganisms | Shape | Silver Size (nm) | Reference |
---|---|---|---|---|
AgNO3 | Bacillus licheniformis | Spherical | 18–63 | [149] |
AgNO3 | Klebsiella pneumonia | --- | 28–122 | [150] |
AgNO3 | Pseudomonas antarctica, Pseudomonas proteolytic, Pseudomonasmeridiana | Spherical | 6–13 | [151] |
AgNO3 | Bacillus subtilis | Spherical | 5–60 | [152] |
AgNO3 | Staphylococcus aureus | --- | 160–180 | [153] |
AgNO3 | Klebsiella pneumonia | Spherical | 1–6 | [154,155] |
AgNO3 | Nocardiopsis sp. MBRC-1 | Spherical | 45 ± 0.15 | [156] |
AgNO3 | Serratia nematodiphila | Spherical | 10–31 | [157] |
AgNO3 | Bacillus subtilis | Spherical | 20–50 | [158] |
AgNO3 | Deinococcus radiodurans | Spherical | 4–50 | [159] |
AgNO3 | Bacillus pumilus | Spherical | 77–92 | [160] |
AgNO3 | Gluconacetobacter xylinus | Spherical | 40–100 | [161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahoor, M.; Nazir, N.; Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F.; Kamran, A.W.; Kallistova, A.; Pimenov, N.; et al. A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. Water 2021, 13, 2216. https://doi.org/10.3390/w13162216
Zahoor M, Nazir N, Iftikhar M, Naz S, Zekker I, Burlakovs J, Uddin F, Kamran AW, Kallistova A, Pimenov N, et al. A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. Water. 2021; 13(16):2216. https://doi.org/10.3390/w13162216
Chicago/Turabian StyleZahoor, Muhammad, Nausheen Nazir, Muhammad Iftikhar, Sumaira Naz, Ivar Zekker, Juris Burlakovs, Faheem Uddin, Abdul Waheed Kamran, Anna Kallistova, Nikolai Pimenov, and et al. 2021. "A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment" Water 13, no. 16: 2216. https://doi.org/10.3390/w13162216
APA StyleZahoor, M., Nazir, N., Iftikhar, M., Naz, S., Zekker, I., Burlakovs, J., Uddin, F., Kamran, A. W., Kallistova, A., Pimenov, N., & Ali Khan, F. (2021). A Review on Silver Nanoparticles: Classification, Various Methods of Synthesis, and Their Potential Roles in Biomedical Applications and Water Treatment. Water, 13(16), 2216. https://doi.org/10.3390/w13162216