Effect of Gas Volume Fraction on the Energy Loss Characteristics of Multiphase Pumps at Each Cavitation Stage
Abstract
:1. Introduction
2. Computational Models and Methods
2.1. Turbulence Model
2.2. Cavitation Model
3. Numerical Model Calculation
3.1. Numerical Model of Multiphase Pump
3.2. Mesh Division and Independent Verification
3.3. Boundary Condition Setting
3.4. Numerical Method Verification
4. Calculation and Analysis of Results
4.1. Cavitation Characteristic Curve Prediction
4.2. Effect of GVF on Turbulent Dissipation Losses in Each Cavitation Stage
4.3. Effect of GVF on Friction Loss at Each Cavitation Stage
4.4. Impeller Domain Flow Loss Comparison Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stuart, S. Multiphase pumping addressed a wide range of operating problems. Oil Gas J. 2009, 101, 59–71. [Google Scholar]
- Kim, J.H.; Lee, H.C.; Kim, J.H.; Choi, Y.S.; Yoon, J.Y.; Yoo, I.S.; Choi, W.C. Improvement of hydrodynamic performance of a multiphase pump using design of experiment techniques. J. Fluids Eng. 2015, 137, 081301. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, B.; Zhong, L.; Jiang, Q.F. Cavitating flow-induced unsteady pressure pulsations in a low specific speed centrifugal pump. R. Soc. Open Sci. 2018, 5, 180408. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Zhou, X.Z.; Xu, B.; Wang, Z. Numerical investigation of the flow regime and cavitation in the vanes of reversible pump-turbine during pump mode’s starting up. Renew. Energy 2019, 141, 9–19. [Google Scholar] [CrossRef]
- Ylönen, M.; Franc, J.P.; Miettinen, J.; Saarenrinne, P.; Fivel, M. Shedding Frequency in Cavitation Erosion Evolution Tracking. Int. J. Multiph. Flow 2019, 118, 141–149. [Google Scholar] [CrossRef]
- Huang, B.; Wang, G.Y.; Zhang, B.; Shi, S.G. Application evaluation and analysis of cavitation model in unsteady cavitation flow calculation. J. Ship Mech. 2011, 11, 3–10. [Google Scholar]
- Senocak, I.; Shyy, W. A pressure-based method for turbulent cavitating flow computations. J. Comput. Phys. 2002, 176, 363–383. [Google Scholar] [CrossRef]
- Liu, H.L.; Liu, D.X.; Wang, Y.; Wu, X.F.; Zhuang, S.G. Application evaluation of three cavitation models in cavitation flow calculation of centrifugal pump. Trans. Chin. Soc. Agric. Eng. 2012, 28, 54–59. [Google Scholar]
- Yu, A.; Tang, Q.; Zhou, D. Cavitation Evolution around a NACA0015 Hydrofoil with Different Cavitation Models Based on Level Set Method. Appl. Sci. 2019, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- De Giorgi, M.G.; Fontanarosa, D.; Ficarella, A. CFD data of unsteady cavitation around a hydrofoil, based on an extended Schnerr-Sauer model coupled with a nucleation model. Data Brief 2019, 25, 104226. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, V.; Escaler, X.; Valencia, E.; Peng, X.; Erazo, J.; Puga, D.; Luo, X. Scale-Adaptive Simulation of Unsteady Cavitation Around a Naca66 Hydrofoil. Appl. Sci. 2019, 9, 3696. [Google Scholar] [CrossRef] [Green Version]
- Kalateh, F.; Koosheh, A. Simulation of cavitating fluid-Structure interaction using SPH-FE method. Math. Comput. Simul. 2020, 173, 51–70. [Google Scholar] [CrossRef]
- Chen, G.H.; Wang, G.Y.; Hu, C.L.; Huang, B.; Zhang, M. Observations and measurements on unsteady cavitating flows using a simultaneous sampling approach. Exp. Fluids 2015, 56, 32. [Google Scholar] [CrossRef]
- Arabnejad, M.H.; Amini, A.; Farhat, M.; Bensow, R. Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation. Int. J. Multiph. Flow 2019, 119, 123–143. [Google Scholar] [CrossRef]
- Limbach, P.; Kowalski, K.; Hussong, J.; Romuald, S. Numerical Simulation of Cloud Cavitation in Hydrofoil and Orifice Flows With Analysis of Viscous and Nonviscous Separation. J. Fluids Eng. 2018, 140, 111102. [Google Scholar] [CrossRef]
- Liu, M.; Tan, L.; Liu, Y.; Xu, Y.; Cao, S. Large eddy simulation of cavitation vortex interaction and pressure fluctuation around hydrofoil ALE 15. Ocean. Eng. 2018, 163, 264–274. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, X.; Li, J.; Gong, Z.; Lu, C. Large Eddy Simulation and investigation on the flow structure of the cascading cavitation shedding regime around 3D twisted hydrofoil. Ocean. Eng. 2017, 129, 1–19. [Google Scholar] [CrossRef]
- Sun, T.; Wei, Y.; Zou, L.; Jiang, Y.; Xu, C.; Zong, Z. Numerical investigation on the unsteady cavitation shedding dynamics over a hydrofoil in thermo-sensitive fluid. Int. J. Multiph. Flow 2019, 111, 82–100. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Gong, Z.; Chen, X.; Lu, C. Large eddy simulation and investigation on the laminar-turbulent transition and turbulence-cavitation interaction in the cavitating flow around hydrofoil. Int. J. Multiph. Flow 2019, 112, 300–322. [Google Scholar] [CrossRef]
- Zhao, G.S. Research on the Instability and Control Ofcavitation Flow in Centrifugal Pump; Lanzhou University of Technology: Lanzhou, China, 2018. [Google Scholar]
- Hao, J.; Zhang, M.; Huang, X. Experimental Study on Influences of Surface Materials on Cavitation Flow Around Hydrofoils. Chin. J. Mech. Eng. 2019, 32, 45. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.F.; Zhang, M.D.; Fu, X.N. Experimental study on the influence of coating on the kinematic and dynamic characteristics of cloud-like cavitation around hydrofoil. J. Mech. Eng. 2018, 54, 170–179. [Google Scholar] [CrossRef]
- Mousmoulis, G.; Karlsen-Davies, N.; Aggidis, G.; Anagnostopoulos, I.; Papantonis, D. Experimental analysis of cavitation in a centrifugal pump using acoustic emission, vibration measurements and flow visualization. Eur. J. Mech. B/Fluids 2019, 75, 300–311. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Liu, M.Q.; Liang, X.; Lin, P. Numerical simulation of cavitation characteristics of large axial flow pump. J. Xi’an Jiaotong Univ. 2014, 48, 44–50. [Google Scholar]
- Tao, R.; Xiao, R.; Wang, F.; Liu, W. Cavitation Behavior Study in the Pump Mode of a Reversible Pump-Turbine. Renew. Energy 2018, 125, 655–667. [Google Scholar] [CrossRef]
- Fu, X.L.; Zuo, Z.G.; Chang, H.; Li, D.; Wang, H.; Wei, X. Mechanism of low frequency high amplitude pressure fluctuation in a pump-turbine during the load rejection process. J. Hydraul. Res. 2021, 59, 280–297. [Google Scholar] [CrossRef]
- Kang, J.J.; Zhu, R.S.; Wang, X.L.; Liu, Y.; Zhong, W.Y.; Zhang, B.Y.; Qi, L.X. Influence of impeller geometry parameters on fracture cavitation performance of centrifugal pump. J. Drain. Irrig. Mach. Eng. 2018, 36, 111–117. [Google Scholar]
- Tao, R.; Xiao, R.F.; Wang, Z.W. Influence of Blade Leading-Edge Shape on Cavitation in a Centrifugal Pump Impeller. Energies 2018, 11, 2588. [Google Scholar] [CrossRef]
- Shi, W.D.; Wu, S.Q.; Zhang, D.S.; Yao, J.; Zhang, G.J. Influence of blade number on cavitation characteristics of axial flow pump with high specific ratio. Trans. Chin. Soc. Agric. Mach. 2013, 44, 72–77. [Google Scholar]
- Shojaeefard, M.H.; Hosseini, S.E.; Zare, J. CFD simulation and Pareto-based multi-objective shape optimization of the centrifugal pump inducer applying GMDH neural network, modified NSGA-II, and TOPSIS. Struct. Multidiscip. Optim. 2019, 60, 1509–1525. [Google Scholar] [CrossRef]
- Azad, S.; Lotfi, H.; Riasi, A. The effects of viscoelastic fluid on the cavitation inception and development within a centrifugal pump: An experimental study. Int. Commun. Heat Mass Transf. 2019, 107, 106–113. [Google Scholar] [CrossRef]
- Li, D.; Song, Y.; Lin, S.; Wang, H.; Qin, Y.; Wei, X. Effect mechanism of cavitation on the hump characteristic of a pump-turbine. Renew. Energy 2021, 167, 369–383. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Cai, S.J.; Zhu, H.W.; Yang, K.; Qiang, R. Numerical simulation of compressible flow field in three-stage spiral axial flow mixed pump. Trans. Chin. Soc. Agric. Mach. 2014, 45, 89–95. [Google Scholar]
- Zhang, X. Energy Conversioncharacteristics and Design Method of Stainless Steel Stamping Welding Centrifugal Pump; Jiangsu University: Zhenjiang, China, 2011. [Google Scholar]
- Zhang, X.; Wang, Y.; Xu, X.M.; Wang, H.Y. Energy conversion characteristics in impeller of low specific speed centrifugal pump. Trans. Chin. Soc. Agric. Mach. 2011, 42, 75–81. [Google Scholar]
- Cheng, X.R. Research on Energy Conversion Characteristics and Design Method in Spiral Centrifugal Pump; Lanzhou University of Technology: Lanzhou, China, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Tao, S.; Shi, G.; Song, W. Effect of Gas Volume Fraction on the Energy Loss Characteristics of Multiphase Pumps at Each Cavitation Stage. Water 2021, 13, 2293. https://doi.org/10.3390/w13162293
Shi J, Tao S, Shi G, Song W. Effect of Gas Volume Fraction on the Energy Loss Characteristics of Multiphase Pumps at Each Cavitation Stage. Water. 2021; 13(16):2293. https://doi.org/10.3390/w13162293
Chicago/Turabian StyleShi, Jianwei, Sijia Tao, Guangtai Shi, and Wenwu Song. 2021. "Effect of Gas Volume Fraction on the Energy Loss Characteristics of Multiphase Pumps at Each Cavitation Stage" Water 13, no. 16: 2293. https://doi.org/10.3390/w13162293
APA StyleShi, J., Tao, S., Shi, G., & Song, W. (2021). Effect of Gas Volume Fraction on the Energy Loss Characteristics of Multiphase Pumps at Each Cavitation Stage. Water, 13(16), 2293. https://doi.org/10.3390/w13162293