Prediction of Biome-Specific Potential Evapotranspiration in Mongolia under a Scarcity of Weather Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Settings and Data Availability
2.2. Prediction of Reference Evapotranspiration, ET0, and Biome-Specific Potential Evapotranspiration, ETp
2.3. Evaluation Criteria
3. Results
3.1. Prediction of Grass-Reference Evapotranspiration, ET0
3.2. Prediction of Biome-Specific Potential Evapotranspiration, ETp
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ID. | Stations | Natural Zone | ID. | Stations | Natural Zone |
---|---|---|---|---|---|
1 | Sukhbaatar | Steppe | 22 | Baynuul | steppe |
2 | Tseterleg | Steppe | 23 | Galuut | steppe |
3 | Bulgan Mg | Steppe | 24 | Ulaangom | steppe |
4 | Khatgal | Steppe | 25 | Arvaikheer | steppe |
5 | Tosontsengel | Steppe | 26 | Choir | steppe |
6 | Binder | Steppe | 27 | Mandalgobi | steppe |
7 | Rinchinlhumbe | Steppe | 28 | Altai | steppe |
8 | Khalkh gol | Steppe | 29 | Khoriult | steppe |
9 | Erdenemandal | Steppe | 30 | Hovd | Gobi Desert |
10 | Baruunkharaa | Steppe | 31 | Ulgii | Gobi Desert |
11 | Baruunturuun | Steppe | 32 | Ekhiingol | Gobi Desert |
12 | Erdenetsagaan | Steppe | 33 | Gurvantes | Gobi Desert |
13 | Chingis khaan (UB) | Steppe | 34 | Tooroi | Gobi Desert |
14 | Choibalsan | Steppe | 35 | Sainshand | Gobi Desert |
15 | Undurkhaan | Steppe | 36 | Khanbogd | Gobi Desert |
16 | Matad | Steppe | 37 | Zamiin Uud | Gobi Desert |
17 | Murun | Steppe | 38 | Baitag | Gobi Desert |
18 | Uliastai | Steppe | 39 | Dalanzadgad | Gobi Desert |
19 | Baruun-Urt | Steppe | 40 | Saikhan-Ovoo | Gobi Desert |
20 | Erdenesant | Steppe | 41 | Tsogt-Ovoo | Gobi Desert |
21 | Dariganga | Steppe |
ID. | Stations | Annual Har ET0 (mm) | Mean Har ET0 (mm) | CV (%) | ||||
---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | 2010 | 2011 | ||||
1 | Sukhbaatar | 861 | 847 | 929 | 812 | 812 | 852 | 5.6 |
2 | Tseterleg | 845 | 819 | 801 | 763 | 769 | 799 | 4.3 |
3 | Bulgan Mg | 891 | 854 | 854 | 835 | 782 | 843 | 4.7 |
4 | Khatgal | 742 | 715 | 694 | 691 | 695 | 707 | 3 |
5 | Tosontsengel | 791 | 762 | 753 | 696 | 729 | 746 | 4.8 |
6 | Binder | 907 | 818 | 823 | 793 | 840 | 836 | 5.1 |
7 | Rinchinlhumbe | 723 | 686 | 663 | 666 | 687 | 685 | 3.5 |
8 | Khalkh gol | 910 | 872 | 834 | 863 | 839 | 863 | 3.5 |
9 | Erdenemandal | 871 | 836 | 810 | 793 | 789 | 820 | 4.2 |
10 | Baruunkharaa | 921 | 889 | 884 | 846 | 849 | 878 | 3.5 |
11 | Baruunturuun | 792 | 769 | 727 | 713 | 749 | 750 | 4.2 |
12 | Erdenetsagaan | 926 | 848 | 847 | 849 | 820 | 858 | 4.7 |
13 | Chingis khaan (UB) | 584 | 561 | 571 | 757 | 694 | 634 | 13.8 |
14 | Choibalsan | 952 | 881 | 876 | 860 | 880 | 890 | 4 |
15 | Undurkhaan | 987 | 914 | 883 | 874 | 894 | 910 | 5 |
16 | Matad | 976 | 882 | 882 | 877 | 854 | 894 | 5.3 |
17 | Murun | 865 | 834 | 814 | 777 | 798 | 817 | 4.1 |
18 | Uliastai | 842 | 818 | 790 | 755 | 772 | 795 | 4.4 |
19 | Baruun-Urt | 972 | 896 | 900 | 880 | 862 | 902 | 4.6 |
20 | Erdenesant | 881 | 843 | 804 | 772 | 750 | 810 | 6.5 |
21 | Dariganga | 835 | 841 | 819 | 864 | 866 | 845 | 2.4 |
22 | Baynuul | 819 | 770 | 741 | 714 | 735 | 756 | 5.4 |
23 | Galuut | 769 | 797 | 763 | 739 | 708 | 755 | 4.4 |
24 | Ulaangom | 863 | 846 | 798 | 790 | 819 | 823 | 3.8 |
25 | Arvaikheer | 830 | 808 | 825 | 780 | 776 | 804 | 3.1 |
26 | Choir | 954 | 893 | 898 | 857 | 839 | 888 | 5 |
27 | MandalGobi | 954 | 915 | 922 | 861 | 871 | 905 | 4.2 |
28 | Altai | 778 | 753 | 740 | 691 | 706 | 733 | 4.8 |
29 | Khoriult | 987 | 982 | 1001 | 955 | 952 | 975 | 2.2 |
30 | Hovd | 902 | 898 | 867 | 824 | 846 | 867 | 3.9 |
31 | Ulgii | 846 | 838 | 781 | 777 | 808 | 810 | 3.9 |
32 | Ekhiingol | 1121 | 1139 | 1159 | 1106 | 1118 | 1129 | 1.8 |
33 | Gurvantes | 886 | 891 | 921 | 869 | 871 | 888 | 2.4 |
34 | Tooroi | 1104 | 1130 | 1121 | 1039 | 1038 | 1086 | 4.1 |
35 | Sainshand | 1029 | 1000 | 1012 | 984 | 952 | 996 | 2.9 |
36 | Khanbogd | 1034 | 995 | 1029 | 971 | 983 | 1002 | 2.8 |
37 | Zamiin Uud | 1033 | 1010 | 1041 | 1002 | 1010 | 1019 | 1.7 |
38 | Baitag | 1000 | 1006 | 957 | 886 | 964 | 962 | 5 |
39 | Dalanzadgad | 985 | 985 | 1012 | 964 | 960 | 981 | 2.1 |
40 | Saikhan-Ovoo | 981 | 957 | 1003 | 946 | 926 | 963 | 3.1 |
41 | Tsogt-Ovoo | 1015 | 985 | 1012 | 955 | 936 | 981 | 3.5 |
Spatial-average ET0 | 902 | 873 | 867 | 840 | 843 |
ID. | Stations | P (mm) | ET0 (mm) | ETp (mm) | Ep (mm) | Tp (mm) | AI | Class |
---|---|---|---|---|---|---|---|---|
1 | Sukhbaatar | 277 | 852 | 695 | 329 | 366 | 0.32 | Semi-arid |
2 | Tseterleg | 323 | 799 | 615 | 270 | 344 | 0.4 | Semi-arid |
3 | Bulgan Mg | 287 | 843 | 448 | 284 | 164 | 0.34 | Semi-arid |
4 | Khatgal | 277 | 707 | 449 | 245 | 204 | 0.39 | Semi-arid |
5 | Tosontsengel | 193 | 746 | 501 | 271 | 230 | 0.26 | Semi-arid |
6 | Binder | 301 | 836 | 521 | 297 | 224 | 0.36 | Semi-arid |
7 | Rinchinlhumbe | 193 | 685 | 428 | 243 | 185 | 0.28 | Semi-arid |
8 | Khalkh gol | 291 | 863 | 489 | 299 | 190 | 0.34 | Semi-arid |
9 | Erdenemandal | 254 | 820 | 423 | 269 | 154 | 0.31 | Semi-arid |
10 | Baruunkharaa | 316 | 878 | 460 | 298 | 162 | 0.36 | Semi-arid |
11 | Baruunturuun | 210 | 750 | 400 | 266 | 135 | 0.28 | Semi-arid |
12 | Erdenetsagaan | 207 | 858 | 353 | 233 | 120 | 0.24 | Semi-arid |
13 | Chingis khaan (UB) | 244 | 634 | 293 | 207 | 86 | 0.39 | Semi-arid |
14 | Choibalsan | 205 | 890 | 305 | 197 | 108 | 0.23 | Semi-arid |
15 | Undurkhaan | 238 | 910 | 389 | 291 | 98 | 0.26 | Semi-arid |
16 | Matad | 211 | 849 | 362 | 267 | 95 | 0.25 | Semi-arid |
17 | Murun | 227 | 755 | 323 | 232 | 90 | 0.3 | Semi-arid |
18 | Uliastai | 188 | 795 | 338 | 247 | 91 | 0.24 | Semi-arid |
19 | Baruun-Urt | 172 | 902 | 359 | 270 | 88 | 0.19 | Arid |
20 | Erdenesant | 246 | 810 | 308 | 237 | 71 | 0.3 | Semi-arid |
21 | Dariganga | 145 | 845 | 305 | 239 | 66 | 0.17 | Arid |
22 | Baynuul | 190 | 756 | 290 | 225 | 65 | 0.25 | Semi-arid |
23 | Galuut | 193 | 755 | 244 | 196 | 47 | 0.26 | Semi-arid |
24 | Ulaangom | 109 | 823 | 271 | 223 | 48 | 0.13 | Arid |
25 | Arvaikheer | 219 | 804 | 228 | 187 | 41 | 0.27 | Semi-arid |
26 | Choir | 111 | 888 | 237 | 200 | 38 | 0.12 | Arid |
27 | MandalGobi | 93 | 731 | 188 | 161 | 26 | 0.13 | Arid |
28 | Altai | 156 | 733 | 173 | 150 | 23 | 0.21 | Semi-arid |
29 | Khoriult | 95 | 975 | 247 | 212 | 35 | 0.1 | Arid |
30 | Khovd | 119 | 867 | 242 | 210 | 32 | 0.14 | Arid |
31 | Ulgii | 95 | 810 | 126 | 108 | 18 | 0.12 | Arid |
32 | Ekhiingol | 57 | 1129 | 159 | 139 | 20 | 0.05 | Arid |
33 | Gurvantes | 100 | 888 | 162 | 141 | 21 | 0.11 | Arid |
34 | Tooroi | 60 | 1086 | 157 | 137 | 21 | 0.05 | Arid |
35 | Sainshand | 109 | 996 | 148 | 133 | 16 | 0.11 | Arid |
36 | Khanbogd | 115 | 1002 | 174 | 156 | 18 | 0.11 | Arid |
37 | Zamiin Uud | 93 | 1019 | 154 | 138 | 16 | 0.09 | Arid |
38 | Baitag | 93 | 962 | 145 | 131 | 14 | 0.1 | Arid |
39 | Dalanzadgad | 128 | 981 | 176 | 161 | 15 | 0.13 | Arid |
40 | Saikhan-Ovoo | 113 | 963 | 147 | 134 | 13 | 0.12 | Arid |
41 | Tsogt-Ovoo | 79 | 981 | 239 | 218 | 21 | 0.08 | Arid |
References
- Ma, X.; Yasunari, T.; Ohata, T.; Natsagdorj, L.; Davaa, G.; Oyunbaatar, D. Hydrological regime analysis of the Selenge River basin, Mongolia. Hydrol. Process. 2003, 17, 2929–2945. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for Computing Crop Water Requirements. Food Agric. Organ. USA 1998, 300, D05109. [Google Scholar]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zo. J. 2016, 15, vzj2016.04.0033. [Google Scholar] [CrossRef] [Green Version]
- Beegum, S.; Šimůnek, J.; Szymkiewicz, A.; Sudheer, K.P.; Nambi, I.M. Updating the Coupling Algorithm between HYDRUS and MODFLOW in the HYDRUS Package for MODFLOW. Vadose Zo. J. 2018, 17, 180034. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Singh, R. Evaluation of Variable-Infiltration Capacity Model and MODIS-Terra Satellite-Derived Grid-Scale Evapotranspiration Estimates in a River Basin with Tropical Monsoon-Type Climatology. J. Irrig. Drain. Eng. 2017, 143, 04017028. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.; Walling, I.; Deka, B.C.; Bhatt, B.P. Standardization of Reference Evapotranspiration Models for a Subhumid Valley Rangeland in the Eastern Himalayas. J. Irrig. Drain. Eng. 2012, 138, 880–895. [Google Scholar] [CrossRef]
- Adamala, S.; Raghuwanshi, N.S.; Mishra, A.K.; Tiwari, M.K. Evapotranspiration Modeling Using Second-Order Neural Networks. J. Hydrol. Eng. 2014, 19, 1131–1140. [Google Scholar] [CrossRef]
- Yu, W.; Wu, T.; Wang, W.; Li, R.; Wang, T.; Qin, Y.; Wang, W.; Zhu, X. Spatiotemporal Changes of Reference Evapotranspiration in Mongolia during 1980–2006. Adv. Meteorol. 2016, 2016, 9586896. [Google Scholar] [CrossRef]
- Xiang, K.; Li, Y.; Horton, R.; Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—A review. Agric. Water Manag. 2020, 232, 106043. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- Nandintsetseg, B.; Shinoda, M. Seasonal change of soil moisture in Mongolia: Its climatology and modelling. Int. J. Clim. 2010, 31, 1143–1152. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, G. Characteristics and modeling of evapotranspiration over a temperate desert steppe in Inner Mongolia, China. J. Hydrol. 2011, 396, 139–147. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, G.; Wang, Y.; Yang, F.; Nilsson, C. Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrol. Process. 2011, 26, 379–386. [Google Scholar] [CrossRef]
- Ren, X.; Qu, Z.; Martins, D.S.; Paredes, P.; Pereira, L.S. Daily Reference Evapotranspiration for Hyper-Arid to Moist Sub-Humid Climates in Inner Mongolia, China: I. Assessing Temperature Methods and Spatial Variability. Water Resour. Manag. 2016, 30, 3769–3791. [Google Scholar] [CrossRef]
- Xia, J.; Liang, S.; Chen, J.; Yuan, W.; Liu, S.; Li, L.; Cai, W.; Zhang, L.; Fu, Y.; Zhao, T.; et al. Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia. PLoS ONE 2014, 9, e97295. [Google Scholar] [CrossRef]
- Lamchin, M.; Park, T.; Lee, J.-Y.; Lee, W.-K. Monitoring of Vegetation Dynamics in the Mongolia Using MODIS NDVIs and their Relationship to Rainfall by Natural Zone. J. Indian Soc. Remote Sens. 2014, 43, 325–337. [Google Scholar] [CrossRef]
- Yembuu, B. General Geographical Characteristics of Mongolia BT—The Physical Geography of Mongolia; Yembuu, B., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–8. [Google Scholar]
- Indree, T. The Steppe Vegetation of Mongolia; Bembi San: Ulaanbaatar, Mongolia, 2014. [Google Scholar]
- Li, S.-G.; Asanuma, J.; Kotani, A.; Davaa, G.; Oyunbaatar, D. Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. J. Hydrol. 2007, 333, 133–143. [Google Scholar] [CrossRef]
- Earth Resources Observation And Science Center. Shuttle Radar Topography Mission (SRTM) 3 Arc-Second Global; Earth Resources Observation And Science Center: Sioux Falls, SD, USA, 2017.
- National Agency for Meteorology and Environmental Monitoring, Precipitation. Available online: http://tsag-agaar.gov.mn/ (accessed on 27 May 2020).
- Menne, M.J.; Durre, I.; Korzeniewski, B.; McNeill, S.; Thomas, X.; Yin, K. Global Historical Climatology Network—Daily (GHCN-Daily); Version 3; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2012. Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on 27 May 2020).
- Mao, J.; Yan, B. Global Monthly Mean Leaf Area Index Climatology, 1981–2015; ORNL DAAC: Oak Ridge, TN, USA, 2019.
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Preti, F.; Chirico, G.B. Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel. Geosciences 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach toward a Rational Classification of Climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Mintz, Y.; Walker, G.K. Global Fields of Soil Moisture and Land Surface Evapotranspiration Derived from Observed Precipitation and Surface Air Temperature. J. Appl. Meteorol. 1993, 32, 1305–1334. [Google Scholar] [CrossRef] [Green Version]
- Peng, L.; Li, Y.; Feng, H. The best alternative for estimating reference crop evapotranspiration in different sub-regions of mainland China. Sci. Rep. 2017, 7, 5458. [Google Scholar] [CrossRef] [Green Version]
- Paredes, P.; Pereira, L.; Almorox, J.; Darouich, H. Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agric. Water Manag. 2020, 240, 106210. [Google Scholar] [CrossRef]
- Srivastava, A.; Sahoo, B.; Raghuwanshi, N.S.; Chatterjee, C. Modelling the dynamics of evapotranspiration using Variable Infiltration Capacity model and regionally calibrated Hargreaves approach. Irrig. Sci. 2018, 36, 289–300. [Google Scholar] [CrossRef]
- WeatherOnline Ltd. Weather Online Website. 2021. Available online: https://www.weatheronline.co.uk/weather/maps/forecastmaps?LANG=en&CONT=asie®ION=0026&LAND=VM&UP=1&R=0&CEL=C (accessed on 10 October 2020).
- Spinoni, J.; Vogt, J.; Naumann, G.; Carrao, H.; Barbosa, P. Towards identifying areas at climatological risk of desertification using the Köppen-Geiger classification and FAO aridity index. Int. J. Clim. 2014, 35, 2210–2222. [Google Scholar] [CrossRef] [Green Version]
- Sumner, D.M.; Jacobs, J.M. Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J. Hydrol. 2005, 308, 81–104. [Google Scholar] [CrossRef]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Nasta, P.; Gates, J.B. Plot-scale modeling of soil water dynamics and impacts of drought conditions beneath rainfed maize in Eastern Nebraska. Agric. Water Manag. 2013, 128, 120–130. [Google Scholar] [CrossRef]
- Adane, Z.; Zlotnik, V.A.; Rossman, N.R.; Wang, T.; Nasta, P. Sensitivity of Potential Groundwater Recharge to Projected Climate Change Scenarios: A Site-Specific Study in the Nebraska Sand Hills, USA. Water 2019, 11, 950. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wang, P.; Li, Z.; Cribb, M.; Sparrow, M. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature. J. Geophys. Res. Atmos. 2007, 112, D15107. [Google Scholar] [CrossRef]
- Bian, Y.; Dai, H.; Zhang, Q.; Yang, L.; Du, W. Spatial distribution of potential evapotranspiration trends in the Inner Mongolia Autonomous Region (1971–2016). Theor. Appl. Clim. 2020, 140, 1161–1169. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S.; Walia, H.; Odhiambo, L. Spatio-temporal calibration of Hargreaves-Samani model to estimate reference evapotranspiration across U.S. High Plains. Agron. J. 2020, 112, 4232–4248. [Google Scholar] [CrossRef]
- Song, X.; Lu, F.; Xiao, W.; Zhu, K.; Zhou, Y.; Xie, Z. Performance of 12 reference evapotranspiration estimation methods compared with the Penman-Monteith method and the potential influences in northeast China. Meteorol. Appl. 2018, 26, 83–96. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Map of Yearly Crop Reference Evapotranspiration; FAO: Rome, Italy, 2009. [Google Scholar]
- Zorigt, M.; van der Linden, W.; Garamaa, D. Part 2. Integrated Water Management—National Assessment Report Volume I; IWRM: Ulaanbaatar, Mongolia, 2012. [Google Scholar]
- Allen, R.G.; Smith, M.; Pereira, L.S.; Perrier, A. An update for the calculation of reference evapotranspiration. ICID Bull. 1994, 43, 35–92. [Google Scholar]
- Walter, I.A. The ASCE Standardized Reference Evapotranspiration Equation; Water Resour. Institute; ASCE: Reston, VA, USA, 2004. [Google Scholar]
- Weiß, M.; Menzel, L. A global comparison of four potential evapotranspiration equations and heir relevance to stream flow modelling in semi-arid environments. Adv. Geosci. 2008, 18, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Amatya, D.M.; Skaggs, R.W.; Gregory, J.D. Comparison of Methods for Estimating REF-ET. J. Irrig. Drain. Eng. 1995, 121, 427–435. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Singh, V.P. Cross Comparison of Empirical Equations for Calculating Potential Evapotranspiration with Data from Switzerland. Water Resour. Manag. 2002, 16, 197–219. [Google Scholar] [CrossRef]
- Tabari, H.; Talaee, P.H. Local Calibration of the Hargreaves and Priestley-Taylor Equations for Estimating Reference Evapotranspiration in Arid and Cold Climates of Iran Based on the Penman-Monteith Model. J. Hydrol. Eng. 2011, 16, 837–845. [Google Scholar] [CrossRef]
- Mohawesh, O.E.; Talozi, S.A. Comparison of Hargreaves and FAO56 equations for estimating monthly evapotranspiration for semi-arid and arid environments. Arch. Agron. Soil Sci. 2012, 58, 321–334. [Google Scholar] [CrossRef]
- Pelosi, A.; Medina, H.; Villani, P.; D’Urso, G.; Chirico, G. Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system. Agric. Water Manag. 2016, 178, 106–118. [Google Scholar] [CrossRef]
- Gomariz-Castillo, F.; Alonso-Sarría, F.; Cabezas-Calvo-Rubio, F. Calibration and spatial modelling of daily ET0 in semiarid areas using Hargreaves equation. Earth Sci. Inform. 2017, 11, 325–340. [Google Scholar] [CrossRef]
- Celestin, S.; Qi, F.; Li, R.; Yu, T.; Cheng, W. Evaluation of 32 Simple Equations against the Penman–Monteith Method to Estimate the Reference Evapotranspiration in the Hexi Corridor, Northwest China. Water 2020, 12, 2772. [Google Scholar] [CrossRef]
- Gao, F. Evaluation of Reference Evapotranspiration Methods in Arid, Semiarid, and Humid Regions. J. Am. Water Resour. Assoc. 2017, 53, 791–808. [Google Scholar] [CrossRef]
Collected Data/Parameters | Unit | Period of Data Availability | Source | References |
---|---|---|---|---|
Daily P | mm | 2007–2011 | NAMEM | [21] |
Daily max T, min T, mean T | (°C) | 2001–2020 | NOAA National Centers for Environmental Information | [22] |
LAI | (-) | 1981–2015 | ORNL DAAC | [23] |
The Methods | Minimum Meteorological Data Requirements | Equations | |||||
---|---|---|---|---|---|---|---|
Mean T | Max T | Min T | Relative Humidity | Wind Speed | Ra or Rn | ||
FAO-56 PM | + | + | + | + | + | + | |
Hargreaves | + | + | + | + | |||
Thornthwaite modified | + |
Wind Speed | Relative Humidity | Air Temperature | Net Radiation | Sunshine Hours | |
---|---|---|---|---|---|
1. Galuut | 0.51 | −0.57 | 0.91 | 0.92 | 0.74 |
2. Tsetserleg | 0.16 | −0.23 | 0.91 | 0.91 | 0.84 |
3. Bulgan | 0.30 | −0.47 | 0.90 | 0.92 | 0.75 |
4. Khovd | 0.58 | −0.76 | 0.90 | 0.92 | 0.84 |
5. Erdenetsagaan | −0.02 | −0.63 | 0.91 | 0.88 | 0.69 |
6. Choibalsan | 0.04 | −0.69 | 0.91 | 0.91 | 0.83 |
7. Khatgal | 0.01 | −0.28 | 0.90 | 0.92 | 0.85 |
8. Baruunurt | 0.20 | −0.72 | 0.91 | 0.90 | 0.71 |
9. Undurkhaan | 0.20 | −0.73 | 0.90 | 0.90 | 0.72 |
10. Tsogtovoo | 0.21 | −0.68 | 0.91 | 0.91 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batsukh, K.; Zlotnik, V.A.; Suyker, A.; Nasta, P. Prediction of Biome-Specific Potential Evapotranspiration in Mongolia under a Scarcity of Weather Data. Water 2021, 13, 2470. https://doi.org/10.3390/w13182470
Batsukh K, Zlotnik VA, Suyker A, Nasta P. Prediction of Biome-Specific Potential Evapotranspiration in Mongolia under a Scarcity of Weather Data. Water. 2021; 13(18):2470. https://doi.org/10.3390/w13182470
Chicago/Turabian StyleBatsukh, Khulan, Vitaly A. Zlotnik, Andrew Suyker, and Paolo Nasta. 2021. "Prediction of Biome-Specific Potential Evapotranspiration in Mongolia under a Scarcity of Weather Data" Water 13, no. 18: 2470. https://doi.org/10.3390/w13182470
APA StyleBatsukh, K., Zlotnik, V. A., Suyker, A., & Nasta, P. (2021). Prediction of Biome-Specific Potential Evapotranspiration in Mongolia under a Scarcity of Weather Data. Water, 13(18), 2470. https://doi.org/10.3390/w13182470