Pilot-Scale Groundwater Monitoring Network for Earthquake Surveillance and Forecasting Research in Korea
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Aquifer Types
3.2. Water-Level Fluctuations
4. Discussion
4.1. Potential Precursory Changes
4.2. Abnormal Changes in Water Levels during the Study Period
4.3. Comparison with Other Experiences and Future Developments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismail-Zadeh, A. Earthquake prediction and forecasting. In Encyclopedia of Earth Sciences Series; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 22–31. [Google Scholar]
- Geller, R.J. Earthquake prediction: A critical review. Geophys. J. Int. 1997, 131, 425–450. [Google Scholar] [CrossRef] [Green Version]
- Rikitake, T. Earthquake precursors. Bull. Seismol. Soc. Am. 1975, 65, 1133–1162. [Google Scholar]
- Cicerone, R.D.; Ebel, J.E.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Chen, Y.-I.; Liu, J.-Y.; Tsai, Y.-B.; Chen, C.-S. Statistical tests for pre-earthquake ionospheric anomaly. Terr. Atmos. Ocean. Sci. 2004, 15, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Kunitsyn, V.; Andreeva, E.; Nesterov, I.; Padokhin, A.; Gribkov, D.; Rekenthaler, D.A. Earthquake prediction research using radio tomography of the ionosphere. In Universe of Scales: From Nanotechnology to Cosmology; Springer: Dordrecht, The Netherlands, 2014; pp. 109–132. [Google Scholar]
- Lin, J.-W. Early warning from seismic ionospheric anomaly of the 24 May 2014, Mw = 6.4 Aegean-Sea earthquake: Two-dimensional principal component analysis (2DPCA). Geofísica Int. 2015, 54, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Ulukavak, M.; Inyurt, S. Detection of possible ionospheric precursor caused by Papua New Guinea earthquake (Mw 7.5). Environ. Monit. Assess. 2020, 192, 1–15. [Google Scholar] [CrossRef]
- Roeloffs, E.A. Hydrologic precursors to earthquakes: A Review. Pure Appl. Geophys. 1988, 126, 177–209. [Google Scholar] [CrossRef]
- Skelton, A.; Andrén, M.; Kristmannsdóttir, H.; Stockmann, G.; Mörth, C.-M.; Sveinbjörnsdóttir, Á.; Jónsson, S.; Sturkell, E.; Guðrúnardóttir, H.R.; Hjartarson, H. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, G. Hydrogeologic and geochemical precursors of earthquakes: An assessment for possible applications. Boll. Geofis. Teor. Appl. 2015, 56, 83–94. [Google Scholar]
- Huang, F.; Li, M.; Ma, Y.; Han, Y.; Tian, L.; Yan, W.; Li, X. Studies on earthquake precursors in China: A review for recent 50 years. Geod. Geodyn. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Wang, C.M. Dynamic Anomaly of Underground Fluid Is Powerful Weapon for Earthquake Prediction. In Earthquake is Predictable; Zhao, D., Ed.; Northwestern Polytechnical University Press Co. Ltd.: Xi’an, China, 2016; pp. 213–228. [Google Scholar]
- Martinelli, G. Contributions to a history of earthquake prediction research. Seismol. Res. Lett. 2000, 71, 583–588. [Google Scholar] [CrossRef]
- Wallace, R.E.; Teng, T.-L. Prediction of the Sungpan-Pingwu earthquakes, August 1976. Bull. Seismol. Soc. Am. 1980, 70, 1199–1223. [Google Scholar] [CrossRef]
- Merifield, P.; Lamar, D. Possible strain events reflected in water levels in wells along San Jacinto fault zone, southern California. Pure Appl. Geophys. 1984, 122, 245–254. [Google Scholar] [CrossRef]
- Koizumi, N. Earthquake prediction research based on observation of groundwater—Earthquake forecasting based on crustal deformation estimated from groundwater level change—. Synthesiology (English Ed.) 2013, 6, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Song, S.-R.; Ku, W.-Y.; Chen, Y.-L.; Lin, Y.-C.; Liu, C.-M.; Kuo, L.-W.; Yang, T.F.; Lo, H.-J. Groundwater chemical anomaly before and after the Chi-Chi earthquake in Taiwan. Terr. Atmos. Ocean. Sci. 2003, 14, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Yeh, T.K.; Chen, C.H.; Wang, C.H.; Wen, S. Frequency anomaly of groundwater level before major earthquakes in Taiwan. Proc. IAHS 2015, 372, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Singh, S.; Mahajan, S.; Bajwa, B.S.; Kalia, R.; Dhar, S. Earthquake precursory studies in Kangra valley of North West Himalayas, India, with special emphasis on radon emission. Appl. Radiat. Isot. 2009, 67, 1904–1911. [Google Scholar] [CrossRef]
- Bakun, W.H.; Aagaard, B.; Dost, B.; Ellsworth, W.L.; Hardebeck, J.L.; Harris, R.A.; Ji, C.; Johnston, M.J.S.; Langbein, J.; Lienkaemper, J.J.; et al. Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 2005, 437, 969–974. [Google Scholar] [CrossRef] [Green Version]
- King, C.Y.; Azuma, S.; Ohno, M.; Asai, Y.; He, P.; Kitagawa, Y.; Igarashi, G.; Wakita, H. In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan. Geophys. J. Int. 2000, 143, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Yue, M. Thoughts about the strategy for the development of earthquake prediction. Recent Developments in World Seismology. Recent Dev. World Seismol. 2005, 5, 7–21. [Google Scholar]
- Che, Y.T.; Liu, C.-L.; Yu, J.Z.; Guan, Z.J.; Li, J. Underground fluid anomaly and macro anomaly of Ms 8.0 Wenchuan earthquake and opinions about earthquake prediction. Seismol. Geol. 2008, 30, 828–838. [Google Scholar]
- Wang, C.-Y.; Manga, M. Hydrologic responses to earthquakes and a general metric. Geofluids 2010, 10, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Rikitake, T. Classification of earthquake precursors. Tectonophysics 1979, 54, 293–309. [Google Scholar] [CrossRef]
- Igarashi, G.; Wakita, H.; Sato, T. Precursory and coseismic anomalies in well water levels observed for the February 2, 1992 Tokyo Bay earthquake. Geophys. Res. Lett. 1992, 19, 1583–1586. [Google Scholar] [CrossRef]
- Kingsley, S.; Biagi, P.; Piccolo, R.; Capozzi, V.; Ermini, A.; Khatkevich, Y.; Gordeev, E. Hydrogeochemical precursors of strong earthquakes: A realistic possibility in Kamchatka. Phys. Chem. Earth Part C: Sol. Terr. Planet. Sci. 2001, 26, 769–774. [Google Scholar] [CrossRef]
- Sultankhodzhayev, A. Dependence of hydrogeoseismological anomalies on the energy and epicentral distance of earthquakes. Dokl. AN Uzb. SSR 1980, 5, 57–59. [Google Scholar]
- Rikitake, T. Earthquake precursors in Japan: Precursor time and detectability. Tectonophysics 1987, 136, 265–282. [Google Scholar] [CrossRef]
- Che, Y.; Yu, Z. The statistical characteristics of groundwater level anomaly before some moderate-strong earthquakes in the Eastern China continent. Seismol. Geol. 1992, 14, 23–29. [Google Scholar]
- Hartmann, J.; Levy, J.K. Hydrogeological and gasgeochemical earthquake precursors—A review for application. Nat. Hazards 2005, 34, 279–304. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1979; p. 604. [Google Scholar]
- Hamm, S.-Y.; Lee, S.; Park, Y.; Koh, K.; Cheong, J.; Lee, J. Relationship between earthquake and groundwater change observed in Jeju Island. In Proceedings of the Korea, Asia Oceania Geosciences Society (AOGS) 6th Annual Meeting, Singapore, 11–15 August 2009. [Google Scholar]
- Ok, S.-I.; Hamm, S.-Y.; Kim, B.-S.; Cheong, J.-Y.; Woo, N.-C.; Lee, S.-H.; Koh, G.-W.; Park, Y.-S. Characteristics of aquifer system and change of groundwater level due to earthquake in the western half of Jeju Island. Econ. Environ. Geol. 2010, 43, 359–369. [Google Scholar]
- Lee, H.-A.; Kim, M.-H.; Hong, T.-K.; Woo, N.-C. Earthquake observation through groundwater monitoring: A case of M4. 9 Odaesan Earthquake. J. Soil Groundw. Environ. 2011, 16, 38–47. [Google Scholar] [CrossRef]
- Lee, H.A.; Woo, N.C. Influence of the M9.0 Tohoku Earthquake on groundwater in Korea. Geosci. J. 2012, 16, 1–6. [Google Scholar] [CrossRef]
- Lee, S.H.; Ha, K.; Hamm, S.Y.; Ko, K.S. Groundwater responses to the 2011 Tohoku earthquake on Jeju Island, Korea. Hydrol. Process. 2013, 27, 1147–1157. [Google Scholar] [CrossRef]
- Lee, S.H.; Ha, K.; Soo Shin, J.; Ko, K.S.; Hamm, S.Y. Successive Groundwater Level Changes on Jeju Island due to the M w 9.0 Off the Pacific Coast of Tohoku Earthquake. Bull. Seismol. Soc. Am. 2013, 103, 1614–1621. [Google Scholar] [CrossRef]
- Lee, J.Y. Gyeongju Earthquakes Recorded in Daily Groundwater Data at National Groundwater Monitoring Stations in Gyeongju. J. Soil Groundw. Environ. 2016, 21, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.K.; Lee, J.; Kim, W.; Hahm, I.K.; Woo, N.C.; Park, S. The 12 September 2016 ML5. 8 midcrustal earthquake in the Korean Peninsula and its seismic implications. Geophys. Res. Lett. 2017, 44, 3131–3138. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lee, J.M.; Moon, S.-H.; Ha, K.; Kim, Y.; Jeong, D.B.; Kim, Y. Seismically induced changes in groundwater levels and temperatures following the ML 5.8 (ML 5.1) Gyeongju earthquake in South Korea. Hydrogeol. J. 2021, 29, 1679–1689. [Google Scholar] [CrossRef]
- Woo, N.C.; Piao, J.; Lee, J.-M.; Lee, C.-J.; Kang, I.-O.; Choi, D.-H. Abnormal changes in groundwater monitoring data due to small-magnitude earthquakes. J. Eng. Geol. 2015, 25, 21–33. [Google Scholar] [CrossRef]
- Lee, H.A.; Hamm, S.-Y.; Woo, N.C. The Abnormal Groundwater Changes as Potential Precursors of 2016 M L 5.8 Gyeongju Earthquake in Korea. Econ. Environ. Geol. 2018, 51, 393–400. [Google Scholar]
- Ministry of Environment. National Ground Water Monitoring Network in Korea Annual Report 2020 (Korean); Ministry of Environment: Seoul, Korea, 2020; p. 865.
- Lee, B.S.; Kim, Y.I.; Choi, K.-J.; Song, S.-H.; Kim, J.H.; Woo, D.K.; Seol, M.K.; Park, K.Y. Rural Groundwater Monitoring Network in Korea. J. Soil Groundw. Environ. 2014, 19, 1–11. [Google Scholar]
- Korean Statistical Information Service. Available online: https://kosis.kr/ (accessed on 28 May 2021).
- Houng, S.E.; Hong, T.K. Probabilistic analysis of the Korean historical earthquake records. Bull. Seismol. Soc. Am. 2013, 103, 2782–2796. [Google Scholar] [CrossRef]
- Cheon, Y.; Cho, H.; Ha, S.; Kang, H.-C.; Kim, J.-S.; Son, M. Tectonically controlled multiple stages of deformation along the Yangsan Fault Zone, SE Korea, since Late Cretaceous. J. Asian Earth Sci. 2019, 170, 188–207. [Google Scholar] [CrossRef]
- National Emergency Management Agency. Active Fault Map and Seismic Hazard Map (Korean); National Emergency Management Agency: Sejong, Korea, 2012; p. 935. [Google Scholar]
- Ministry of Interior and Safety. 9.12 Gyeongju Earthquake White Paper (Korean); Ministry of Interior and Safety: Sejong, Korea, 2017; p. 405.
- Ministry of Interior and Safety. 2017 Pohang Earthquake White Paper (Korean); Ministry of Interior and Safety: Sejong, Korea, 2018; p. 503.
- Korea Meteorological Administration. KMA Report on Pohang Earthquake (Korean); Korea Meteorological Administration: Seoul, Korea, 2018; pp. 1–89. [Google Scholar]
- Naik, S.P.; Gwon, O.; Porfido, S.; Park, K.; Jin, K.; Kim, Y.-S.; Kyung, J.-B. Intensity Reassessment of the 2017 Pohang Earthquake Mw = 5.4 (South Korea) Using ESI-07 Scale. Geosciences 2020, 10, 471. [Google Scholar] [CrossRef]
- Grigoli, F.; Cesca, S.; Rinaldi, A.P.; Manconi, A.; Lopez-Comino, J.A.; Clinton, J.; Westaway, R.; Cauzzi, C.; Dahm, T.; Wiemer, S. The November 2017 Mw 5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science 2018, 360, 1003–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, S.-M.; Hamm, S.-Y.; Cheong, J.-Y.; Lee, C.-M.; Seo, W.-S.; Woo, N.-C. Analyzing groundwater level anomalies in a fault zone in Korea caused by local and offshore earthquakes. Geosci. J. 2019, 23, 137–148. [Google Scholar] [CrossRef]
- Lee, H.A.; Hamm, S.E.; Woo, N.C. Groundwater Monitoring Network for Earthquake Surveillance and Prediction. Econ. Environ. Geol. 2017, 50, 401–414. [Google Scholar]
- Park, J.-Y.; Kim, J.-M.; Yoon, S.-H. Three-dimensional geologic modeling of the Pohang Basin in Korea for geologic storage of carbon dioxide. J. Geol. Soc. Korea 2015, 51, 289–302. [Google Scholar] [CrossRef]
- Bredehoeft, J.D. Response of well-aquifer systems to earth tides. J. Geophys. Res. 1967, 72, 3075–3087. [Google Scholar] [CrossRef]
- Rahi, K.A.; Halihan, T. Identifying aquifer type in fractured rock aquifers using harmonic analysis. Groundwater 2013, 51, 76–82. [Google Scholar] [CrossRef]
- Ministry of Environment. 2018 Groundwater Annual Report (Korean); Ministry of Environment: Daejeon, Korea, 2018; p. 662.
- Ministry of Environment. 2020 Groundwater Annual Report (Korean); Ministry of Environment: Daejeon, Korea, 2020; p. 366.
- Dobrovolsky, I.; Zubkov, S.; Miachkin, V. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, M.Y.; Fu, H.; Huang, P.Q.; Li, S.L. The Researches on Extraction of Information in the Groundwater and Prediction of the Strong Earthquakes (Chinese); Dizhen Publishing House: Beijing, China, 2010; pp. 1–317. [Google Scholar]
- Choi, M.-R.; Lee, H.-J.; Kim, G.-B. Characteristics of short-term changes of groundwater level and stream flow rate during 2017 Pohang earthquakes. J. Geol. Soc. Korea 2018, 54, 10. [Google Scholar] [CrossRef]
- Kim, J.; Joun, W.-T.; Lee, S.; Kaown, D.; Lee, K.-K. Hydrogeochemical Evidence of Earthquake-Induced Anomalies in Response to the 2017 MW 5.5 Pohang Earthquake in Korea. Geochem. Geophys. Geosystems 2020, 21, e2020GC009532. [Google Scholar] [CrossRef]
- King, C.-Y.; Zhang, W.; Zhang, Z. Earthquake-induced Groundwater and Gas Changes. Pure Appl. Geophys. 2006, 163, 633–645. [Google Scholar] [CrossRef]
- Chia, Y.; Chiu, J.J.; Chiang, Y.-H.; Lee, T.-P.; Liu, C.-W. Spatial and Temporal Changes of Groundwater Level Induced by Thrust Faulting. Pure Appl. Geophys. 2008, 165, 5–16. [Google Scholar] [CrossRef]
- He, A.; Singh, R.P. Groundwater level response to the Wenchuan earthquake of May 2008. Geomat. Nat. Hazards Risk 2019, 10, 336–352. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.A. Investigation of Groundwater Response to Earthquakes Using the National Groundwater Monitoring Data of Korea. Ph.D. Thesis, Yonsei University, Seoul, Korea, February 2013. [Google Scholar]
- Chadha, R.K.; Pandey, A.P.; Kuempel, H.J. Search for earthquake precursors in well water levels in a localized seismically active area of Reservoir Triggered Earthquakes in India. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Ministry of Environment. 2019 Groundwater Annual Report (Korean); Ministry of Environment: Sejong, Korea, 2019; p. 829.
- Roeloffs, E.A. Persistent water level changes in a well near Parkfield, California, due to local and distant earthquakes. J. Geophys. Res. Solid Earth 1998, 103, 869–889. [Google Scholar] [CrossRef]
- Montgomery, D.R.; Manga, M. Streamflow and water well responses to earthquakes. Science 2003, 300, 2047–2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-Y.; Chia, Y.; Chuang, P.-Y.; Chiu, Y.-C.; Tseng, T.-L. Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes. Hydrogeol. J. 2018, 26, 451–465. [Google Scholar] [CrossRef] [Green Version]
- Sneed, M.; Galloway, D.L.; Cunningham, W.L. Earthquakes: Rattling the Earth’s Plumbing System; US Department of the Interior: Washington, DC, USA; US Geological Survey: Reston, VA, USA, 2003.
- Ward, N.F.D. On the mechanism of earthquake induced groundwater flow. J. Hydrol. 2015, 530, 561–567. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [Green Version]
- Alley, W.M.; Healy, R.W.; LaBaugh, J.W.; Reilly, T.E. Flow and storage in groundwater systems. Science 2002, 296, 1985–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Roeloffs, E. The Parkfield, California earthquake experiment: An update in 2000. Curr. Sci. 2000, 79, 1226–1236. [Google Scholar]
- Roeloffs, E.; Sneed, M.; Galloway, D.L.; Sorey, M.L.; Farrar, C.D.; Howle, J.F.; Hughes, J. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California. J. Volcanol. Geotherm. Res. 2003, 127, 269–303. [Google Scholar] [CrossRef]
- Healy, J.H.; Urban, T.C. In-situ fluid-pressure measurements for earthquake prediction: An example from a deep well at Hi Vista, California. Pure Appl. Geophys. 1984, 122, 255–279. [Google Scholar] [CrossRef]
- Brodsky, E.E.; Roeloffs, E.; Woodcock, D.; Gall, I.; Manga, M. A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Wakita, H. Geochemistry as a tool for earthquake prediction. J. Phys. Earth 1977, 25, S175–S183. [Google Scholar] [CrossRef]
- Chia, Y.; Wang, Y.-S.; Chiu, J.J.; Liu, C.-W. Changes of Groundwater Level due to the 1999 Chi-Chi Earthquake in the Choshui River Alluvial Fan in Taiwan. Bull. Seismol. Soc. Am. 2001, 91, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.; Ramana, D.V.; Chadha, R.K.; Shekar, M. Coseismic responses and the mechanism behind MW 5.1 earthquake of March 14, 2005 in the Koyna–Warna region, India. J. Asian Earth Sci. 2008, 31, 499–503. [Google Scholar] [CrossRef]
- Reddy, D.V.; Nagabhushanam, P. Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India. Appl. Geochem. 2011, 26, 731–737. [Google Scholar] [CrossRef]
- Franchini, S.; Agostini, S.; Barberio, M.D.; Barbieri, M.; Billi, A.; Boschetti, T.; Pennisi, M.; Petitta, M. HydroQuakes, central Apennines, Italy: Towards a hydrogeochemical monitoring network for seismic precursors and the hydro-seismo-sensitivity of boron. J. Hydrol. 2021, 598, 125754. [Google Scholar] [CrossRef]
- Skelton, A.; Liljedahl-Claesson, L.; Wästeby, N.; Andrén, M.; Stockmann, G.; Sturkell, E.; Mörth, C.M.; Stefansson, A.; Tollefsen, E.; Siegmund, H. Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at two sites in northern Iceland—A review. J. Geophys. Res. Solid Earth 2019, 124, 2702–2720. [Google Scholar] [CrossRef]
- Barbieri, M.; Franchini, S.; Barberio, M.D.; Billi, A.; Boschetti, T.; Giansante, L.; Gori, F.; Jónsson, S.; Petitta, M.; Skelton, A.; et al. Changes in groundwater trace element concentrations before seismic and volcanic activities in Iceland during 2010–2018. Sci. Total. Environ. 2021, 793, 148635. [Google Scholar] [CrossRef] [PubMed]
Station | Installed Date | Elevation (m) | Depth (m) | Screen Interval a | Sensor Depth (m) | K (m/s) b |
---|---|---|---|---|---|---|
MW1 | 20 October 2017 | 14.0 | 300.0 | 42.5–300.5 | 97.5 | 1.25 × 10−5 |
MW2 | 26 February 2018 | 104.0 | 100.0 | 92–97 | 95.0 | 1.70 × 10−5 |
MW3 | 21 September 2018 | 89.0 | 100.5 | 91–100 | 95.0 | 1.0 × 10−5 |
MW4 | 21 September 2018 | 30.0 | 100.0 | 95–100 | 95.33 | 3.77 × 10−4 |
MW5 | 21 September 2018 | 54.5 | 100.0 | 91–100 | 95.49 | 2.11 × 10−5 |
MW6 | 22 April 2018 | 100.0 | 85.0 | 75.5–84.5 | 80.75 | 1.05 × 10−4 |
MW7 | 23 April 2018 | 240.0 | 90.0 | 63–68 | 65.02 | 6.90 × 10−4 |
Station | Analyzed Periods | Aquifer Type | Comments |
---|---|---|---|
MW1 | 1 November 2017–30 November 2017 | Confined | |
MW2 | 1 January 2019–31 January 2019 | - | |
MW3 | 16 November 2018–30 November 2018 | - | |
MW4 | 16 November 2018–30 November 2018 | - | |
MW5 | 16 November 2018–30 November 2018 | - | |
MW6 | 1 May 2019–15 May 2019 | - | Precipitation in 19.05.14 (0.1 mm) |
MW7 | 1 May 2019–15 May 2019 | Confined |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.A.; Hamm, S.-Y.; Woo, N.C. Pilot-Scale Groundwater Monitoring Network for Earthquake Surveillance and Forecasting Research in Korea. Water 2021, 13, 2448. https://doi.org/10.3390/w13172448
Lee HA, Hamm S-Y, Woo NC. Pilot-Scale Groundwater Monitoring Network for Earthquake Surveillance and Forecasting Research in Korea. Water. 2021; 13(17):2448. https://doi.org/10.3390/w13172448
Chicago/Turabian StyleLee, Hyun A, Se-Yeong Hamm, and Nam C. Woo. 2021. "Pilot-Scale Groundwater Monitoring Network for Earthquake Surveillance and Forecasting Research in Korea" Water 13, no. 17: 2448. https://doi.org/10.3390/w13172448
APA StyleLee, H. A., Hamm, S. -Y., & Woo, N. C. (2021). Pilot-Scale Groundwater Monitoring Network for Earthquake Surveillance and Forecasting Research in Korea. Water, 13(17), 2448. https://doi.org/10.3390/w13172448