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Abstract: A number of principles for evaluating water resources decisions under deep long-run
uncertainty have been proposed in the literature. In this paper, we evaluate the usefulness of three
widely recommended principles in the context of delta water and sedimentation management:
scenario-based uncertainty definition, robustness rather than optimality as a performance measure,
and modeling of adaptability, which is the flexibility to change system design or operations as
conditions change in the future. This evaluation takes place in the context of an important real-world
problem: flood control in the Yellow River Delta. The results give insight both on the physical function
of the river system and on the effect of various approaches to modeling risk attitudes and adaptation
on the long-term performance of the system. We find that the optimal decisions found under different
scenarios differ significantly, while those resulting from using minimal expected cost and minmax
regret metrics are similar. The results also show that adaptive multi-stage optimization has a lower
expected cost than a static approach in which decisions over the entire time horizon are specified;
more surprisingly, recognizing the ability to adapt means that larger, rather than smaller, first-stage
investments become optimal. When faced with deep uncertainty in water resources planning, this
case study demonstrates that considering scenarios, robustness, and adaptability can significantly
improve decisions.

Keywords: flood control; deep uncertainty; adaptability

1. Introduction

Water resources system analysis, as originally championed by the Harvard Water
Program [1], uses mathematical representations of the component processes and interac-
tions of the system to improve understanding or assist in decision-making [2]. It integrates
economics, environmental, and social objectives, risk characterization, and technical en-
gineering analysis in order to balance the cost of the plan with the goals that clients and
society want to achieve [3]. These goals include, for instance, flood mitigation, reducing wa-
ter scarcity, producing hydropower, providing recreational opportunities, and minimizing
harmful impacts on ecosystems and water quality [4].

However, this kind of analysis relies heavily on the availability of information on
future physical characteristics of the system, such as rates of sea level rise and frequencies
of floods and low flows, as well as economic and social information such as engineering
costs and land use. When uncertainties concerning these variables are well characterized
by probabilities, in theory an expected utility approach can be used to identify the best
solution [5].

However, the necessary conditions for using utility theory do not hold for practical
decisions concerning large public investments, especially when decisions are controversial
because of conflicting priorities or the presence of deep uncertainty concerning, e.g., climate
change and future social conditions [6,7]. When stakeholders and managers disagree about
what goals should be emphasized, there is no rational basis for combining their preferences
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into a single utility function (i.e., the famous Arrow “impossibility theorem” [8]); for that
reason, the Harvard Water Program endorsed an explicit multi-objective approach to under-
standing tradeoffs and informing public decisions about water investments. Meanwhile,
concerning uncertainty, even after careful consultation with relevant experts, managers,
and stakeholders, there may remain very different views about how to describe the uncer-
tainty. Another concern is that reliance on a single “best guess” scenario or even a single
probability distribution for uncertainties, as required by traditional deterministic and
stochastic optimization, respectively, may leave behind potentially important information
and suggest choices that erode rather than enhance system resilience, not to mention public
confidence in the decision process [9].

Therefore, for real-world decisions, identifying a “best guess” projection of the future
and then deriving the corresponding optimum strategy accordingly is grossly subopti-
mal [10]. Even using a set of scenarios with a single set of assumed probabilities has
limitations because experts and stakeholders disagree over those likelihoods, especially
for long-run, “deep” uncertainties. Instead, researchers and decision makers have long
recognized the need for alternative methods for decision-making under uncertainty that
recognize that there may not be a single consensus probability distribution [11]. Examples
include Robust Decision-Making (RDM) [12], Decision Scaling [13], Info-Gap [14], and
dynamic adaptive policy pathways [15]. These methods have three shared principles:
(1) uncertainty is defined using multiple scenarios but without assigning probabilities
to them, unlike stochastic optimization and utility theory [16]; (2) the performance of
alternatives is measured by the robustness of system performance and optimal decisions to
errors, randomness, or changes in the future [17]; and (3) adaptive strategies, in which the
effect of decisions today on the ability to switch or change the system design or operations
depending on what scenario is actually realized, are preferable to static (“open-loop”)
decisions [18–21]. The purpose of this paper is to evaluate the effect of considering each of
these three principles in the context of a challenging water resource problem: management
of sediment and flooding in the Yellow River delta.

As noted by [10], each of these three principles is not new, but they have been generally
considered separately, with most applications focusing on using multiple scenarios [22–24].
Some studies, however, have included robustness as a performance measure for water
resources plans [25–28], while others have considered plan adaptability [29–32]. In this
paper, we improve upon these literatures by considering all three principles.

Robustness in this context broadly refers to “the insensitivity of (optimal) system
design to errors, random or otherwise, in the estimates of those parameters affecting design
choice” [17]. Extensive studies have demonstrated that decision makers are willing to
sacrifice expected performance to improve robustness to uncertainty [33–35]. Ref. [11]
proposes a taxonomy of proposed robustness analysis approaches, based on how they (1)
identify alternatives, (2) sample states of the world, (3) quantify robustness measures, and
(4) identify key uncertainties. These approaches characterize uncertainty with multiple
representations of the future and use robustness as a decision criterion. There have been
some applications of robust decision-making under deep uncertainty to flood management,
including [36,37].

In this paper, we evaluate the impact of physical uncertainties on planning for flood
control in the Yellow River delta and assess how inclusion of these three principles can alter
and perhaps improve near-term flood control investments in that context. The Yellow River,
one of the most sedimented river system in the world [38], has constantly suffered from
levee breaches and avulsions in its delta [39,40]. To reduce risks of flood and natural avul-
sions, Ref. [41] considered two measures—deliberate permanent avulsions and temporary
diversions via floodways—and developed a simulation-based optimization model, which
integrates economics, hydraulics, and sediment dynamics to minimize both flood damages
and engineering construction costs for the lower Yellow River for a 50-year time horizon.
However, the decision models of that study did not consider possible future changes of
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physical characteristics and social information in the system, nor their implications for
near-term design and long-term adaptive decisions.

In this paper, to assess the value of multiple scenarios (Principle 1), we compared
decisions made under (1) naïve uncertainty (i.e., use of only a single base case scenario), (2)
perfect information concerning future conditions, and (3) a more realistic characterization
in which today’s decisions are made under physical and social uncertainties, but later
choices will benefit from having better information while being constrained by earlier
commitments. These analyses allow us to quantify the value of information, which is a
measure of the impact upon decisions of uncertainty.

Turning to robustness (Principle 2), we compare stochastic optimization under an
expected cost minimization objective with the results of robust decision-making approaches
(minmax cost and minmax regret), assessing both average system performance and per-
formance under extreme scenarios. In addition, we consider whether different robustness
measures yield different near-term plans; if not, then it would not matter which measure is
used, at least in the near term.

Finally, we consider adaptation (Principle 3) by comparing open-loop decision-making
(up-front commitments to specified decisions over an entire time horizon) against adaptive
decision-making (which evaluates near-term investments considering how they affect the
flexibility of the system to adapt later). We ask if there is a significant option value to
delaying decisions in order to take advantage of later flexibility, or if uncertainty means
that more investments should be made now to make the system more robust.

This paper is organized as follows. The problem formulation section (Section 2.1)
describes the problem of controlling flood damages through engineered avulsions and
floodways in the lower Yellow River, summarizing [41]. This is followed by Section 2.2,
in which we outline the experimental design of the future scenarios, which describe
the climate and economic uncertainties. A summary of our robustness measures, the
definition of adaptive strategies, and their implementation in our analysis of flood control
in the Yellow River problem is presented in Sections 2.3 and 2.4, which address system
performance and adaptive strategies, respectively. The results using different decision
schemes are compared in Section 3, followed by a conclusions section (Section 4).

2. Methods
2.1. Problem Formulation

Ref. [41] developed a decision model to manage the flood risk of the Yellow River delta
in the next 50 years. There are three parts to this optimization model, including physical
simulation, management alternatives, and estimation and optimization of flooding and
engineering costs. The model’s framework is shown in Figure 1, and the three parts are
summarized below.
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One part is a physical model that simulates the daily evolution of the riverbed of
the lower Yellow River and the resulting water profile. Daily streamflows and initial
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riverbed conditions are input variables for the hydraulic and hydrology simulation model
(HH&S model). Using assumed daily flows, the HH&S model calculates as outputs daily
water depths (under non-flood conditions) and bed evolution at each point in the lower
200 km of the Yellow River. Meanwhile, yearly flood risks are characterized by combining
a generalized extreme value (GEV) flood frequency distribution with channel depths
(result from the HH&S model) using Monte Carlo simulation. The model then outputs the
flooding water surface and area which is transformed to flood damage. To simplify the
simulation, the yearly flow follows a step function, which has a 20 day peak flow period
(3600 m3/s) and 345 days of off-peak flow period (700 m3/s). This, and other hydrological
assumptions, were subjected to sensitivity analyses in [42].

The second part is the modeling of two broad management alternatives—engineered
avulsions and floodways—which are described by four decision variables. Their perfor-
mance on the two objectives of flood risk and engineering cost is estimated by the physical
model, as above. The former alternative (avulsions) lowers the flood risk by deliberately
creating a new channel to the sea that restores the riverbed profile to the initial condition
downstream of the avulsion point, while the riverbed remains the same upstream of the
avulsion point. The latter alternative (floodways to temporarily divert flood flows away
from the main channel) serves to decrease the streamflow in the main channel by a certain
amount when the streamflow reaches a predefined threshold. There are two decision vari-
ables associated with each of the broad alternatives, and the overall modeling framework
then attempts to optimize the four variables. They include: the avulsion rule x1 m3/s
(defined as the minimum allowed flow capacity of the channel; if the capacity falls below
this level, an artificial avulsion is constructed to increase the capability of the Yellow River
to convey flood flows); the avulsion location x2 km (distance above the river mouth where
the new channel intersects the original channel); the floodway size x3 m3/s (the amount
of water that can be temporarily diverted); and the floodway rule x4 m3/s (the river flow
that triggers the use of the floodway). In general, because of the rapid accumulation of
sediment in the Yellow River channel, a higher avulsion rule x1 will necessitate more
frequent engineered avulsions in order to maintain a larger channel capacity. In contrast, a
higher floodway rule x4 means that the floodway will be used less often.

In the third part, flood and construction costs are estimated for each combination of
variables considered and the coordination function of the model is used to search for the
optimum solution among the feasible values of {x1, x2, x3, x4}. This is done by discretizing
the continuous decision space and then using brute force (grid) search for the optimum
under a base case (deterministic) scenario of future climate and economic conditions,
resulting in 1386 solutions to be evaluated.

Here, for computational reasons and because we are considering multiple future
scenarios, the number of possible combinations of values for those variables that we can
consider is limited. We are able to reduce the combinations of decision variable values that
are considered because in the deterministic case, it turns out that the optimal floodway
operation rule x4 is the same under all assumptions, as the smallest value within its range
is always optimal. For this reason, x4 is not varied in the stochastic/robustness analyses of
this paper. Here, we consider the following values of the decision variables (Table 1): five
values of the avulsion rule (2600~3400 m3/s), two values of the avulsion location (70 and
100 km), three values of floodway size (0, 900, 1800 m3/s), and one value of floodway rule
(5000 m3/s), resulting in a total of 30 alternatives.

Table 1. Summary of decision variables and their discrete values.

Decision Variables Definition Considered Values Unit

x1 Avulsion rule 2600, 2800, 3000, 3200, 3400 m3/s
x2 Avulsion location 70, 100 km
x3 Floodway size 0, 900, 1800 m3/s
x4 Floodway rule 5000 m3/s
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2.2. Scenario Definition (Principle 1)

The assumptions and parameters used in the Yellow River flood control study can be
divided into three groups:

• Economic assumptions that include flood damage, avulsion cost, and floodway cost.
• Two groups of physical model assumptions. These include, first, all the parameters

used in the HH&S model, and second, water and sediment discharge and sea level
rise, which can be affected by climate change.

The HH&S model parameters were calibrated using field data as described in [42],
and for brevity we do not discuss the calibration process here.

Cost-related parameters include ¥6 M/km2 flood damage, avulsion cost ¥180 M + x2
× ¥2 M/km, and floodway cost (x3 > 0) × ¥270 M + x3 × ¥0.1 M/m3/s. However, the
bulk of analyses of this paper will emphasize climate change uncertainties, to which we
will apply the three principles discussed above in Section 1.

The uncertain factors affected by climate change that impact the HH&S model are
streamflow, flood flow, and sea level. We now discuss the ranges of those variables that are
considered in the analyses of this paper.

In the most recent Intergovernmental Panel on Climate Change (IPCC) report [43], the
Fifth Assessment Report (AR5), four greenhouse gas concentration trajectories are adopted
as Representative Concentration Pathways (RCPs) [44]. Based on that report, Ref. [45]
projects that the rate of sea level rise is accelerating, the extent of which depends on the
scenario. The rate changes from 3.2 mm/year in 2000 to 4.4 mm/year in 2100 under RCP 2.6,
while under RCP 8.5 the rate increases to 11.2 mm/year in 2100. Meanwhile, hydrologists
use a two-step process to characterize the uncertainty in streamflow and flood flow. The
first step involves evaluating spatiotemporal uncertainties in precipitation and temperature
based on downscaled outputs of climate models under different scenarios, followed by the
second step of projecting streamflow changes using a hydrological model [46–49].

This two-step process for projecting hydrological impacts has been applied to China
and, in particular, the Yellow River. By applying different hydrological models and data
sources, researchers have made different projections. [46] claims that flood frequency
will increase 10–50% in China under RCP8.5, while water availability will change only
negligibly under RCP2.6 from year 2070 to 2099. Meanwhile, [50] predicts that the Yellow
River streamflow will increase 20–30% under RCP8.5 from 2070 to 2099. In contrast, [51]
shows a decrease of water supply for the Yellow River in the early and mid-21st century,
but after 2080, the frequency of extreme flood events tend to increase under RCP8.5.

Based on the above review, we assume that changes over the next half century (through
2070) in the following three hydrological variables will have the following ranges of
uncertainty:

• Mean annual flow of the Yellow River at Lijin Station: 0–20% increase, assuming an
unchanged flow profile shape, in that the ratio of normal to flood season month flows
is unchanged;

• Mean flood flow of the Yellow River at Lijin Station: 0–20% increase, consistent with
most of the above cited literature;

• Sea level rise at the Yellow River Delta (Bohai Sea): 0.2–0.5 m increase.

We define a set of scenarios encompassing those ranges. To limit the dimensionality of
the analysis and avoid unreasonable computational times, we define scenarios considering
just the two extremes of the range for each variable. Since there are two values for each
of the uncertain variables, there are eight different scenarios in total. In contrast, in the
scenarios considered in [41], these three variables were assumed to remain unchanged over
the next 50 years. Table 2 summarizes all the scenarios considered.

In the base case, the yearly flow follows a step function, 3600 m3/s peak flow for
20 days per year, and 700 m3/s base flow for the remainder of the year. In the analysis
of this paper, we separate the cases with and without increasing annual flow. Under the
scenarios in which annual flow does not change, the yearly flow remains the same as in
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the base case. However, under the increasing streamflow scenarios, we assume both the
peak flow and the base flow increase 0.4% every year, attaining a 20% increase in 50 years.
Therefore, the peak flow of the step function grows following 3600× (1 + 0.4%× i) m3/s
and the base flow changes according to 700× (1 + 0.4%× i) m3/s, in which i indicates
the year.

Table 2. Summary of all Year 2070 scenarios.

Scenario Mean Annual Flow Mean Flood Flow Sea Level Rise

S1 Stay the same Stay the same 0.2 m
S2 Stay the same Stay the same 0.5 m
S3 Increase 20% Stay the same 0.2 m
S4 Increase 20% Stay the same 0.5 m
S5 Stay the same Increase 20% 0.2 m
S6 Stay the same Increase 20% 0.5 m
S7 Increase 20% Increase 20% 0.2 m
S8 Increase 20% Increase 20% 0.5 m

The peak flood flow is assumed to follow a GEV distribution, which has three pa-
rameters. One of the parameters is a location parameter characterizing the mean of the
distribution. Under increasing flood flow scenarios, this location parameter is increased by
a total of 20% by year 50 (0.4% increase every year). It will affect flood flow drawn from
this distribution every year in the simulation.

Sea level is a parameter in the HH&S model when calculating the water surface profile.
Under different scenarios for sea level rise rate, this parameter will grow linearly every
year with different rates accordingly, which will affect the flooding depth in the channel
and floodplain and the resulting inundated area.

In the results section, we will compare the decisions under each of the scenarios
in order to address Principle 1. By this principle, uncertainty is defined using multiple
scenarios. Changes in decisions and their performance under different scenarios will allow
us to quantify the value of perfect information, which is a measure of the importance to
decisions of uncertainty. In a scenario analysis, each decision is made assuming a single
scenario that is treated as if the manager knew that it would occur with probability 1. If
near-term decisions are the same across all the scenarios, then considering uncertainty does
not matter [52]. However, if the near-term decisions differ, considering uncertainty might,
but does not necessarily, improve expected performance of the system (ibid.).

2.3. System Performance: Alternative Robustness Measures (Principle 2)

In the previous section, we described the generation of multiple scenarios by com-
bining different possible values of three uncertain hydrologic and sea level values. In this
section, we address Principle 2 and discuss alternative ways to measure system perfor-
mance in terms of robustness to uncertainties. A robustness objective seeks a decision that
performs relatively well across a wide range of scenarios [16] rather than performs the best
(minimum or maximum) under a single base case scenario or subset of scenarios. However,
there are several alternative specific definitions and corresponding implementations on
the concept of robustness. Multiple robustness metrics, such as expected value or utility,
maximin net benefits/minimax cost, and minimax regret, have been proposed and used,
reflecting diverse approaches to modeling decision maker’s risk aversion [53]. Ref. [54]
used, among other metrics, a minimax regret objective for the operation of Lake Como
in Italy for flood protection and water supply purposes, while [55] used a pair of metrics
(mean and variance, as in the famous portfolio analysis approach of [56]) to analyze renew-
able energy investments in the European Union. For a complete review of regret metric
definitions and their use, see [57], who presented a framework to define and calculate
alternative robustness metrics.
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According to Principle 2, the performance or ranking of alternatives is measured
by their robustness: the insensitivity of system performance and rankings to errors, ran-
domness, or change in the future. We initially consider the case of robust “open-loop”
decision-making, where all decisions are made prior to resolving any of the uncertainties
(In Section 2.4, we show how multistage closed-loop decision-making can be extended to
incorporate robustness concerns, where strategies allow decisions to be modified depend-
ing on what is learned). To illustrate the application of robustness metrics in open-loop
decisions, we compare stochastic optimization under an expected cost minimization ob-
jective with the results of two highly risk averse approaches to robust decision-making
(minmax cost and minmax regret) in this open-loop setting. We focus on whether different
robustness measures yield different rankings of near-term plans; if not, it would not matter
which measure is used, at least in the near term.

The vehicle for our illustration of robustness approaches is the Yellow River flood
control case study with an objective of minimizing the total flooding and engineering cost.
Let the cost performance f (x, a) of an alternative x ∈ X depend on scenario a ∈ A. The
metrics are listed below, in decreasing order of relative level of risk aversion:

1. The minimax cost (M1) metric [58] finds the worst possible performance of each
alternative first, then chooses the alternative x∗ such that:

x∗ = arg min
x∈X

(max
a∈A

f (x, a)) (1)

This metric always focuses on the worst case; thus, it is considered the most risk
averse.

2. The minimax regret (M2) metric [59] needs to calculate regret first. Regret is defined
as the difference between the performance of the best alternative and the performance of
alternative x under the scenario a:

ra(x) = f (x, a)−min
x∈X

f (x, a) (2)

This metric chooses the alternative x∗ that minimizes the maximum regret across all
the scenarios:

x∗ = arg min
x∈X

(max
a∈A

r(x)) (3)

3. The optimal expected value (M3) metric [58] is based on probability-weighted
performance, and chooses the alternative that gives the minimal average total cost across
the 8 scenarios in our case, here assuming equal probabilities.

x∗ = arg min
x∈X

(∑a∈A(1/8) f (x, a)) (4)

If probabilities are not equal, then this becomes:

x∗ = arg min
x∈X

(∑a∈APr(a)× f (x, a)) (5)

To find the optimal solution x ∈ X, we use the grid/brute force method, considering
the set X of 30 alternatives (as described in Section 2.1 above) under the set A of 8 scenarios.
It turns out that for every decision alternative x ∈ X in the Yellow River flood control
problem, the best (lowest cost) scenario a is the same (low streamflow, low flood flow,
and low sea level rise), and likewise the worst (highest cost) scenario a is also identical
across the options (the other extreme of each variable). These results are described further
in Section 3.3, below. Consequently, we find that the first (minimax cost) metric M1 will
always result in the alternative that performs the best under the worst scenario. Note
that this does not imply that the highest regret for each alternative occurs under the same
scenario; as a result, the minimax regret criterion might not choose an option that performs
well under the worst scenario.
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In the results section (Section 3.2), we will compare the rankings of decision alterna-
tives using different robustness metrics, assessing both average system performance and
performance under extreme scenarios.

2.4. Adaptive Strategies (Principle 3)

Turning to Principle 3 described in Section 1 above, researchers and managers have rec-
ognized the economic, environmental, and social benefits of adaptation [60,61]. Adaptive
management can be defined as a structured process for improving management policies
and practices by systemic learning from the outcomes of implemented strategies, and by
taking into account changes in external factors [44,62]. It was first proposed by [63] for
environmental assessment and management, and by [64] in ecological management.

There are many applications of adaptive optimization that consider multiple decision
stages (including near-term decisions and subsequent adaptation stages). As examples,
Ref. [65] implemented adaptive flood risk management of the Thames Estuary in the context
of different future climatic and socioeconomic scenarios. Refs. [15,66] developed dynamic
adaptive policy pathways for the Rhine Delta that take into account deep uncertainties
about the future arising from social, political, technological, economic, and climate changes.
Ref. [29] studied adaptive levee system planning of California. Refs. [52,67] considered
the adaptation of water or other infrastructure to uncertain changes in climate using a
two-stage decision analysis approach, where some commitments are made immediately,
and other decisions can be postponed until after more information on the magnitude of
climate impacts occurs.

In this section, a two-stage (“closed loop”) decision framework is proposed that will
be tested and compared in Section 3.3 to an open-loop strategy, in which all decisions
for all time are made up front. First stage decisions will be made at the beginning of
the planning horizon, in the year 2018; thus, those commitments are made without any
additional climate information. These decisions will be the values of the four decision
variables described in Section 2.1 for the first 10 years. The second stage decision will be
made 10 years after the beginning, in the year 2028, when the past 10 years of climate
information is regarded as common knowledge, at which point it is observed that flows are
either not increasing or are on a trajectory to increase by the assumed amount by 2068 (0.4%
increase per year). In this analysis, we assume that only decisions concerning avulsion
rule x1 and floodway size x3 can be altered after learning takes place, and not the other
two decision variables. The avulsion rule x1 specifies what reduction in channel capacity
will trigger an engineered avulsion; this criterion could be updated as new information
unfolds. At each stage there are 5 choices for the avulsion rule, 2600, 2800, 3000, 3200, and
3400 m3/s, as shown in Table 1, so there are 5× 5 = 25 different combinations of avulsion
rule for the two stages. Meanwhile, the floodway size defines the amount of water to be
diverted from the main channel during the flood season. If the floodway size x3 is 0 in the
first stage, which means no floodway at all, then it could change to any of the 3 possible
values of 0, 900, and 1800 m3/s in the second stage. If x3 changes from zero in the first stage
to a positive value in the second stage, it means that the floodway is built in the second
stage and is available in 2028. On the other hand, if the floodway size x3 is positive in the
first stage (either 900 or 1800 m3/s), it has to stay the same for the second stage; we assume
that the design cannot be modified once constructed. (However, if we had a small diversion
in stage one, it might be enlarged in stage two. This possibility could be considered in
future research) Thus, there will be 5 combinations of floodway size decisions across the
two stages: (0,0), (0,900), (0,1800), (900,900), and (1800,1800). Considering all the decision
variables (including the ones not considered adaptive: 2 values of avulsion location x2 and
one value of floodway rule x4), there are 25× 2× 5× 1 = 250 combinations of first and
second stage decisions. All the alternatives are summarized in Table 3. All 250 alternatives
under 8 scenarios are simulated by the HH&S and cost models summarized in Section 2.1.
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Table 3. Summary of 250 alternatives in adaptive decision framework.

Decision
Variables Stage Considered Values Number of Choices Unit

x1 First 2600, 2800, 3000, 3200, 3400 25 m3/s
Second 2600, 2800, 3000, 3200, 3400 m3/s

x2 70, 100 2 km
x3 First 0 900 1800 5 m3/s

Second 0, 900, 1800 900 1800 m3/s
x4 5000 1 m3/s

In Section 3.3, the effect of considering adaptation alternatives will be assessed by
comparing the expected performance of the adaptive strategies with the performance of
open-loop decisions, and by testing whether there is a significant benefit to being able to
delay decisions on floodway building and to adapt avulsion rule decisions.

3. Results and Discussion

This section has three parts. Section 3.1 compares the optimal decisions under each of
the scenarios in order to address Principle 1: uncertainty is defined using multiple scenarios
and the optimal solutions found under different scenarios differ will indicate whether
uncertainties can matter when making decisions. Section 3.2 then compares the rankings of
decision alternatives using different robustness metrics, consistent with Principle 2. Finally,
Section 3.3 addresses the impact of Principle 3 by calculating the expected performance
of the adaptive strategies with open-loop decision and tests whether there is a significant
benefit to delaying decisions on floodway size and to change decisions on avulsion.

3.1. Results: Decisions under Different Hydrology/Sea Level Scenarios (Principle 1)

In this study, uncertainty is defined using multiple scenarios (Principle 1). However,
if the decisions under all the scenarios do not differ, or the performance of different
alternatives differs by only a small amount [52], then the uncertainty is not relevant to
decision-making. The first part of the results discusses the decisions under different
hydrology/sea level scenarios in order to give insight both on the physical function of
the river system and on the effect of different management alternatives on the long-term
performance of the system.

We consider a total of 30 alternatives under 8 scenarios, as summarized in Tables 1 and 2.
The cost objective contains two parts: accumulated flood damage and construction/
operations cost (avulsion cost plus floodway cost). We compare both the best and the
worst decisions under each of the scenarios, as shown in Table 4. It turns out that within all
the alternatives we consider, the intermediate floodway size of x3 = 900 m3/s is always
inferior, no matter which scenario or which values of the other decision variables (x1,
x2 and x4) are considered. Thus, we will not discuss results which have 900 m3/s as a
floodway size. In order to provide perspective on the solutions shown below, they can be
compared to the deterministic analysis of [41], where the optimal solution found using
the brute force search for the original base problem and scenario is {3000 m3/s, 100 km,
0 m3/s, 5000 m3/s}, which yields a total cost of 5076 million ¥. Meanwhile, at the other
extreme, the solution that yields the maximum (worst) cost for the original base problem is
{2600 m3/s, 70 km, 1800 m3/s, 5000 m3/s}, with a cost of 5356 million ¥.

Before describing the optimal solutions, we note that Table 4 shows that within these
8 scenarios, there are two scenarios that are worst and best, respectively, in the sense that
alternatives incur their highest cost under the former scenario and their best cost under the
latter scenario. In particular, scenario S1 (lower streamflow, lower flood flow and lower sea
level rise) yields the best cost for each of the 30 alternatives, while S8 (higher streamflow,
higher flood flow and higher sea level rise) yields the worst. That is, no matter what the
decision is, it always incurs its lowest cost under the best scenario and its highest cost
under the worst scenario.
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Table 4. Summary of the best and worst decisions and total cost under each scenario (x1 = threshold triggering engineered
avulsion decisions; x2 = location of engineered avulsion; x3 = floodway; x4 = river flow triggering the use of floodway).

Decision Variable Unit
S1 S2 S3 S4

Best Worst Best Worst Best Worst Best Worst

x1 m3/s 3000 2800 3000 3400 2600 3400 2600 3400
x2 km 100 70 100 70 70 100 70 100
x3 m3/s 0 1800 0 1800 0 0 0 0
x4 m3/s 5000 5000 5000 5000 5000 5000 5000 5000

Total cost million ¥ 5138 5483 5210 5626 5404 6000 5733 6326

Decision Variable Unit
S5 S6 S7 S8

Best Worst Best Worst Best Worst Best Worst

x1 m3/s 3200 2800 3000 3400 2600 3400 2600 3400
x2 km 100 70 100 70 70 100 70 100
x3 m3/s 1800 1800 0 0 0 0 1800 0
x4 m3/s 5000 5000 5000 5000 5000 5000 5000 5000

Total cost million ¥ 5615 6014 5734 6114 5925 6471 6239 6805

The optimal solutions found under different scenarios differ, which [52] states is
a necessary condition for uncertainties to matter when making decisions, in this case
concerning flood control in the Yellow River delta. Depending on the scenario, the optimal
value of x1 varies from 2600 m3/s (S8) to 3200 m3/s (S5); the best x2 varies from 70 km
(S1, S2, S5 and S6) to 100 km (S3, S4, S7 and S8); and the optimal x3 varies from 0 m3/s
(S1, S2, S3, S4, S6 and S7) to 1800 m3/s (S5 and S8). Furthermore, there can be significant
regret. For instance, if the optimal solution for scenario S5 {3200 m3/s, 100 km, 1800 m3/s,
5000 m3/s} is implemented in scenario S3, its performance is 417 million ¥ worse than
S3’s optimum ({2600 m3/s, 70 km, 0 m3/s, 5000 m3/s}), whose cost is 5404 million ¥. This
confirms that uncertainty matters, since significant regret under a scenario with nonzero
probability is sufficient for uncertainty to potentially change the optimal strategy [52].

Further exploring how scenarios affect the optimal decisions for engineered avulsion,
we find that a larger avulsion rule x1 and further upstream avulsion location x2 are best
for smaller annual flow scenarios (S1, S2, S5 and S6). That is because low streamflows will
lead to a low bed aggradation rate. If we fix the avulsion rule decision x1, this will lead to
fewer engineered avulsions over a given planning horizon, which will reduce construction
expenditures. Therefore, more expenditures on avulsions are cost-justified under smaller
annual flow scenarios, so the model chooses an increased avulsion trigger x1 (resulting in
more frequent avulsions) and moves the avulsion location x2 away from the river mouth.

In terms of floodway decisions, only S5 (lower streamflow, higher flood flow, and
lower sea level rise) and S8 (higher streamflow, higher flood flow, and higher sea level rise)
result in construction and operation of the floodway. For S5, due to low streamflow and sea
level, the river has a low bed aggradation rate which would reduce the frequency (and thus
cost) of engineered avulsions. Thus, we could operate the floodway to deal with high flood
flows and not bother with frequent avulsions. On the other hand, S8 is the worst scenario
among the eight considered. In terms of engineered avulsion construction, a lower channel
capacity is tolerated in order to reduce the frequency of building expensive avulsions
under this and other larger annual flow scenarios. However, in terms of floodways, the
model indicates that the largest floodways are justified to prevent the worst outcome from
happening.

3.2. Results: Alternative Indices of Robustness (Principle 2)

This subsection addresses Principle 2: when making decisions under deep uncertainty,
an important index is the resulting robustness of system performance to changes in the
future. Figure 2 gives an example of this concept. In the figure, we plot three alternatives
and their performance under all the scenarios using a spider plot. On the axis that is
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labelled “average”, we calculate the average performance of each alternative under all 8
scenarios.
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Figure 2. Cost by scenario of three example alternatives out of 250 alternatives total (Key: Each line
corresponds to one of the 3 alternatives with various values of x1 (m3/s flow threshold for triggering
avulsion)/x2 (km location of diversion)/x3 (floodway size m3/s), as indicated in the legend. Each
axis shows the alternative’s cost rank within a Table 2 scenario, in terms of its position relative to the
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most expensive. The exception is the average axis, which shows the average of those percentages
across scenarios for each scenario).

To explain the spider diagram Figure 2, consider the blue line. It corresponds to
the cost performance of a strategy of {2600 m3/s (flow threshold that triggers decision
to invest in an avulsion), 100 km (location of diversion), 0 m3/s (floodway size)}. The
axes in the spider plot represent percent of the maximum cost within a scenario among
all 3 alternatives that a particular alternative incurs in that scenario, with one axis for
each of the eight-year 2070 climate scenarios of average flow/flood flow/sea level rise
(Table 2). For instance, Scenario 2 is “no change in flows, and 0.5 m rise in sea level.” The
blue alternative 2600/100/0 has a cost level under Scenario 2 that is ranked 43% relative to
the difference between the least cost alternative (3200/100/0) and highest cost alternative
(2800/100/1800), so its cost is relatively low but not the best in that scenario. Thus, the
blue alternative 2600/100/0 is best (least cost) in just one individual scenario (Scenario
3), but has relatively low costs in all eight scenarios, so its average cost is the lowest of all
three alternatives (indicated by 0% cost on the “average” axis). Please note that the three
alternatives shown in Figure 2 represent just three out of the 250 alternatives. The purpose
in portraying just those three in the figure is to illustrate how the ranks of alternatives
can switch around depending on which scenario is considered, and that an overall good
performing alternative on the “average” axis might be best on very few or none of the
individual scenarios.

If we use average performance as our robustness metric, then the blue alternative
({2600 m3/s, 100 km, 0 m3/s, 5000 m3/s}) is the most robust among those three alternatives.
However, if we care more about the worst scenario (scenario 8), then the red alternative
({2800 m3/s, 100 km, 1800 m3/s, 5000 m3/s}) should instead be chosen when considering
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just those three alternatives. This shows how and why different alternatives can be favored
by different metrics. In this section, we will systematically compare the rankings of all
250 decision alternatives using the three robustness metrics outlined in Section 2.3.

If we use minimax cost as our robustness metric (M1), as stated before, this most risk
averse metric will focus on worst case. Our Yellow River flooding problem has a single
scenario (S8) that is worst for all decisions. Therefore, this metric suggests the decision
{x1 = 2600 m3/s, x2 = 70 km, x3 = 1800 m3/s} because it performs better (has a lower cost)
than the other 249 alternatives under the worst scenario S8 (Note that this alternative is not
shown in Figure 2, which only shows three example alternatives). This is a conservative
avulsion decision that results in the smallest avulsion trigger x1 (and thus less frequent
avulsions) and an avulsion location x2 closer to the river mouth, but the largest floodway
size x3. The minmax formulation acts to give up potentially good, expected performance
(since, as indicated below, this alternative does not minimize expected cost) in order to
prepare for the worst realization of the future.

If we use minmax regret as our metric (M2), the best alternative is instead {x1 =
2600 m3/s, x2 = 70 km, x3 = 0 m3/s}. This metric calculates the regrets between the
chosen alternative and the best alternative under each scenario and aims to minimize
the largest regret among all the scenarios. The difference compared to the M1 solution is
that no floodway is built in the M2 case. This is because the amount of potential regret is
largest not in scenario S8, but in some of the other higher streamflow scenarios (S3, S4, as
well as S7) due to larger cost differences between best and worst decisions under those
scenarios (Table 4). Therefore, the minmax regret metric (M2) will tend to prefer the optimal
solution we get under these scenarios, which Table 4 shows is {2600 m3/s, 70 km, 0 m3/s,
5000 m3/s}. Under higher streamflow scenarios, regrets tend to be larger because flood
damages are higher in those cases, and thus there are differences among the alternatives.
That is why this metric will wind up, in effect, focusing on these scenarios.

Finally, if we use minimal expected cost as our metric (M3), it assumes an equal weight
(probability) for each scenario. This regret measure assumes risk neutrality, unlike M1 and
M2 which focus on worst cases. One alternative {x1 = 2600 m3/s, x2 = 70 km, x3 = 0 m3/s}
is the best decision under 3 out of 8 scenarios while not performing very badly on others,
and so turns out best by this metric. This alternative is also the optimum under metric
M2. M1’s solution is best under the worst-case scenario S8; in just that scenario, the cost of
the floodway is justified by the reduction in flooding costs. However, in most of the other
scenarios, the floodway’s benefits are exceeded by its cost. As a result, M2 and M3 find
that not building the floodway is best.

To see whether the overall rankings of all alternatives using different metrics agree
with each other, we plot a comparison of the performance of the alternatives with respect
to each pair of metrics (3 plots) in Figure 3. In each plot, the x and y-axes each represent
the objective function value of one of the two metrics in each pair. If the rankings for each
metric coincide with each other, we should expect that the points line up in a series from
the lower left (best in both metrics) to the upper right (worst in both metrics). No points
would be located northwest or southeast of another point (indicating that an alternative has
a lower robustness on one metric and higher robustness on the other). However, Figure 3
shows there are such points. For example, the red dot in the M1–M3 plot is located above
and to the left of the green dot, indicating the red dot has a lower expected cost (M3) but a
higher maximum cost across scenarios (M1) compared with the green dot. Thus, different
robustness metrics produce conflicting solution rankings, and the definition of robustness
does matter in the decision-making process.

In particular, among these 20 first-stage alternatives (floodway size x3 equals 900 m3/s
being excluded), there are (

20
2

)
= 190
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pairs of alternatives. Of those pairs, 53 of them do not agree for M1 and M3 (i.e., one
alternative of a pair is better for one metric but is worse for the other), while 45 pairs fail to
agree for M2 and M3, and 50 disagree for M1 and M2.
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is one alternative.

In summary, this section’s robustness analysis has measured and compared the relative
performances of the thirty open-loop (non-adaptive) alternatives by three robustness met-
rics. We find that different metrics produce conflicting solution rankings, which indicates
that the definition of robustness does matter in the decision-making process. However,
modelers should not make the choice of the robustness measures purely based on model
performance, and it is also important to consider possibly conflicting risk attitudes among
the stakeholders. Presenting results under different robustness measures would help deci-
sion makers to make a more informed choice, especially since their risk preferences might
be difficult to measure explicitly [68].

3.3. Results: Adaptive Strategies (Principle 3)

In this problem, two out of four decision variables (avulsion rule x1 and floodway size
x3) are modeled as adaptive (i.e., in year 10 they can be changed from their initial (Year 0)
values), and there is a total of 250 alternatives representing different combinations of Year
0 and Year 10 decisions, as discussed in Section 2.4. This section presents a comparison of
open-loop (Section 2.3) against adaptive decision-making, with the discussion being di-
vided into four parts. First, the optimal choice of the two adaptive variables is summarized
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separately, which gives insight on the benefits of adaptive strategies and how they work.
The focus of that discussion is on the benefits of modifying the system as conditions change
under certainty (i.e., if it is known which scenario is occurring). Then, in the second part,
we examine the additional benefits of adaptation under uncertainty, when it is not known
in year 0 which scenario will occur. In such a case, because of learning, there may be a
significant benefit to delay decisions on floodway size. This benefit is related to the idea of
“option value” from real options theory [69]. Third, we explore whether changing the cost
parameters will alter the adaptive strategies—especially first stage decisions which is what
decision makers must commit to today—and the resulting benefits of adaptation. Fourth
and finally, we consider whether the benefits of implementing Principle 3 (adaptation) are
primarily due to being able to modify plans under changing but predicted conditions or
learning under uncertainty.

3.3.1. Second Stage (Adaptation) Choices concerning Floodway Size and Avulsion Rule,
Given the First Stage Choices and Scenario

Here we provide some insight on the subset of benefits of adaptation that are realized,
even if there is no uncertainty as to which scenario will occur. These arise from changing
conditions over the planning time horizon, such that there are different levels of benefits
from floodways and avulsions in later years than in earlier years as mean annual flow,
mean flood, and sea levels gradually change. There are additional benefits of adaptation
that arise if there is uncertainty; in particular, if it is not known in the first stage (year 0)
which scenario will occur, then if the planner is better informed in the second stage (year
10), then the initial plan can be modified. These additional benefits are discussed in the
next subsection.

First, we discuss the interaction of decisions x3 concerning floodway size in the first
and second stages. If the first stage decision x3 = 0 m3/s (do not build the floodway right
away), we preserve the option of whether or not to build the floodway later. Since the
floodway size of 900 m3/s will not be discussed in this subsection (as it is dominated by 0 or
1800 m3/s, as discussed above), we consider only 3 rather than 5 combinations of floodway
size choices for the two stages: (0,0), (0,1800), (1800,1800). Figure 4 summarizes the optimal
choice of floodway size combinations ((0,0): dark blue; (0,1800): green; (1800,1800): yellow)
given the scenario that is realized in stage 2 at year 10 (we assume that we learn for certain
what happens at that time, Section 2.4) and first stage avulsion decisions. As summarized
in Table 3, there are 25 choices of avulsion rule x1 decisions (five possible values of the
first stage rule x1,1 times five possible values of the second stage rule x1,2), and 2 choices
of avulsion location x2 decisions (fixed throughout the first and second stage), which
yields 50 avulsion decisions in total, which are shown in the x-axis of Figure 4. The first
25 alternatives from the left in the figure have 70 km as their avulsion location, while the
last 25 have 100 km. Within these 25 choices, the first 5 have 2600 m3/s as their first stage
avulsion rule, while the second stage avulsion rule decisions are 2600 to 3400, respectively
(as indicated in the enlargement of the x axis on the left). With the same logic, the second
5 choices have 2800 m3/s as their first stage avulsion rule, while 3000 m3/s is the first stage
rule for the third 5 choices, etc. The y-axis indicates the eight scenarios, defined in Table 2.

To help with the interpretation of Figure 4, consider the second column in the figure,
which, as the enlargement shows, corresponds to an initial avulsion rule x1,1 = 2600 m3/s,
which is then changed in the second stage to x1,2 = 2800 m3/s, and a location x2 of the
floodway 70 km upstream. The eight cells in that column indicate what combination of first
and second stage floodway (x3,1 and x3,2) decisions concerning are optimal, given which of
the eight scenarios the decision makers learn in Stage 2 is occurring. All eight cells indicate
that no floodway is installed in stage 1 in any scenario, but that whether a floodway is
built in stage 2 (after 10 years) depends on which scenario occurs then. The top cell, for
instance, shows that if scenario 8 occurs, a floodway is optimal, but the third cell from the
top, corresponding to scenario 6, reveals that no floodway is best in that situation.
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An examination of the figure indicates that only a small number of combinations of
scenarios and avulsion decisions would result in a floodway being optimal in both the first
and second stage (yellow). These are the cases with highest avulsion trigger (3400 m3/s),
or with both a higher streamflow (S3, S4, S7, S8) and further upstream location (100 km).
Higher streamflows result in higher riverbed elevations, so in that case floodway is a good
means of reducing flood risk. The cases choosing not to have any floodway throughout the
entire 50 years (dark blue) are always the scenarios with lower streamflows (S1, S2, S5, S6).
In these cases, we will expect that lower bed elevations will occur, so floodways are not
so useful. For the remaining cases (green, mostly in the higher streamflow scenarios), we
benefit from delaying a commitment on building a floodway until after 10 years because
its benefits are less than the costs of having built the floodway in the early years before the
annual flows have changed.

Turning to adaptation possibilities arising from our ability to change the avulsion
rule x1, there are 52 = 25 choices available considering possible combinations for the first
and second stage choices. The optimal choice of second stage avulsion rule depends on
the scenario, as well as the first stage avulsion and floodway decisions. Table 5 portrays
the impact of scenario on the choice of second stage avulsion rule as well as floodway
implementation for one particular first stage decision. In this example, we assume no
floodway in the first stage (x3 = 0), x2 = 70 km for the avulsion location and x1 = 2600 m3/s
for the first stage avulsion rule. This first stage decision is considered most robust under
robustness criteria M2 and M3, as discussed in Section 3.2. The table can be interpreted as
follows. For example, in S1, we choose 2800 m3/s and no floodway as our second stage
decision, which yields a total cost of 5195 million ¥. The averaged minimum cost over
8 scenarios is 5665 million ¥. This is the expected cost of this particular first stage decision,
given optimal choices in the second stage.
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Table 5. Summary of optimal second stage decision for each scenario, given first stage decision of
{x1 = 2600 m3/s, x2 = 70 km, x3 =0 m3/s, x4 = 5000 m3/s}.

Scenario
Optimal Second Stage Decision and Total Cost

Avulsion Rule x1 (m3/s) Floodway Capacity x3 (m3/s) Cost (million ¥)

S1 2800 0 5195
S2 3200 0 5369
S3 2800 1800 5368
S4 2600 1800 5712
S5 2800 0 5733
S6 3200 0 5902
S7 3000 1800 5856
S8 2600 1800 6190

We now discuss the reasons for some of the scenario-specific choices in that table.
First, considering second stage floodway construction, no floodway is constructed under
the scenarios with lower streamflow (S1, S2, S5 and S6), due to lower bed aggradation and
therefore lower flooding than in the other scenarios. Meanwhile, regarding the avulsion
rule, S4 and S8 have higher streamflow and sea level rise, which results in higher bed
aggradation rates, so less frequent avulsions (resulting from a small avulsion trigger) turn
out to be optimal in order to lower the avulsion construction cost over the planning horizon.
S2 and S6 have lower streamflow and higher sea level rise. In these cases, the effect of sea
level rise is two-fold. It could increase the bed aggradation rate, but that impact is much
less than the aggradation effect of higher streamflows. It could also increase flood damage,
which would justify more frequent avulsions (due to a larger avulsion trigger rule) and
associated construction costs. For all the other scenarios, an avulsion trigger in the middle
is preferred.

These results demonstrate that second stage adaptation decision can depend strongly
on what happens between the first and second stages, and that by allowing adaptation,
the performance of the system improves. The ability to adapt depends on the first stage
decision, and in the next subsection we analyze how consideration of adaptability can
improve the choices that are made in the first stage.

3.3.2. Optimal First Stage Strategy Given Adaptability and Resulting Cost Improvement

Here, we examine the effect upon the optimal first stage choice of combining uncer-
tainty regarding which scenario will occur, with the flexibility to choose a different avulsion
rule in stage 2 as well as to build a floodway if not already constructed in stage 1, and
the resulting expected cost. The key distinction between this subsection’s analyses and
the previous subsection is that now year 0 commitments must be made without knowing
which of the 8 scenarios will occur, but by year 10 the planner will have learned which
scenario the system will follow.

Table 6 summarizes the improvement due to the availability of options to adapt in
the second stage once it is learned which scenario will occur for each of the 5× 2× 2 = 20
combinations of first stage decisions. For instance, the first row in that table corresponds
to the first stage decision considered in Table 5 (2600 m3/s first stage avulsion rule 70 km
avulsion location, no floodway). The fourth column entry for that row shows that if those
decisions are maintained throughout the second stage (as in the open-loop analysis of
Section 3.2), the resulting expected cost is 5704 million ¥. However, based on the informa-
tion in Table 5, if the optimal adaptation (avulsion rule x1 and floodway construction x3)
is made in the second stage in each scenario, under the assumption that in stage two the
decision makers know which scenario they are in, the average cost falls to 5665 million ¥, as
indicated in the fifth column entry of that row previously. That cost difference (−39 million
¥) is the value of adaptation.
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Table 6. Summary of expected cost (across scenarios) of open- and closed-loop decisions for each of the first stage decisions
(Bold italicized red text indicates the optimal solution).

First Stage Decisions Expected Costs (Million ¥) under Alternative Strategies, and Decrease in Cost Relative to
Open Loop Strategy

x1 x2 x3 Closed Loop

Adaptive:
Optimal

Avulsion +
Floodway

∆

Adaptive:
Optimal
Avulsion

Only

∆

Adaptive:
Optimal

Floodway
Only

∆

2600 70 0 5704 5665 −39 5684 −20 5687 −17
2600 70 1800 5792 5761 −31 5761 −31 5792 0
2800 70 0 5799 5691 −108 5713 −86 5770 −29
2800 70 1800 5870 5775 −95 5775 −95 5870 0
3000 70 0 5851 5803 −49 5833 −18 5815 −36
3000 70 1800 5918 5898 −19 5898 −20 5918 0
3200 70 0 5810 5709 −101 5720 −90 5781 −29
3200 70 1800 5821 5771 −50 5771 −50 5821 0
3400 70 0 5987 5741 −245 5770 −217 5875 −112
3400 70 1800 5935 5795 −140 5795 −140 5935 0
2600 100 0 5834 5766 −68 5798 −36 5815 −19
2600 100 1800 5895 5831 −65 5831 −64 5895 0
2800 100 0 5809 5773 −36 5799 −10 5782 −27
2800 100 1800 5840 5832 −8 5832 −8 5840 0
3000 100 0 5775 5709 −66 5731 −44 5736 −39
3000 100 1800 5795 5756 −39 5756 −39 5795 0
3200 100 0 5877 5720 −156 5751 −126 5840 −37
3200 100 1800 5847 5738 −109 5738 −109 5847 0
3400 100 0 5970 5732 −238 5770 −200 5849 −121
3400 100 1800 5890 5736 −154 5736 −154 5890 0

Table 6 also shows in the last columns the expected costs if instead there is only one
adaptation variable (either avulsion rule or floodway construction in stage 2); restricting
the options in general will increase expected costs. In the case of the first row of Table 6, for
example, the resulting costs are 5684 million ¥ (cost change of −20 million ¥ relative to the
open loop strategy) and 5687 million ¥ (a change of −17 million ¥), respectively. The fact
that both adaptation alternatives improve expected cost shows that both have value, so it
should not be surprising that having both available improves cost even more (−39 million
¥, as just noted).

Between the two adaptation decision variables x1 and x3, being able to change the
avulsion rule appears more valuable. In particular, an average −78 million ¥ cost decrease
can be realized if just the avulsion rule can be changed, while a −23 million ¥ drop in cost
occurs if the floodway can be built later without changing the avulsion rule.

Our final observation is that first stage decisions with no floodway (x3 = 0, odd
numbered rows) see higher improvements than when a floodway is built in the first stage
(x3 = 1800, even numbered rows). Additionally, when the first stage decisions involve a
higher avulsion rule x1, adaptation results in a greater improvement. For example, in the
first row, which has {x1 = 2600 m3/s, x2 = 70 km, x3 = 0 m3/s} as the first stage decisions,
adaptation yields a cost decrease of −39 million ¥. In contrast, the ninth row, which has
{3400 m3/s, 70 km, 0 m3/s} as those first stage decisions, experiences a much greater cost
decrease of −245 million ¥.

This trend indicates that a high avulsion trigger in stage one may be suboptimal, with
a later correction to a lower level yielding large savings. This is evident when we calculate
the optimal strategy when the scenario is unknown at the first stage; this strategy is the
combination of a single first stage decision followed by the eight optimal second stage
decisions, one per scenario that yields the lowest first plus probability-weighted second
stage total cost. For any of the three adaptation cases in Table 6, this optimum involves a low
first stage trigger {x1 = 2600 m3/s, x2 = 70 km, x3 = 0 m3/s}, with the recourse decisions
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in stage two shown in Table 5, assuming that both avulsion and floodway decisions can
be adaptive.

This first stage decision also happens to coincide with the most robust open-loop
decision under two of the three robustness metrics M2 and M3 (Section 3.2). This implies
that considering adaptation (closed-loop modification of x1 and x3 in stage two) would
not change the first stage decision under these assumptions, even though having the
option to change x1 and x3 after learning which scenario applies lowers expected costs.
However, under other assumptions, adaptation can change the first stage commitment, as
we show next.

3.3.3. Sensitivity of Adaptation Benefits to Cost Assumptions

In Table 6, we notice that the optimal solution favors less frequent avulsions (lower
channel capacity triggers) and no floodway in the first stage, which means the cost of more
frequent avulsions and the floodway exceed any additional decrease in expected flood
damage that would be avoided if they were implemented. It is reasonable to ask whether
those additional expenditures would be justified if we lower construction/operations
cost or raise unit area flood damage. Table 7 summarizes improvements due to consid-
ering adaptation for all the combinations of first stage decisions under three other cost
assumptions: higher flood damages, and lower avulsion or floodway engineering costs.

Table 7. Sensitivity to cost assumptions of the expected benefit of allowing adaptive decisions (changes in x1 and/or x3 in
second stage) for each of the first stage decisions (Bold red italics indicates optimal solution).

First Stage Decisions Increase Flood Damage Cost
by 20%

Decrease Avulsion
Construction Cost by 20%

Decrease Floodway
Engineering Cost by 20%

x1 x2 x3
No

Adapt. Adaptive ∆
No

Adapt. Adaptive ∆
No

Adapt. Adaptive ∆

2600 70 0 6653 6529 −124 5512 5458 −54 5704 5604 −100
2600 70 1800 6598 6545 −53 5600 5553 −47 5632 5601 −31
2800 70 0 6739 6533 −206 5580 5464 −116 5799 5623 −177
2800 70 1800 6664 6550 −114 5650 5554 −96 5710 5615 −95
3000 70 0 6783 6660 −123 5613 5565 −48 5851 5742 −110
3000 70 1800 6702 6670 −33 5679 5650 −29 5757 5738 −19
3200 70 0 6705 6541 −163 5543 5473 −70 5810 5635 −174
3200 70 1800 6558 6525 −33 5554 5530 −24 5661 5611 −50
3400 70 0 6854 6553 −302 5657 5477 −180 5987 5678 −309
3400 70 1800 6632 6515 −117 5605 5515 −90 5775 5635 −140
2600 100 0 6776 6580 −196 5609 5513 −96 5834 5679 −155
2600 100 1800 6689 6592 −97 5670 5586 −85 5735 5671 −65
2800 100 0 6728 6590 −139 5566 5520 −46 5809 5687 −122
2800 100 1800 6606 6593 −13 5598 5587 −11 5680 5672 −8
3000 100 0 6673 6515 −157 5518 5458 −60 5775 5624 −151
3000 100 1800 6537 6501 −36 5538 5507 −31 5635 5596 −39
3200 100 0 6747 6496 −251 5572 5443 −129 5877 5629 −248
3200 100 1800 6552 6458 −94 5542 5469 −73 5687 5577 −109
3400 100 0 6828 6495 −333 5634 5439 −194 5970 5641 −329
3400 100 1800 6571 6438 −133 5553 5451 −102 5730 5576 −154

In terms of robust (“closed loop”) decisions with no adaptation, the most robust
decision (under the expected cost criterion M3) stays the same as under the baseline cost
assumptions {x1 = 2600 m3/s, x2 = 70 km, x3 = 0 m3/s} only under decreasing avulsion
cost. However, as would be expected, that assumption yields a smaller total cost due to
the shrinking avulsion cost (5512 in the middle of the first row of Table 7, compared with
5704 in Table 6). For the other two sensitivity cases (increased flood damage or decreased
floodway cost), more costly strategies are preferred. The increased flood damage case
favors {3000 m3/s, 100 km, 1800 m3/s}, which has higher engineering costs in terms of both
avulsion construction and floodway operation), while the decreased floodway cost case
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favors {2600 m3/s, 70 km, 1800 m3/s} (increasing engineering cost only for the floodway).
It can be concluded that the flood damage assumption matters the most in determining the
avulsion rule since only in the case of altering that assumption is the decision regarding
the rule changed compared with the original cost case.

However, comparing the optimal adaptive and non-adaptive optimal strategies (both
marked as red) under each set of assumptions in Table 7, the first stage decision for the
adaptive strategy always prefers a larger avulsion rule (3400 vs. 3000 for increased damage
assumptions, 3400 vs. 2600 for decreased avulsion costs, and 3400 vs. 2600 for decreased
floodway cost case). That is to say, the ability to adapt makes higher target channel
capacities optimal, which implies more frequent engineered avulsions.

This sensitivity analysis shows that considering second stage adaptation options can
affect optimal choices in the first stage. This also results in improvements in expected per-
formance; for instance, by choosing {3000 m3/s, 100 km, 1800 m3/s} rather than {2600 m3/s,
70 km, 0 m3/s} as the first stage decision in the adaptation case under lower flood damages,
expected costs are 6438 rather than 6529. However, it is not clear whether the value of
this flexibility lies mainly in the ability to change course when something unexpected
happens, or whether most of the value of flexibility arises from being able to adapt to
predictable changes in environmental conditions. We next consider the role of uncertainty
in determining the value of adaptability.

3.3.4. Is the Value of Adaptability Due to Uncertainty or Just Flexibility to Adjust
under Certainty?

The ability to change the avulsion rule in stage two, as well as to build a floodway if
one was not built before, arises from two features of the decision problem:

(1) We assume that the decision makers learn which scenario occurs in stage two, so it
can be valuable to adapt the system to lower costs once learning takes place.

(2) Because of changes in the system over time due to channel aggradation, delta growth,
and possibly climate change, the best avulsion rule might change, and a floodway
that is not optimal at first might become optimal later.

The first feature is relevant only if we consider uncertainty in the form of multiple
scenarios. The second feature is relevant in both deterministic and stochastic analyses.

We now consider which of the two features is the major source of the value of adap-
tation. We do this by first determining the best adaptation strategy under certainty by
creating a table like Table 4 for each possible closed loop (non-adaptive) decision, and
then determine for each of the eight scenarios which combination of first and second stage
decisions are best, as shown in Table 8. Allowing adaptation under certainty yields an
average improvement of 47 million ¥, comparing the average cost of the optimal strategy
if there are no second stage adjustments (5625 million ¥ average cost for no adaption,
from Table 4) to the average cost of the optimal strategy if stage two adjustments are
possible, where the average is over scenarios. For instance, under scenario S1, Table 4
shows that the best decision is {3000 m3/s, 100 km, 0 m3/s}, and its cost if this decision
cannot be changed in stage 2 is 5138 million ¥. However, Table 8 shows that under this
scenario that a lower cost results if the second stage can be changed, and the resulting deci-
sions are {x1,1 = 2600 m3/s, x1,2 = 3400 m3/s, x2 = 100 km, x3,1 = 0 m3/s, x3,2 = 1800 m3/s,
x4 = 5000 m3/s}, incurring an expected cost of 5114 million ¥, an improvement of 24 million
¥. This average (over all scenarios) cost improvement of 47 million ¥ is due to being able
to make a different second stage decision if the future is known. We call this the value of
flexibility under perfect information.

Now, we attempt to calculate the cost improvement arising from allowing adaptation
in the face of uncertainty. If we have no information about the future scenario in either
stage one or two, we have an open-loop situation in which we are to choose both stages’
decisions from a total of 250 combinations of first and second stage variables, as shown in
Table 3. We simulate the performance of all of them under each scenario and calculate the
average performance of each across 8 scenarios (Table 2), and discover that the decisions
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that yield the best averaged performance are {x1 = 2600 m3/s (1st stage), 2600 m3/s (2nd
stage), x2 = 70 km, x3 = 0 m3/s (1st stage), 0 m3/s (2nd stage)}, with a cost of 5704 million
¥. This decision coincides with the best robust decision under M2 and M3 (Section 3.3),
since the first and second stage decisions are the same, which means the value of flexibility
under no information about the future scenario is precisely zero. On the other hand, if we
know exactly which scenario will occur ahead of time before choosing those variables, we
can tailor the choices to the scenarios and lower expected costs by 126 million ¥. We call
this the expected value of perfect information when allowing adaptation.

Table 8. Summary of the best combination of first and second stage decisions under each scenario (deterministic analysis).

Decision Variable Unit S1 S2 S3 S4 S5 S6 S7 S8 Average

x1,Stage 1 m3/s 2600 3000 2600 3200 3400 3000 2600 3200
x1,Stage 2 m3/s 3400 2800 2800 2600 3400 2800 3000 2600

x2 km 100 100 70 70 100 100 70 70
x3,Stage 1 m3/s 0 0 0 0 0 0 0 0
x3,Stage 2 m3/s 1800 0 1800 1800 1800 0 1800 1800

x4 m3/s 5000 5000 5000 5000 5000 5000 5000 5000
Total cost M¥ 5114 5207 5368 5642 5585 5732 5856 6119 5578

Improvement compared
to no adaptation (Table 4) M¥ 24 3 36 91 30 2 69 120 47

An intermediate case of information is when the scenario is learned in the second stage
but is not known when a commitment is made in stage one, which is the expected value of
partial information when allowing adaptation. This means that when we make the first
stage decision at the beginning, we know nothing. However, when we make the second
stage decision, the climate information (scenario) is regarded as common knowledge, and
so the second stage decision can be tailored to the scenario. Average performance in this
case is 38 million ¥ better than the no information case.

Table 9 summarizes the discussion of values of flexibility and information introduced
above.

Table 9. Summary of value of information and value of flexibility (in million ¥).

Solution and Cost Non-Adaptive Adaptive Value of Flexibility:

1. Perfect information 5625 5578 47
2. Partial information - 5666

3. No information 5704 5704 0

Value of perfect
information: 79 126

As discussed in Section 2.1, the objective value contains two parts: engineering cost
and flood damage. We now want to find out how the availability of information can
affect each part of the objective. The result is summarized in Table 10. Its first row
shows that the average cost across all the scenarios of the best solution by scenario in
Table 8 is 5578 million ¥ and represents how well, in theory, we could do with both perfect
information and adaptation. Meanwhile, the information for Row 2, which is the best
expected cost adaptation strategy, can be drawn from Table 6, and its cost is 5666 million
¥, as we previously reported. Finally, the best decision in Row 3 coincides with the
most robust open-loop (no adaptation) alternative from metric M2 and M3, which would
yield a total cost of 5704 million ¥, as discussed above. Comparing these three rows, we
conclude that the more information that is available on the future climate (in terms of
reduced uncertainty prior to making irreversible commitments), the more is spent on flood
mitigation construction. For example, Row 3 is the case where we have least information,
and it yields the lowest engineering cost and highest flood damage. By contrast, Row 1,
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where there is the most information, spends 50% more in engineering costs, in expectation,
which is more than made up by the decrease in expected flooding costs.

Table 10. Comparisons of robust, adaptive decision vs. decisions under perfect information (in
million ¥).

Best 1st Stage Decision E[Engineering
Cost]

E[Flood
Damage]

E[Total
Cost]

1. Perfect
information

2600/70/No Floodway
(most frequent) 1464 4114 5578

2. Partial
information 2600/70/No Floodway 960 4706 5666

3. No information 2600/70/No Floodway 907 4797 5704

4. Conclusions

This paper studies decision-making under uncertainty for flood control in the lower
Yellow River. We summarize and compare the impact on flood and river sediment man-
agement decisions of implementing three recognized principles for good decision-making
under uncertainty: (1) uncertainty can be usefully defined using multiple scenarios; (2)
the performance of alternatives should be at least in part measured by the robustness of
system performance and decisions to errors, randomness, or change in the future; and
(3) adaptive strategies are preferable to static (“open-loop”) decisions. The impacts of
applying these principles are compared in the context of flood management in the lower
Yellow River, which is a situation in which climate change and its effects on streamflows
and sea-level rise are uncertain and highly relevant to decisions. Decisions that need to be
made concern conditions under which an engineered avulsion (new channel to the sea) is
built, its location, and the capacity of a temporary floodway.

Climate-related uncertainty is defined using 8 scenarios concerning average annual
flows, average flood flows, and sea level rise (Principle 1). It turns out that the optimal
decision found under different scenarios differ a great deal, which makes a robustness
analysis desirable (Principle 2). Next, the performance of alternatives is measured by three
alternative robustness metrics. We find that different metrics produce conflicting solution
rankings, which demonstrates that the definition of robustness can matter in decision-
making. Finally, we generalize the decision problem to consider adaptation (Principle 3)
in a second decision stage (year 10, at which time we assume that the decision makers
know which climate scenario is realized). There are two variables that can be adjusted: a
target channel capacity (or “avulsion rule”), which if actual capacity falls below then an
engineered avulsion is constructed, and floodway size. The optimal second stage levels of
these variables depend on both the uncertainty realization and first stage decision. The
results suggest that the flexibility provided by the second stage lowers expected costs
significantly, and under some cost assumptions can yield significantly different—and better
performing—first stage decisions.

An additional contribution of this paper has been to show that the ability to take
aggressive reversible actions in the near future, with the option to partially back them
off later, can be a beneficial strategy under uncertainty. In contrast, optimal strategies
under uncertainty are more typically assumed to involve either diversification of near-term
investments or delay of decisions until more information is received. This result highlights
the value of flexible alternatives that can implemented and reversed.
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