Effects of Long-Term Increases in Water Temperature and Stratification on Large Artificial Water-Source Lakes in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Lake Characteristics
2.2. Air and Surface Water Temperatures and Data Analyses
2.3. Statistical Methods for Long-Term Trend Analysis
2.3.1. Mann-Kendall Test
2.3.2. Seasonal Kendall Test
2.3.3. Long-Term Air and Surface Water Temperature Trends in Lakes
2.4. Thermal Stratification Intensity in Lakes and Its Effect on Surface Water Temperature
3. Results and Discussion
3.1. Long-Term Air Temperature Trends in Lakes
3.2. LSWT Long-Term Trends
3.3. Stratification Intensity and Its Guiding Factors
3.4. Factors Influencing Stratification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef]
- Livingstone, D.M.; Padisák, J. Large-scale coherence in the response of lake surface-water temperatures to synoptic-scale climate forcing during summer. Limnol. Oceanogr. 2007, 52, 896–902. [Google Scholar] [CrossRef] [Green Version]
- Piccolroaz, S.; Toffolon, M.; Majone, B. A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrol. Earth Syst. Sci. 2013, 17, 3323–3338. [Google Scholar] [CrossRef]
- Schneider, P.; Hook, S.J.; Radocinski, R.G.; Corlett, G.K.; Hulley, G.C.; Schladow, S.G.; Steissberg, T.E. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophys. Res. Lett. 2009, 36, 36. [Google Scholar] [CrossRef]
- Austin, J.A.; Colman, S. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: A positive ice-albedo feedback. Geophys. Res. Lett. 2007, 34, 34. [Google Scholar] [CrossRef] [Green Version]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef]
- De Stasio, B.T., Jr.; Hill, D.K.; Kleinhans, J.M.; Nibbelink, N.P.; Magnuson, J.J. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnol. Oceanogr. 1996, 41, 1136–1149. [Google Scholar] [CrossRef]
- Peeters, F.; Straile, D.; Lorke, A.; Ivingstone, D.M.L. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob. Chang. Biol. 2007, 13, 1898–1909. [Google Scholar] [CrossRef] [Green Version]
- Elliott, J.A. The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Glob. Chang. Biol. 2010, 16, 864–876. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems; Gulf Professional Publishing: Houston, TX, USA, 2001. [Google Scholar]
- Ficker, H.; Luger, M.; Gassner, H. From dimictic to monomictic: Empirical evidence of thermal regime transitions in three deep alpine lakes in Austria induced by climate change. Freshw. Biol. 2017, 54, 1345–2283. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrol. Earth Syst. Sci. 2017, 21, 6253–6274. [Google Scholar] [CrossRef] [Green Version]
- Verburga, P.; Hecky, R.E. The physics of the warming of Lake Tanganyika by climate change. Limnol. Oceanogr. 2009, 54, 2418–2430. [Google Scholar] [CrossRef]
- Palmer, M.E.; Yan, N.D.; Somers, K.M. Climate change drives coherent trends in physics and oxygen content in North American lakes. Clim. Chang. 2014, 124, 285–299. [Google Scholar] [CrossRef]
- Wagner, C.; Adrian, R. Cyanobacteria dominance: Quantifying the effects of climate change. Limnol. Oceanogr. 2009, 54, 2460–2468. [Google Scholar] [CrossRef]
- Weyhenmeyer, G.A. Warmer winters: Are planktonic algal populations in Sweden’s largest lakes affected? AMBIO 2001, 30, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Stefan, H.G.; Preud’Homme, E.B. Stream Temperature Estimation from Air Temperature. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Stefan, H.G.; Sinokrot, B.A. Projected global climate change impact on water temperatures in five north central U.S. streams. Clim. Chang. 1993, 24, 353–381. [Google Scholar] [CrossRef]
- Cha, Y.C.; Chung, S.W.; Yoon, S.W. Forecasting the Effect of Global Warming on the Water Temperature and Thermal Stratification in Daecheong Reservoir. J. Environ. Impact Assess. 2013, 22, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Lieberherr, G.; Wunderle, S. Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sens. 2018, 10, 990. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, C.M.; Sharma, S.; Gray, D.K.; Hampton, S.E.; Read, J.S.; Rowley, R.J.; Schneider, P.; Lenters, J.D.; McIntyre, P.B.; Kraemer, B.M.; et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 2015, 42, 10773–10781. [Google Scholar] [CrossRef] [Green Version]
- Rice, E.; Dam, H.G.; Stewart, G.M. Impact of Climate Change on Estuarine Zooplankton: Surface Water Warming in Long Island Sound Is Associated with Changes in Copepod Size and Community Structure. Chesap. Sci. 2015, 38, 13–23. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Healey, N.C.; Lenters, J.; Schladow, S.G.; Hook, S.J.; Sahoo, G.B.; Toffolon, M. On the predictability of lake surface temperature using air temperature in a changing climate: A case study for Lake Tahoe (U.S.A.). Limnol. Oceanogr. 2018, 63, 243–261. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Gray, D.K.; Read, J.S.; O’Reilly, C.M.; Schneider, P.; Qudrat, A.; Gries, C.; Stefanoff, S.; E Hampton, S.; Hook, S.; et al. A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009. Sci. Data 2015, 2, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Quayle, W.; Peck, L.S.; Peat, H.; Ellis-Evans, J.C.; Harrigan, P.R. Extreme Responses to Climate Change in Antarctic Lakes. Science 2002, 295, 645. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.; Smol, J. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Environment. Water Environment Information System. Available online: http://www.water.nier.go.kr (accessed on 4 January 2021).
- Korea Meteorological Administration. Available online: https://www.kma.go.kr (accessed on 1 May 2021).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; US Geological Survey: Reston, VA, USA, 2019.
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Detsch, F.; Otte, I.; Appelhans, T.; Nauss, T. A Comparative Study of Cross-Product NDVI Dynamics in the Kilimanjaro Region—A Matter of Sensor, Degradation Calibration, and Significance. Remote Sens. 2016, 8, 159. [Google Scholar] [CrossRef] [Green Version]
- Pyrgou, A.; Santamouris, M.; Livada, I. Spatiotemporal Analysis of Diurnal Temperature Range: Effect of Urbanization, Cloud Cover, Solar Radiation, and Precipitation. Climate 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Anghileri, D.; Pianosi, F.; Soncini-Sessa, R. Trend detection in seasonal data: From hydrology to water resources. J. Hydrol. 2014, 511, 171–179. [Google Scholar] [CrossRef]
- Simpson, J.; Hughes, D.; Morris, N. The relation of seasonal stratification to tidal mixing on the continental shelf. Deep-Sea Res. 1977, 24, 327–340. [Google Scholar]
- IPCC. IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Summary for Policymakers, Approved Draft; United Nations: New York, NY, USA, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 4 January 2021).
- Siegmund, P.; Abermann, J.; Baddour, O.; Canadell, P.; Cazenave, A.; Derksen, C.; Garreau, A.; Howell, S.; Huss, M.; Isensee, K. The Global Climate in 2015–2019; World Meteorological Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Cui, Y.; Xu, X.; Dong, J.; Qin, Y. Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases. Sustainability 2016, 8, 706. [Google Scholar] [CrossRef] [Green Version]
- Paranunzio, R.; Ceola, S.; Laio, F.; Montanari, A. Evaluating the Effects of Urbanization Evolution on Air Temperature Trends Using Nightlight Satellite Data. Atmosphere 2019, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Yang, X.; Cao, B.; Chen, Z.; Li, Y. Effects of Urbanization on Regional Extreme-Temperature Changes in China, 1960–2016. Sustainability 2020, 12, 6560. [Google Scholar] [CrossRef]
- Park, B.-J.; Kim, Y.-H.; Min, S.-K.; Kim, M.-K.; Choi, Y.; Boo, K.-O.; Shim, S. Long-Term Warming Trends in Korea and Contribution of Urbanization: An Updated Assessment. J. Geophys. Res. Atmos. 2017, 122, 10637–10654. [Google Scholar] [CrossRef]
- Woolway, R.I.; Merchant, C.J. Amplified surface temperature response of cold, deep lakes to inter-annual air temperature variability. Sci. Rep. 2017, 7, 4130. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-I.; Lee, H.-R.; Chang, K.-I. Seasonal Variation of Density Stratification in the Saemangeum Waters, Korea. Ocean Polar Res. 2006, 28, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.-S.; Chae, Y.-K.; Lee, H.-R. Variation of Density Stratification due to Fresh Water Discharge in the Kwangyang Bay and Jinju Bay. J. Korean Soc. Coast. Ocean Eng. 2011, 23, 126–137. [Google Scholar] [CrossRef]
- Toffolon, M.; Piccolroaz, S.; Majone, B.; Soja, A.-M.; Peeters, F.; Schmid, M.; Wüest, A. Prediction of surface temperature in lakes with different morphology using air temperature. Limnol. Oceanogr. 2014, 59, 2185–2202. [Google Scholar] [CrossRef] [Green Version]
- An, J.-H.; Lee, K.-H. Correlation and hysteresis analysis of air-water temperature in four rivers: Preliminary study for water temperature prediction. J. Environ. Pol. 2013, 12, 17–32. [Google Scholar]
- Kim, J.; Atique, U.; Mamun, M.; An, K.-G. Long-Term Interannual and Seasonal Links between the Nutrient Regime, Sestonic Chlorophyll and Dominant Bluegreen Algae under the Varying Intensity of Monsoon Precipitation in a Drinking Water Reservoir. Int. J. Environ. Res. Public Health 2021, 18, 2871. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.L.; McCutcheon, S.C. Hydrodynamics and Transport for Water Quality Modeling; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ziemińska-Stolarska, A.; Kempa, M. Modeling and Monitoring of Hydrodynamics and Surface Water Quality in the Sulejów Dam Reservoir, Poland. Water 2021, 13, 296. [Google Scholar] [CrossRef]
- Kong, D. Evaluating effect of density flow from upstream on vertical distribution of water quality at the Paldang Reservoir. J. Korean Soc. Water Environ. 2019, 35, 557–566. [Google Scholar]
- Hofmeister, R.; Burchard, H.; Bolding, K. A three-dimensional model study on processes of stratification and de-stratification in the Limfjord. Cont. Shelf Res. 2009, 29, 1515–1524. [Google Scholar] [CrossRef]
- Piccolroaz, S.; Toffolon, M.; Majone, B. The role of stratification on lakes’ thermal response: The case of L ake S uperior. Water Resour. Res. 2015, 51, 7878–7894. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.J.; Ryu, I.G.; Park, M.J.; Im, J.K. Long-term relationship between air and water temperatures in Lake Paldang, South Korea. Environ. Eng. Res. 2021, 26, 200177. [Google Scholar] [CrossRef]
Lake | Season | Surface Water Temp. | ||
---|---|---|---|---|
S | p | Seasonal Sens Slope | ||
SY | Year (‘93-’19) | 1584 | 2.2 × 10−16 | 0.125 *** |
Spring | 163 | 0.006 | 0.116 ** | |
Summer | 153 | 0.002 | 0.519 ** | |
Fall | 200 | 2.94 × 10−5 | 0.331 *** | |
Winter | 116 | 0.016 | 0.057 * | |
PD | Year (‘93-’19) | 727 | 1.22 × 10−5 | 0.066 *** |
Spring | 145 | 0.003 | 0.078 ** | |
Summer | 79 | 0.103 | 0.095 | |
Fall | −27 | 0.587 | −0.017 | |
Winter | 57 | 0.241 | 0.023 | |
CJ | Year (‘93-’19) | 1093 | 3.95 × 10−11 | 0.071 *** |
Spring | 178 | 0.0002 | 0.175 *** | |
Summer | 178 | 0.0002 | 0.157 *** | |
Fall | 96 | 0.047 | 0.056 * | |
Winter | −20 | 0.691 | −0.010 | |
DC | Year (‘93-’19) | 1263 | 7.17 × 10−15 | 0.125 *** |
Spring | 129 | 0.007 | 0.130 ** | |
Summer | 173 | 0.0003 | 0.370 *** | |
Fall | 128 | 0.008 | 0.209 ** | |
Winter | 27 | 0.584 | 0.000 |
Lake | Season | PEA | Inflow | Outflow | Air Temp. | Rainfall | Wind | Retention Time |
---|---|---|---|---|---|---|---|---|
SY | Year (‘93-’19) | 0.85 * | 0.4 | 0.17 | 0.67 | 0.49 | −0.33 | 0.02 |
Spring | 0.99 * | 0.15 | 0.36 | 0.86 * | 0.52 | −0.19 | −0.16 | |
Summer | 0.89 * | 0.33 | 0 | 0.54 | 0.29 | −0.25 | 0.04 | |
Fall | 0.44 | 0.48 | −0.17 | 0.94 * | 0.46 | 0.17 | 0.17 | |
Winter | 0.83 * | 0.14 | 0.1 | −0.36 | 0.06 | 0.12 | 0.11 | |
PD | Year (‘93-’19) | 0.69 * | 0.34 | 0.34 | 0.96 * | 0.53 | −0.28 | −0.46 |
Spring | 0.87 * | 0.22 | 0.22 | 0.98 | 0.28 | −0.45 | −0.3 | |
Summer | 0.69 * | −0.55* | −0.55 * | 0.6 | −0.34 * | 0.32 | 0.52* | |
Fall | 0.75 * | 0.3 | 0.3 | 0.98 * | 0.37 | −0.34 | −0.32 | |
Winter | 0.43 * | −0.3 | −0.24 | 0.33 | −0.09 | 0.01 | 0.28 | |
CJ | Year (‘93-’19) | 0.71 * | 0.39 | 0.31 | 0.86 * | 0.54 | −0.42 | −0.05 |
Spring | 0.79 * | 0.15 | 0.29 | 0.97 * | 0.39 | −0.28 | −0.38 | |
Summer | 0.54 * | −0.11 | −0.15 | 0.87 * | 0.03 | −0.41 | 0.09 | |
Fall | 0.63 * | 0.45 | 0.34 | 0.98 * | 0.54 | −0.17 | −0.21 | |
Winter | 0.55 * | 0.38 | 0.01 | −0.11 | −0.04 | −0.43 | 0.3 | |
DC | Year (‘93-’19) | 0.74 * | 0.44 | 0.39 | 0.77 * | 0.54 | −0.25 | −0.39 |
Spring | 0.91 * | −0.05 | 0.36 | 0.93* | 0.31 | −0.17 | −0.46 | |
Summer | 0.61 | 0.41 | 0.19 | 0.59 | 0.33 | 0.15 | 0.13 | |
Fall | 0.61 * | 0.34 | 0.33 | 0.92 * | 0.43 | 0.28 | −0.64 | |
Winter | 0.80 * | 0.18 | 0.27 | −0.33 | −0.27 | −0.33 | 0.1 |
Lake | Season | Inflow | Outflow | Air Temp. | Rainfall | Wind | Retention Time |
---|---|---|---|---|---|---|---|
SY | Year (‘93-’19) | 0.2 | 0.09 | 0.38 | 0.24 | −0.45 | 0.01 |
Spring | 0.15 | 0.33 | 0.81 * | 0.51 | −0.19 | −0.13 | |
Summer | 0.22 | 0.16 | 0.55 | 0.18 | −0.19 | −0.03 | |
Fall | 0.08 | 0.17 | 0.42 | −0.01 | −0.23 | −0.15 | |
Winter | −0.03 | 0.27 | −0.24 | 0.16 | 0.06 | −0.15 | |
PD | Year (‘93-’19) | 0.02 | 0.02 | 0.67 * | 0.27 | 0.13 | −0.09 |
Spring | −0.11 | −0.1 | 0.81 * | 0.07 | −0.32 * | 0.03 | |
Summer | −0.58 * | −0.57 * | 0.21 | −0.34 * | 0.66 * | 0.86 * | |
Fall | 0.08 | 0.07 | 0.73 * | 0.19 | −0.1 | −0.13 | |
Winter | −0.36 * | −0.36 * | 0.11 | −0.17 | 0.14 | 0.37 | |
CJ | Year (’93-’19) | 0.3 | 0.16 | 0.58 * | 0.37 | −0.41 * | 0.07 |
Spring | 0.21 | 0.41 | 0.71 * | 0.36 | −0.31 * | −0.35 | |
Summer | 0.08 | −0.04 | 0.47 * | −0.01 | −0.28 | −0.04 | |
Fall | 0.25 | 0.05 | 0.61 * | 0.34 | −0.24 * | 0.12 | |
Winter | 0.50 * | −0.38 * | 0.23 | 0.11 | −0.48 * | 0.76 * | |
DC | Year (’93-’19) | 0.31 | 0.32 | 0.37 | 0.31 | −0.37 | −0.03 |
Spring | −0.05 | 0.32 | 0.80 * | 0.34 | −0.06 | −0.47 | |
Summer | 0.44 | 0.44 | 0.39 | 0.32 | 0.17 | −0.15 | |
Fall | 0.24 | 0.26 | 0.53 | 0.34 | 0.18 | −0.28 | |
Winter | 0.25 | 0.14 | −0.09 | −0.31 | −0.46 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.-J.; Son, J.-Y.; Kang, H.-Y.; Cho, Y.-C.; Im, J.-K. Effects of Long-Term Increases in Water Temperature and Stratification on Large Artificial Water-Source Lakes in South Korea. Water 2021, 13, 2341. https://doi.org/10.3390/w13172341
Yu S-J, Son J-Y, Kang H-Y, Cho Y-C, Im J-K. Effects of Long-Term Increases in Water Temperature and Stratification on Large Artificial Water-Source Lakes in South Korea. Water. 2021; 13(17):2341. https://doi.org/10.3390/w13172341
Chicago/Turabian StyleYu, Soon-Ju, Ju-Yeon Son, Ho-Yeong Kang, Yong-Chul Cho, and Jong-Kwon Im. 2021. "Effects of Long-Term Increases in Water Temperature and Stratification on Large Artificial Water-Source Lakes in South Korea" Water 13, no. 17: 2341. https://doi.org/10.3390/w13172341
APA StyleYu, S. -J., Son, J. -Y., Kang, H. -Y., Cho, Y. -C., & Im, J. -K. (2021). Effects of Long-Term Increases in Water Temperature and Stratification on Large Artificial Water-Source Lakes in South Korea. Water, 13(17), 2341. https://doi.org/10.3390/w13172341