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Abstract: Climate change is rapidly modifying historic river flows and snowpack conditions in the
Sierra Nevada in California and other seasonally snow-covered mountains. Statistical forecasting
methods based on regressing summer flow against spring snow water equivalent, precipitation,
and antecedent runoff are thus becoming increasingly inadequate for water-resources decision
making, which can lead to missed opportunities in maximizing beneficial uses, including the value of
hydropower resources. An enhanced forecasting method using a process-based model and spatially
distributed wireless sensor data offers more accurate runoff forecasts. In this paper, we assessed the
forecasting accuracy of these two forecasting methods by applying them to two tributaries within the
North Fork Feather River basin in California. The result shows the enhanced forecasting method
having better accuracy than the statistical model. In addition, a hydropower simulation showed a
considerable increase in energy value with the enhanced forecasting informing reservoir operations.
The investment analysis on applying this method shows an average internal rate of return of 31%
across all scenarios, making this forecasting method an attractive way to better inform water-related
decisions for hydropower generation in the context of climate change.

Keywords: climate change; hydrology forecast; hydropower

1. Introduction

Renewable electricity is critical to mitigating the impacts of climate change [1]. In 2018,
California committed to sourcing 100% of retail electricity sales to end users from eligible
renewable energy resources by 2045 [2]. With such rapid growth of renewable energy,
there are concerns over how to effectively integrate large amounts of intermittent power
generation into the electrical grid. These variable sources include renewables such as wind
or solar power, which follow daily and seasonal patterns [3] that are not necessarily aligned
with energy demand. Hydropower is also of increasing importance as renewables replace
fossil-fuel-based electricity generation and thus change the timing of both electricity supply
and price fluctuations. Some hydropower resources that have enough directly available
and usable water storage can serve as a dispatchable technology, which can be used to
accommodate the intermittency and help maintain grid frequency and voltage. Therefore,
optimizing the operation of hydroelectric power plants and generating electricity at the
necessary times can help to reach renewable energy production goals synergistically with
other renewable energy sources.

Currently, most operations of California’s mountain hydropower and water-supply
reservoirs use statistical forecasts based on historical snowpack and runoff data. These
statistical forecasts also inform water-allocation decisions by California’s Department of
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Water Resources (DWR) and other water agencies. A notable example is DWR’s Bulletin 120,
which from February to June provides seasonal forecasts of streamflow based on multiple
regression of historical data [4]. However, climate warming is modifying historical river
flow and snowpack patterns, thereby impacting the accuracy of the statistical methods.
Therefore, it is increasingly important to supplement the widely used statistical forecasts
with emerging, timely, accurate data and information on near-real-time hydrologic fluxes
(rain, snowfall, snowmelt) and stores (snowpack, subsurface moisture).

Improvements in ground-based data, combined with remote sensing data, machine
learning, and data assimilation techniques for hydrologic models, can improve hydrologic
forecasting and thus contribute to adaption policies. Avanzi et al. [5] used such an approach
in the Feather River basin in the northern Sierra Nevada to recalibrate the precipitation
runoff modeling system (PRMS) and provide an enhanced forecasting method for more
accurate hydrologic predictions. In that work, the ground-based measurements from
spatially distributed wireless sensor networks deployed around operational measurement
sites supported improvements to temperature and precipitation data. Temperature regres-
sions derived from monthly temperature lapse rates with elevation were corrected based
on a distributed sensor network and other ground-based data, particularly improving
estimates at high-elevation, snow-dominated sites. Daily sensor network data also allowed
for expansion of sites used to correct spatial precipitation maps, improving runoff flow
volume estimates by up to 79%. These improvements were the result of a multiobjective
recalibration approach that benefited from expanded ground-based sensor networks and
state-of-the-art water-balance data products [6].

The aim of the research reported in this paper was to estimate the economic value of
using improved hydrologic data for hydropower systems in snow-dominated mountain
basins, taking the Upper North Fork Feather River Hydropower Project and associated
powerhouses, operated by Pacific Gas and Electric Company (PG&E), as a case study. We
investigated the extent of increased accuracy in an enhanced forecasting method using
improved data and the extent of the resulting improvement in the timing of hydropower
generation, compared to the traditional statistical methods. Since the enhanced forecasting
method requires investment in the establishment and maintenance of the information
infrastructure, we conducted an investment analysis under different cost and hydrologic
conditions using the internal rate of return (IRR) as an indicator, which is a discount rate
that makes the net present value of all cash flows equal to zero in a discounted cash flow
analysis [7].

2. Materials and Methods

Our approach followed three steps. First, we obtained the forecasting data of the target
tributaries (1 October to 30 September in California) using the two forecasting methods and
compared them with the historical runoff to assess their forecasting skill. Second, based
on the forecasted runoff, we simulated the hydropower system and the water releases,
with historical runoff data and hourly electricity prices as model inputs, to estimate the
energy value over time and compare the difference between the two forecasting methods.
Third, we estimated the IRR of investing in this enhanced forecasting method based on the
differences in energy value under different hydrological and cost scenarios.

2.1. Study Site and Hydropower System

We focused on the North Fork of the Feather River, an important tributary of northern
California’s Sacramento River, located at the conjunction between the Sierra Nevada and
the Cascade Range (Figure 1). A major tributary of the Feather River, the East Branch,
meets the North Fork near Belden and is less developed for water resources than is the
main stream of the North Fork [5].
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(from the United States Geological Survey) for these two rivers from 1985 to 2017, where 

Figure 1. Maps of California and the Feather River basin.

The hydropower system we studied consists of the Upper North Fork Feather River
Project and related upstream and downstream reservoirs and powerhouses operated by
PG&E, including six reservoirs and nine powerhouses in total (Figure 2). We focused on
the impacts of two specific tributaries supplying this hydropower system—the North Fork
Feather River feeding Lake Almanor, the largest reservoir of this system, and the mostly
unregulated East Branch basin, which has a large impact on the downstream reservoirs
and powerhouses.
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To select representative water years for analysis, we ranked 33 years of runoff data
(from the United States Geological Survey) for these two rivers from 1985 to 2017, where
15 years are considered average years, and selected 5 average water years among them—
2002, 2003, 2009, 2010, and 2012. These years offer the greatest potential for an increase in
energy value with improved forecast since there is flexibility to optimize water releases
during the spring. Wet years require larger and more constant releases to avoid flooding
potential, whereas, in dry years, minimal water is released during the spring in order to
maximize storage and availability later in the season. For each selected year, we focused on
the time period when runoff volume is relatively significant in California, from late spring
to September [8].

2.2. Hydrologic Forecasting Data
2.2.1. Enhanced Forecasting Method

The enhanced forecasting method involved three steps, reported elsewhere [9,10].
First, spatially distributed wireless sensor networks (WSNs) were deployed to continuously
measure temperature, relative humidity, snow depth, and soil moisture at representative
locations (three clusters of sensors, 12 sensors for each cluster following arguments in
Oroza et al. [11]). The second step was to extend data measured from wireless-sensor
networks to larger spatial scales by integrating point sensor data with remote sensing and
machine learning to create spatial maps of snow water equivalent. The third step involved
improving the hydrologic forecasting model with the information provided by the previous
two steps [5].

On the Feather River, PG&E is currently using PRMS, a physical-process-based model-
ing system with distributed parameters developed to predict the water-balance response to
climate and land use [12]. Computations of hydrologic processes are driven by historical,
current, and/or projections of climate. At a minimum, daily minimum and maximum air
temperature and precipitation are required for a PRMS simulation. Simulations operate on
a daily time step, with time periods from days to centuries [13]. The complete set of model
parameters for the Feather River were from the previous calibration using a combination
of a priori expert knowledge and fit to streamflow data [14]. Using ground-based data
from meteorological stations and wireless sensor networks, a more accurate and robust
temperature distribution method was designed for the updated PRMS model. In addition
to measured runoff and the spatially distributed snow water equivalent products, evap-
otranspiration maps based on remote sensing products [15] were used for a multistep,
multiobjective recalibration strategy. Finally, temperature, snow depth, and soil moisture
data from the wireless sensor networks were used to evaluate model performance with
respect to precipitation phase, snow accumulation, and ablation patterns, and soil water
storage. In this analysis, we used the input data for the selected water years to generate
streamflow estimates from the recalibrated model. Estimates for seasonal forecasts starting
on a given day (e.g., 1 May) were generated using an ensemble prediction method, as
explained in Koczot et al., [14]. Observed input data were used to drive the model up to
the simulation date, after which a suite of model outputs was generated with historical
data for the remainder of the water year. The median estimate was used as a predicted
flow volume [14].

2.2.2. Statistical Method

The statistical method relies on multiple regression to relate a collection of predictors
to a predictand, the seasonal streamflow volume (Figure 3) as follows:

Q = f (SWE, P, RO), (1)

where the target-period streamflow (Q) is a function of three general categories of predictor
variables: snow water equivalent (SWE), accumulated precipitation (P), and antecedent
runoff (RO). The statistical model relies on standard multiple regression to develop its
forecast equations. SWE and P are weighted indices of observations at multiple locations in
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and around the watershed. For the Feather watershed, with its heterogeneous topography,
SWE was further divided into high- and low-elevation indices and updated monthly with
the new snow surveys. Q and RO data were obtained from historical records [4]. This
statistical method is an established approach in operational water supply forecasting in the
western US and is assumed as a benchmark of current practices in this paper [16].
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2.3. Hydropower Simulation Model

We used the systems thinking, experimental learning laboratory with animation
(STELLA) software to simulate the power generation of the hydropower system. STELLA
is a visual programming language for system dynamics modeling. The environment
of the model provides several general building blocks through which specific units of
the hydropower system can be modeled. These basic building blocks are referred to
as stock, flow, converter, and connector. The integration of these building blocks can
be used to model various dynamic systems. In the model, six reservoirs, accumulated
energy, and energy value are represented by stocks, inflows and outflows are represented
by flows, and the mathematical relationships and operation rules, including the power
generation calculation for nine powerhouses and water release strategies, are represented
by connectors and converters (Figure 4).

The total power generation (E) and energy value (R) are calculated by

E = ∑t
i=1 ∑n

j=1 Eij, (2)

Eij = ηjρgQijHij, (3)

R = ∑t
i=1 ∑n

j=1 Eij × Pi, (4)
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where i is the time, j is the powerhouse, Pi is the energy price at time i, Eij is the energy
produced for powerhouse j at time i, ηj is the overall efficiency, ρ is the water density,
Qij is the water release for powerhouse j at time i, and Hij is the average water head for
powerhouse j at time i. This dynamic system means that the release from an upstream
reservoir becomes an input to the immediate downstream reservoir, while the water head
of one reservoir is determined by both inflow and water release of that reservoir. The
water head and the volume of water released (determined by the maximum flow rate of
the powerhouses and the duration of water release) will together determine the amount
of electricity generated. The water release rules that estimate system constraints and
requirements versus objectives include (1) 172.69 million m3 drawdown of Lake Almanor
from May to September and (2) water releases are made during hours when the energy
price is highest.
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Forecasts of runoff are used to control the timing of water releases. When more water
is predicted, water will be released when energy prices are low, and when less water
is predicted, water will be released when energy prices are high. The real-time energy
price information could be obtained online to support the hydropower operation. This
rule avoids spills and allows reservoir levels to drop appropriately but not excessively to
maximize energy value. Different release timing determined by different forecast accuracies
can thus affect energy value.

There are six reservoirs and nine powerhouses in total in this hydropower system
(Figure 2). The Upper North Fork Feather River Project comprises three reservoirs and five
powerhouses. The largest reservoir is Lake Almanor, a natural, largely spring-fed lake that
was augmented by the construction of Canyon Dam. The other two reservoirs are Butt
Valley, located on Butt Creek and Belden Forebay. The five powerhouses are Butt Valley,
Caribou 1 and 2, Belden, and Oak Flat. Water levels in Lake Almanor are maintained by
releases through the Prattville intake, which conveys flows to the Butt Valley reservoir, as
well as through the multilevel outlet structure at Canyon dam, which releases flows into the
North Fork Feather River. The Butt Valley reservoir serves as an afterbay for the Butt Valley
Powerhouse. Water from Butt Creek as well as North Fork water diverted through the Butt
Valley Powerhouse is fed through tunnels from Butt Valley Reservoir to two powerhouses
on the North Fork near Caribou. The Belden forebay reservoir serves as an afterbay for
the Caribou 1 and 2 powerhouses, and most of the water from Belden forebay is diverted
to the Belden Powerhouse. Oak Flat Powerhouse is located at Belden Dam and generates
power from instream flow releases to the North Fork. Other powerhouses outside the
Upper North Fork Feather River Project include Hamilton Branch, Rock Creek, Cresta, and
Poe. Attributes of the reservoirs and the powerhouses are shown in Tables 1 and 2.
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Table 1. The reservoirs.

Reservoirs Gross Storage, Million m3 Initial Value Set in the
Model, Million m3

Lake Almanor 1409.8 1134.8
Butt Valley 61.5 54.3

Belden 3.1 2.5
Rock Creek 5.4 5.0

Cresta 5.1 4.6
Poe 142.0 113.6

Table 2. The powerhouses.

Powerhouses Normal Capacity, MW Maximum Flow m3 s−1

Hamilton Branch 4.8 200
Butt Valley 41.0 60.0
Caribou 1 75.0 31.5
Caribou 2 120.0 41.5
Oak Flat 1.3 4.0
Belden 125.0 68.2

Rock Creek 112.0 81.6
Cresta 70.0 99.4

Poe 120.0 104.8

For both methods, the monthly forecasted runoff declined from spring into summer
and showed a recession curve similar to that observed. The historical runoff data were
obtained from USGS (Figure 5). To assess the forecasting skill of the two methods, we used
a skill score that normalizes the result by the difference of each observation from the mean
(Table 3). The mean absolute error (MAE) has dimensions and depends on the magnitude
of the runoff. A zero skill score indicates no skill in using the historical average observation
as the forecast, a negative value indicates that using the average would be better than using
the forecast, and a skill score of one indicates perfect skill [17].
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Table 3. The summary of measurements of forecast skill.

Skill Measure Equation 1

Mean absolute error (MAE) MAE = ∑| fi−oi |
n

MAE skill score SSMAE = 1 −MAE/MAEcl where MAEcl = ∑|o−oi |
n

1 Variable: oi is the observation, o is the mean of the observation, fi is the forecast, n is the number of observations.

We evaluated hydropower generation under two price scenarios, which we refer to as
Obs2017 and LBNL2030. These two scenarios have hourly energy prices over a year. The
Obs2017 price scenario uses the hourly day-ahead energy price for the Northern California
region in 2017 and was obtained from the California Independent System Operator (CAISO).
CAISO oversees the operation of California’s bulk electric power system, transmission
lines, and electricity market generated and transmitted by its member utilities. Hourly
electricity prices are projected to become more volatile in the future with greater renewable
penetration [18]. This is already happening to some extent, and thus the Obs2017 scenario
represents a good baseline for potential power generation.

The “LBNL2030” price scenario was obtained from Seel et al. [18] and predicts hourly
energy prices in 2030 based on the 2016 energy prices and considering the increasing pene-
trations of variable renewable energy. We selected the scenario of high solar penetration
based on the current proportion of wind and solar generation in California, along with
a limited-capacity-balancing expansion model for nonvariable renewable energy (VRE),
in which non-VRE generation can be influenced by the introduction of VREs to the grid
(i.e., VREs may displace non-VRE generation resources; see Seel et al. [18] for details). The
LBNL2030 prices represent a relatively balanced future scenario, compared to the Obs2017
prices. The hourly electricity prices of the two scenarios are shown in Figure 6. These
energy price data are used on an hourly basis when simulating hydropower generation.
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2.4. Investment Assessment

To assess the value of investing in an enhanced forecasting method, we used the
internal rate of return [7]. The IRR can serve as an appropriate index for either accepting or
rejecting an investment. A minimum attractive rate of return (MARR) will be indicated
by the project decision maker. An IRR exceeding this MARR indicates an “attractive”
investment. The cost of the enhanced forecasting method includes the initial development
cost and annual operation and maintenance cost. For this study specifically, we assumed an
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investment period of 10 years. We considered the different values of the initial development
investment and the annual cost to calculate the IRR. Based on the internal pricing infor-
mation, the initial development cost of the forecasting system is estimated to be between
USD 400,000 (low initial development cost) and USD 500,000 (high initial development
cost), which includes the cost of acquisition and installation of the sensors and hardware
for wireless sensor networks. The annual cost is estimated to be between USD 30,000
(low annual cost) and USD 70,000 (high annual cost), which includes additional payments
to maintain the field sensors, costs for maintaining the data system, and preparation of
the value-added products. These are incremental operational costs, as the sensors are
co-located with existing meteorological stations, and the PRSM modeling is an upgrade of
current modeling.

We considered two hydrologic scenarios. One is that within the 10-year investment
period, 7 years are extremely dry or wet, resulting in very little additional benefit. The
other scenario is the opposite, under which most years are average years that lead to
great potential for energy-value increase. We used Monte Carlo simulation to randomly
reproduce each scenario 10,000 times and then calculated the average IRR.

3. Results

In four of five years chosen, i.e., 2002, 2003, 2009, 2010, the MAE skill scores of the
enhanced forecasting method are higher than those of the statistical method, by an average
of 0.34. The only exception is 2013, when the MAE score of the enhanced forecasting
method is 0.06 lower than the score of the statistical method. That is, in most years, the
enhanced forecasting method had better forecasting accuracy than the statistical method in
terms of monthly runoff (Figure 7).
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Applying the enhanced forecasting method to hydropower generation, 80% of the
selected years show greater energy value, compared to the statistical forecasting method
under both price scenarios (Figures 8 and 9). The annual power generation remains the
same for both forecasting methods, as it is the actual inflow for hydropower generation,
regardless of the forecasting method used. The annual energy value of the five years
studied increased by an average value of USD 0.35 million and USD 0.46 million, which
are 1.1% and 1.5%, using the enhanced forecasting method, under Obs2017 and LBNL
2030 price scenarios, respectively. The annual energy value with the largest increase is
USD 0.92 million (3.1%) in 2009 under Obs2017, and USD 0.81 million (3.1%) in 2002 under
LBNL 2020.
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price scenarios.

Considering results on a sub-annual basis, not every month will see an increase in
energy value using the enhanced forecasting method. In some months, the income is
equal or even lower. This may be because the operation strategy will adjust the monthly
discharge based on the difference in the total amount and distribution of the annual runoff
to maximize the annual energy value.

The IRRs calculated under different scenarios are shown in Table 4. In both price
scenarios, high initial development cost and high annual cost result in the lowest IRR, and,
conversely, low initial development cost and low annual cost result in the highest IRR,
which is reasonable since IRR is sensitive to cost.



Water 2021, 13, 2260 11 of 13

Table 4. Calculation of internal rate of return under the two prices scenarios.

Internal Rate of Return (%)
LBNL2030 Obs2017

Extreme Dry/Wet
Years Mostly

Average Years
Mostly

Extreme Dry/Wet
Years Mostly

Average Years
Mostly

High initial cost and high annual cost 5.8 48.9 5.6 33.3
High initial cost and low annual cost 17.0 57.2 13.0 41.4
Low initial cost and high annual cost 10.2 62.4 8.6 39.6
Low initial cost and low annual cost 23.6 72.3 17.2 53.0

Energy price is another factor influencing the IRR; the IRRs are higher in scenario
LBNL 2030 than in scenario Obs2017. The factor that has the most significant impact on
IRR is the number of years in which considerable additional benefits can be obtained in
the 10 years. The results show that the average IRR of applying the enhanced forecasting
method in all scenarios exceeds 31%. Furthermore, in the most optimistic scenario, in
which most years are average years when we can obtain considerable additional power
generation benefits and with overall lowest costs, the IRR exceeds 75%. If the decision
maker sets the minimum attractive rate of lower than 31%, then this investment is justified
with the projected IRR.

4. Discussion

In practice, the forecasts of inflow to reservoirs can dynamically inform reservoir-
release decisions and thus help enable hydropower systems to maximize their energy
value. More accurate forecasts can help in optimizing reservoir operations by reducing
overflow, raising water head for power generation, and generating power when the hourly
electricity price is high. Therefore, the enhanced forecasting method can lead to an increase
in energy value, which would benefit both hydropower companies and customers. In
addition to the contribution of the enhanced forecasting to informed decision making on
energy production, safety and environmental issues arising from climate change can also
be better managed by enabling more efficient operation of water release and flood control
through better data. “With better and more usable data informing water management,
California’s existing water resources could better meet urban, agricultural, ecological and
industrial needs” [19].

Climate change scenarios involving lower precipitation and/or runoff in two Sierra
Nevada basins were found to directly reduce energy generation and revenues [20]. This is
in part due to winter inflow increasing due to more precipitation falling as rain versus snow,
as well as earlier snowmelt driven by higher temperatures [21]. This leads to an increased
chance of reservoir spillage and lost generation potential. Thus, the timing of snowmelt
and the precipitation phase (snow or rain) affect generation patterns, total generation, and
power values across California’s high-elevation hydropower system [22]; however, the
response of these systems, in terms of energy generation, depends on the climate change
scenario, making simple adjustments to operations elusive [23,24]. Thus, with continued
warming, the traditional operating rules are becoming increasingly inadequate to optimally
manage water resources, thereby affecting both hydropower generation and energy value.

Compared with some other hydrologic forecasting methods, such as the deterministic
and probabilistic hydrologic forecasts method proposed by Fernando [25] and the method
using numerical weather prediction models for forecast proposed by Shahryar [26], the
characteristic of the enhanced forecasting method is that the PRMS model used for forecast-
ing is calibrated with near-real-time data. Data from the distributed sensor networks are
more representative of snow distribution in mountain regions and allow better detection
of precipitation timing and phase [27], which can be critical in determining subsequent
streamflow peaks, especially in the Sierra Nevada, which is largely covered by forests
and characterized by complex topography. In the Sierra Nevada, inflow to reservoirs
has historically been regulated by the melting snowpack [28]. With climate change, it is
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projected that a warmer atmosphere will decrease the snowpack, accelerate the melting of
the snow and thus result in more wintertime runoff. Therefore, compared to the statistical
method, the enhanced forecasting method has more advantages in that the multiattribute
distributed sensor network can provide continuous, accurate, spatially distributed real-time
data on precipitation phase and timing, snowpack, and soil moisture storage, snowmelt,
temperature, relative humidity and solar radiation [27]. In addition, though this study
focused on the Feather River basin and hydropower system of PG&E, the results of this
research are also applicable to other hydropower systems in watersheds across the Sierra
Nevada and other mountains facing similar climatic conditions and hydrologic processes
to the Feather River basin.

In a possible future scenario, we expect more variable hydrologic conditions due to
climate change. Therefore, those scenarios in the IRR analysis with more dry/wet years
reflect such expectations. Although such a trend is detrimental to hydropower generation,
the application of the enhanced forecasting method is still promising in terms of return on
investment. The average IRRs for all scenarios characterized by a majority of extremely dry
or wet years are 14.2% and 11.1% for price scenarios LBNL2030 and Obs2017, respectively.
Additionally, since the LBNL2030 price scenario represents a future condition considering
the increasing penetrations of variable renewable energy, a higher IRR means that in
the future, when there is more solar generation as renewable energy, the investment in
enhanced forecasting method will obtain a higher return.

5. Conclusions

An enhanced forecasting method that uses improved near-real time, spatially dis-
tributed hydrologic information can improve hydropower forecasts for systems in moun-
tain basins similar to that in the Feather River basin. Even though benefits of hydropower
scheduling accrue mainly in average years versus extremely wet or dry years, the return
on investment in the system can be significant. In our study, this was evidenced by an
average internal rate of return averaging over 31%. This benefit was realized mainly from
better data, plus a small improvement in the hydrologic forecasting tool already in use.
Therefore, investing in this enhanced forecasting method is feasible from the perspective of
increasing the energy value of hydropower generation, especially for hydropower systems
using outdated hydrologic forecasting methods and deeply affected by climate change.

Author Contributions: Conceptualization, R.B. and M.C.; methodology, H.G., T.M., F.A. and K.R.;
software, H.G., T.M., F.A. and K.R.; validation, H.G. and T.M.; formal analysis, H.G.; investigation,
F.A.; resources, K.R.; writing—original draft preparation, H.G.; writing—review and editing, H.G.,
M.C., T.M., F.A., K.R. and R.B.; visualization, H.G.; supervision, R.B.; project administration, R.B.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by California Energy Commission contract EPC-14-067, USDA
National Institute of Food and Agriculture grant 2018-67004-24705.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rouhani, O.M.; Niemeier, D.; Gao, H.O.; Bel, G. Cost-benefit analysis of various California renewable portfolio standard targets:

Is a 33% RPS optimal? Renew. Sustain. Energy Rev. 2016, 62, 1122–1132. [CrossRef]
2. Koseff, A. California approves goal for 100 % carbon-free electricity by 2045. Sacram. Bee 2018, 10.
3. Chang, M.K.; Eichman, J.D.; Mueller, F.; Samuelsen, S. Buffering intermittent renewable power with hydroelectric generation: A

case study in California. Appl. Energy 2013, 112, 1–11. [CrossRef]
4. Rosenberg, E.A.; Wood, A.W.; Steinemann, A.C. Statistical applications of physically based hydrologic models to seasonal

streamflow forecasts. Water Resour. Res. 2011, 47. [CrossRef]

http://doi.org/10.1016/j.rser.2016.05.049
http://doi.org/10.1016/j.apenergy.2013.04.092
http://doi.org/10.1029/2010WR010101


Water 2021, 13, 2260 13 of 13

5. Avanzi, F.; Maurer, T.P.; Malek, S.A. Feather River Hydrologic Observatory: Improving Snowpack Forecasting for Hydropower Generation
Using Intelligent Information Systems; California Energy Commission: Sacramento, CA, USA, 2018.

6. Maurer, T.; Avanzi, F.; Oroza, C.A.; Glaser, S.D.; Conklin, M.; Bales, R.C. Optimizing spatial distribution of watershed-scale
hydrologic models using Gaussian Mixture Models. Environ. Model. Softw. 2021, 142, 105076. [CrossRef]

7. Park, C.S. Fundamentals of Engineering Economics; Prentice Hall: Upper Saddle River, NJ, USA, 2004; ISBN 0130307912.
8. Dettinger, M.D.; Cayan, D.R. Large-scale atmospheric forcing of recent trends towards early snowmelt runoff in California. J. Clim.

1995, 8, 606–623. [CrossRef]
9. Malek, S.A.; Glaser, S.D.; Bales, R.C. Wireless Sensor Networks for Improved Snow Water Equivalent and Runoff Estimates.

IEEE Access 2019, 7, 18420–18436. [CrossRef]
10. Avanzi, F.; Maurer, T.; Glaser, S.D.; Bales, R.C.; Conklin, M.H. Information content of spatially distributed ground-based

measurements for hydrologic-parameter calibration in mixed rain-snow mountain headwaters. J. Hydrol. 2020, 582, 124478.
[CrossRef]

11. Oroza, C.A.; Zheng, Z.; Glaser, S.D.; Tuia, D.; Bales, R.C. Optimizing embedded sensor network design for catchment-scale
snow-depth estimation using LiDAR and machine learning. Water Resour. Res. 2016, 52, 8174–8189. [CrossRef]

12. Markstrom, S.L.; Niswonger, R.G.; Regan, R.S.; Prudic, D.E.; Barlow, P.M. GSFLOW—Coupled Ground-Water and Surface-Water
Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow
Model (MODFLOW-2005). U.S. Geol. Surv. 2008, 6, 240.

13. Markstrom, S.L.; Regan, R.S.; Hay, L.E.; Viger, R.J.; Webb, R.M.T.; Payn, R.A.; LaFontaine, J.H. PRMS-IV, the Precipitation-Runoff
Modeling System, Version 4. U.S. Geol. Surv. Tech. Methods 2015, 6, B7. [CrossRef]

14. Koczot, K.M.; Jeton, A.E.; McGurk, B.J.; Dettinger, M.D. Precipitation-Runoff Processes in the Feather River Basin, Northeastern
California, with Prospects for Streamflow Predictability, Water Years 1971–1997; Scientific Investigations Report 2004-5202; US
Geolological Survey: Denver, CO, USA, 2004.

15. Roche, J.W.; Ma, Q.; Rungee, J.; Bales, R.C. Evapotranspiration Mapping for Forest Management in California’s Sierra Nevada.
Front. For. Glob. Chang. 2020, 3, 39. [CrossRef]

16. Harrison, B.; Bales, R. Skill Assessment of Water Supply Forecasts for Western Sierra Nevada Watersheds. J. Hydrol. Eng. 2016, 21,
04016002. [CrossRef]

17. Harrison, B.; Bales, R. Skill assessment of water supply outlooks in the Colorado River basin. Hydrology 2015, 2, 112–131.
[CrossRef]

18. Seel, J.; Mills, A.; Wiser, R.; Deb, S.; Asokkumar, A.; Hassanzadeh, M.; Aarabali, A. Impacts of High Variable Renewable Energy
Futures on Wholesale Electricity Prices, and on Electric-Sector Decision Making; Lawrence Berkeley National Laboratory: Berkeley, CA,
USA, 2018; p. 53.

19. Cantor, A.; Kiparsky, M.; Kennedy, R.; Hubbard, S.; Bales, R.; Pecharroman, L.C.; Guivetchi, K.; McCready, C.; Darling, G. Data
for Water Decision Making: Informing the Implementation of California’s Open and Transparent Water Data Act through Research and
Engagement; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2018; p. 56. [CrossRef]

20. Vicuña, S.; Dracup, J.A.; Dale, L. Climate change impacts on two high-elevation hydropower systems in California. Clim. Chang.
2011, 109, 151–169. [CrossRef]

21. Forrest, K.; Tarroja, B.; Chiang, F.; AghaKouchak, A.; Samuelsen, S. Assessing climate change impacts on California hydropower
generation and ancillary services provision. Clim. Chang. 2018, 151, 395–412. [CrossRef]

22. Madani, K.; Lund, J.R. Estimated impacts of climate warming on California’s high-elevation hydropower. Clim. Chang. 2010, 102,
521–538. [CrossRef]

23. Madani, K.; Guégan, M.; Uvo, C.B. Climate change impacts on high-elevation hydroelectricity in California. J. Hydrol. 2014, 510,
153–163. [CrossRef]

24. Rheinheimer, D.E.; Viers, J.H.; Sieber, J.; Kiparsky, M.; Mehta, V.K.; Ligare, S.T. Simulating high-elevation hydropower with
regional climate warming in the west slope, Sierra Nevada. J. Water Resour. Plan. Manag. 2014, 140, 714–723. [CrossRef]

25. Fan, F.M.; Schwanenberg, D.; Alvarado, R.; Assis dos Reis, A.; Collischonn, W.; Naumman, S. Performance of Deterministic and
Probabilistic Hydrological Forecasts for the Short-Term Optimization of a Tropical Hydropower Reservoir. Water Resour. Manag.
2016, 30, 3609–3625. [CrossRef]

26. Ahmad, S.K.; Hossain, F. Maximizing energy production from hydropower dams using short-term weather forecasts.
Renew. Energy 2020, 146, 1560–1577. [CrossRef]

27. Cui, G.; Bales, R.; Rice, R.; Anderson, M.; Avanzi, F.; Hartsough, P.; Conklin, M. Detecting rain–snow-transition elevations in
mountain basins using wireless sensor networks. J. Hydrometeorol. 2020, 21, 2061–2081. [CrossRef]

28. Vicuna, S.; Leonardson, R.; Hanemann, M.W.; Dale, L.L.; Dracup, J.A. Climate change impacts on high elevation hydropower
generation in California’s Sierra Nevada: A case study in the Upper American River. Clim. Chang. 2007, 87, 123–137. [CrossRef]

http://doi.org/10.1016/j.envsoft.2021.105076
http://doi.org/10.1175/1520-0442(1995)008&lt;0606:LSAFOR&gt;2.0.CO;2
http://doi.org/10.1109/ACCESS.2019.2895397
http://doi.org/10.1016/j.jhydrol.2019.124478
http://doi.org/10.1002/2016WR018896
http://doi.org/10.3133/tm6B7
http://doi.org/10.3389/ffgc.2020.00069
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001327
http://doi.org/10.3390/hydrology2030112
http://doi.org/10.11436/mssj.15.250
http://doi.org/10.1007/s10584-011-0301-8
http://doi.org/10.1007/s10584-018-2329-5
http://doi.org/10.1007/s10584-009-9750-8
http://doi.org/10.1016/j.jhydrol.2013.12.001
http://doi.org/10.1061/(ASCE)WR.1943-5452.0000373
http://doi.org/10.1007/s11269-016-1377-8
http://doi.org/10.1016/j.renene.2019.07.126
http://doi.org/10.1175/JHM-D-20-0028.1
http://doi.org/10.1007/s10584-007-9365-x

	Introduction 
	Materials and Methods 
	Study Site and Hydropower System 
	Hydrologic Forecasting Data 
	Enhanced Forecasting Method 
	Statistical Method 

	Hydropower Simulation Model 
	Investment Assessment 

	Results 
	Discussion 
	Conclusions 
	References

