Spatiotemporal Correlation Feature Spaces to Support Anomaly Detection in Water Distribution Networks
Abstract
:1. Introduction
- How leakage events affect pairwise correlations?
- How disruptions differ in real versus artificial settings?
- Which correlation coefficients are more sensitive to water leakages? Which correlation-based parameters yield optimal sensitivity to true positive disruptions?
- Are correlation-based features sufficiently expressive to detect small-to-moderate sized leakages?
- How early can a leakage be detected?
- a comprehensive analysis of how leakage events affect correlations in real versus artificial WDN dynamics;
- a comparison of correlation coefficients as descriptors of network dynamics;
- an assessment of the impact of leakage size (flowrate) on its detectability; and
- a study on how early can leakages be detected.
Related Work
2. Background
3. Solution
- sensors of different types, including inverse relationships between pressure and volumetric flowrate sensors;
- sensors placed along pipes with distinct characteristics, such as diameter and slope;
- sensors subjected to different yet related consumption patterns, including flowrate differences explained by additive factors.
3.1. Correlation-Based Feature Space Construction
3.2. Leakage Description, Detection and Localization
3.3. Decision Support Tool
4. Results
4.1. Case Study: Infraquinta
4.1.1. Artificial WDN Data
4.1.2. Real WDN Data
4.2. Correlation Analysis
4.3. Correlation over Time
4.4. Correlation in Small Leakages
4.5. Time Window Size
4.6. DCCA Parameterization
5. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mays, L.W. Water Distribution System Handbook; McGraw-Hill Education: New York, NY, USA, 2000. [Google Scholar]
- Colombo, A.; Karney, B. Energy and Costs of Leaky Pipes: Toward Comprehensive Picture. J. Water Resour. Plan. Manag. 2002, 128, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Huang, H.; Xin, K.; Tao, T. A review of methods for burst/leakage detection and location in water distribution systems. Water Sci. Technol. Water Supply 2015, 15, 429–441. [Google Scholar] [CrossRef]
- Zhou, M.; Pan, Z.; Liu, Y.; Zhang, Q.; Cai, Y.; Pan, H. Leak Detection and Location Based on ISLMD and CNN in a Pipeline. IEEE Access 2019, 7, 30457–30464. [Google Scholar] [CrossRef]
- Hu, P.; Tong, J.; Wang, J.; Yang, Y.; de Oliveira Turci, L. A hybrid model based on CNN and Bi-LSTM for urban water demand prediction. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 1088–1094. [Google Scholar]
- Mounce, S.; Boxall, J.; Machell, J. An artificial neural network/fuzzy logic system for DMA flow meter data analysis providing burst identification and size estimation. In Water Management Challenges in Global Change; Taylor & Francis: Abingdon, UK, 2007; pp. 313–320. [Google Scholar]
- Mounce, S.; Boxall, J.; Machell, J. Online application of ANN and fuzzy logic system for burst detection. In Water Distribution Systems Analysis; American Society of Civil Engineers: Reston, VA, USA, 2008; pp. 1–12. [Google Scholar]
- Puust, R.; Kapelan, Z.; Savic, D.; Koppel, T. A review of methods for leakage management in pipe networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Aksela, K.; Aksela, M.; Vahala, R. Leakage detection in a real distribution network using a SOM. Urban Water J. 2009, 6, 279–289. [Google Scholar] [CrossRef]
- Mounce, S.R.; Mounce, R.B.; Boxall, J.B. Novelty detection for time series data analysis in water distribution systems using support vector machines. J. Hydroinformatics 2011, 13, 672–686. [Google Scholar] [CrossRef]
- Mashford, J.; De Silva, D.; Marney, D.; Burn, S. An approach to leak detection in pipe networks using analysis of monitored pressure values by support vector machine. In Proceedings of the 2009 Third International Conference on Network and System Security, Gold Coast, QLD, Australia, 19–21 October 2009; pp. 534–539. [Google Scholar]
- Mounce, S.R.; Machell, J. Burst detection using hydraulic data from water distribution systems with artificial neural networks. Urban Water J. 2006, 3, 21–31. [Google Scholar] [CrossRef]
- Mounce, S.R.; Khan, A.; Wood, A.S.; Day, A.J.; Widdop, P.D.; Machell, J. Sensor-fusion of hydraulic data for burst detection and location in a treated water distribution system. Inf. Fusion 2003, 4, 217–229. [Google Scholar] [CrossRef]
- Jalalkamali, A.; Jalalkamali, N. Application of hybrid neural modeling and radial basis function neural network to estimate leakage rate in water distribution network. World Appl. Sci. J. 2011, 15, 407–414. [Google Scholar]
- Guyon, I.; Gunn, S.; Nikravesh, M.; Zadeh, L.A. Feature Extraction: Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 207. [Google Scholar]
- Valizadeh, S.; Moshiri, B.; Salahshoor, K. Leak detection in transportation pipelines using feature extraction and KNN classification. In Pipelines 2009: Infrastructure’s Hidden Assets; American Society of Civil Engineers: Reston, VA, USA, 2009; pp. 580–589. [Google Scholar]
- Cembrano, G.; Wells, G.; Quevedo, J.; Pérez, R.; Argelaguet, R. Optimal control of a water distribution network in a supervisory control system. Control Eng. Pract. 2000, 8, 1177–1188. [Google Scholar] [CrossRef] [Green Version]
- Farley, M.; Trow, S. Losses in Water Distribution Networks; IWA Publishing: London, UK, 2003. [Google Scholar]
- Farley, M.; Water, S.; Supply, W.; Council, S.C.; World Health Organization. Leakage Management and Control: A Best Practice Training Manual; Technical Report; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Araujo, L.; Ramos, H.; Coelho, S. Pressure control for leakage minimisation in water distribution systems management. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- Rossman, L.A. EPANET 2: Users Manual; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2000.
- Sonaje, N.P.; Joshi, M.G. A review of modeling and application of water distribution networks (WDN) softwares. Int. J. Techical Res. Appl. 2015, 3, 174–178. [Google Scholar]
- Dagum, E.B.; Bianconcini, S. Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Müller, M. Dynamic time warping. In Information Retrieval for Music and Motion. Springer: Berlin/Heidelberg, Germany, 2007; pp. 69–84. [Google Scholar]
- Senin, P. Dynamic time warping algorithm review. Inf. Comput. Sci. Dep. Univ. Hawaii Manoa Honolulu USA 2008, 855, 40. [Google Scholar]
- Keogh, E.J.; Pazzani, M.J. Derivative dynamic time warping. In Proceedings of the 2001 SIAM International Conference on Data Mining, Chicago, IL, USA, 5–7 April 2001; pp. 1–11. [Google Scholar]
- Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef]
- Serra, J.; Arcos, J.L. An empirical evaluation of similarity measures for time series classification. Knowl.-Based Syst. 2014, 67, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. In Soviet Physics Doklady; American Institute of Physics: College Park, MD, USA, 1966; Volume 10, pp. 707–710. [Google Scholar]
- Chen, L.; Özsu, M.T.; Oria, V. Robust and fast similarity search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, MD, USA, 14–16 June 2005; pp. 491–502. [Google Scholar]
- Marteau, P.F. Time warp edit distance with stiffness adjustment for time series matching. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31, 306–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 2011, 115, 3129–3152. [Google Scholar] [CrossRef]
- Bermudez-Edo, M.; Barnaghi, P.; Moessner, K. Analysing real world data streams with spatio-temporal correlations: Entropy vs. Pearson correlation. Autom. Constr. 2018, 88, 87–100. [Google Scholar] [CrossRef]
- de Winter, J.C.; Gosling, S.D.; Potter, J. Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Methods 2016, 21, 273. [Google Scholar] [CrossRef] [PubMed]
- Laih, Y.W. Measuring rank correlation coefficients between financial time series: A GARCH-copula based sequence alignment algorithm. Eur. J. Oper. Res. 2014, 232, 375–382. [Google Scholar] [CrossRef]
- Podobnik, B.; Stanley, H.E. Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvatic, D.; Stanley, H.E.; Podobnik, B. Detrended cross-correlation analysis for non-stationary time series with periodic trends. EPL Europhys. Lett. 2011, 94, 18007. [Google Scholar] [CrossRef] [Green Version]
- Zebende, G.F. DCCA cross-correlation coefficient: Quantifying level of cross-correlation. Phys. A Stat. Mech. Its Appl. 2011, 390, 614–618. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
Time Window | Flowrate Sensor 1 Flowrate Sensor 2 | Flowrate Sensor 1 Pressure Sensor 3 | Flowrate Sensor 2 Pressure Sensor 3 | Class |
---|---|---|---|---|
8 January 2017 05:15–8 January 2017 06:15 | DCCA/PCC | DCCA/PCC | DCCA/PCC | Negative |
8 January 2017 05:30–8 January 2017 06:30 | DCCA/PCC | DCCA/PCC | DCCA/PCC | Negative |
8 January 2017 05:45–8 January 2017 06:45 | DCCA/PCC | DCCA/PCC | DCCA/PCC | Positive |
8 January 2017 06:00–8 January 2017 07:00 | DCCA/PCC | DCCA/PCC | DCCA/PCC | Positive |
Pressure Sensors | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
mean | 23.13 | 39.43 | 60.10 | 39.91 | 27.37 | 40.71 | 34.01 | 43.92 | 48.14 | 37.59 | 48.80 | 33.30 | 48.33 | 43.53 |
std | 1.26 | 1.09 | 0.56 | 3.23 | 0.08 | 1.33 | 1.97 | 2.15 | 2.03 | 2.08 | 1.97 | 1.97 | 1.98 | 2.83 |
min | 19.43 | 36.21 | 58.47 | 30.78 | 27.07 | 35.57 | 26.82 | 35.51 | 40.92 | 29.35 | 41.52 | 26.12 | 41.11 | 35.82 |
25% | 22.50 | 38.87 | 59.67 | 37.90 | 27.35 | 40.30 | 33.03 | 43.01 | 47.00 | 36.57 | 47.84 | 47.84 | 32.33 | 47.36 |
50% | 23.54 | 39.79 | 60.30 | 41.17 | 27.39 | 41.12 | 34.20 | 44.12 | 48.34 | 37.64 | 48.97 | 48.97 | 33.50 | 48.54 |
75% | 24.13 | 40.29 | 60.55 | 42.44 | 27.43 | 41.57 | 35.42 | 45.51 | 49.69 | 39.15 | 50.22 | 50.22 | 34.71 | 49.74 |
max | 24.73 | 40.82 | 60.78 | 43.27 | 27.47 | 42.40 | 38.06 | 48.11 | 52.25 | 41.69 | 52.85 | 37.36 | 52.41 | 46.58 |
Pressure Sensors | Volumetric Flowrate Sensors | |||||||||||||
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | |
mean | 42.76 | 30.66 | 43.80 | 32.56 | 34.80 | 25.94 | 25.99 | 8.63 | 87.68 | 177.68 | 68.68 | 28.96 | 0.00 | 0.24 |
std | 4.66 | 4.59 | 4.53 | 0.61 | 0.49 | 0.77 | 0.45 | 5.50 | 18.30 | 35.93 | 28.46 | 11.69 | 0.00 | 1.32 |
min | 30.84 | 19.30 | 32.66 | 30.66 | 33.14 | 23.28 | 24.48 | 1.66 | 40.77 | 97.86 | 19.15 | 9.00 | 0.00 | 0.00 |
25% | 41.35 | 40.33 | 28.29 | 41.44 | 32.16 | 34.52 | 25.56 | 4.84 | 77.36 | 149.52 | 44.61 | 19.56 | 0.00 | 0.00 |
50% | 44.66 | 44.04 | 31.98 | 45.09 | 32.59 | 34.85 | 26.20 | 7.06 | 89.02 | 177.39 | 62.03 | 26.43 | 0.00 | 0.00 |
75% | 45.83 | 46.24 | 34.09 | 47.21 | 33.01 | 35.18 | 26.48 | 10.48 | 97.87 | 199.23 | 93.02 | 36.41 | 0.00 | 0.00 |
max | 48.76 | 36.57 | 49.66 | 33.65 | 35.66 | 26.78 | 26.79 | 30.18 | 148.58 | 279.15 | 136.23 | 58.02 | 0.00 | 11.77 |
ID | Volumetric Flowrate Sensors | ID | Pressure Sensors |
---|---|---|---|
1 | APA Caudal Atual | 3 | PB2 Pressão Caixa 1 |
2 | PB2 Caudal Caixa 1 | 7 | RSV R5 Pressão Caixa 2 |
6 | RSV R5 Caudal Caixa | 8 | QV Sonda de Pressão |
9 | QV Caudal | 11 | RPR Pressão Pre |
10 | HC Caudal | 13 | RPR Pressão Grv |
12 | RPR Pre | 15 | APA Pressão |
14 | RPR Caudal Grv |
Reported Time | Resolution Start | Resolution End | |
---|---|---|---|
1 | 8 January 2017 08:30 | 8 January 2017 09:00 | 8 January 2017 14:00 |
2 | 7 February 2017 12:10 | 7 February 2017 12:15 | 7 February 2017 16:00 |
3 | 1 May 2017 04:20 | 1 May 2017 04:45 | 1 May 2017 10:35 |
4 | 7 May 2017 08:25 | 7 May 2017 09:15 | 7 May 2017 17:30 |
5 | 12 May 2017 11:15 | 12 May 2017 14:00 | 12 May 2017 16:20 |
6 | 13 June 2017 10:18 | 13 June 2017 11:03 | 13 June 2017 14:47 |
7 | 5 July 2017 03:00 | 5 July 2017 03:30 | 5 July 2017 10:45 |
8 | 9 September 2017 09:00 | 9 September 2017 09:15 | 9 September 2017 12:30 |
9 | 12 September 2017 09:35 | 12 September 2017 09:40 | 12 September 2017 11:30 |
10 | 1 December 2017 19:02 | 1 December 2017 19:30 | 1 December 2017 10:57 |
11 | 8 December 2017 16:40 | 8 December 2017 17:30 | 8 December 2017 20:30 |
12 | 12 November 2017 12:26 | 12 November 2017 13:40 | 12 November 2017 16:50 |
Pressure Sensors | Volumetric Flowrate Sensors | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 7 | 8 | 11 | 13 | 15 | 1 | 2 | 6 | 9 | 10 | 12 | 14 | |
mean | 5.62 | 2.97 | 2.80 | 2.30 | 0.40 | 2.51 | 57.99 | 30.83 | 98.80 | 18.86 | 6.75 | 155.29 | 68.36 |
std | 0.43 | 0.31 | 0.01 | 0.01 | 0.00 | 0.03 | 34.05 | 14.19 | 32.67 | 12.22 | 12.08 | 47.43 | 36.04 |
min | 3.80 | 1.60 | 2.60 | 2.10 | 0.40 | 1.96 | 4.44 | 0.00 | 31.30 | 1.50 | 0.00 | 58.91 | 5.10 |
25% | 5.40 | 2.80 | 2.80 | 2.30 | 0.40 | 2.50 | 28.94 | 20.70 | 75.59 | 9.20 | 0.00 | 119.21 | 38.30 |
50% | 5.73 | 3.09 | 2.80 | 2.30 | 0.40 | 2.50 | 49.14 | 28.45 | 91.36 | 14.53 | 0.50 | 146.42 | 63.30 |
75% | 5.93 | 3.20 | 2.80 | 2.30 | 0.40 | 2.50 | 83.70 | 39.41 | 119.80 | 27.20 | 7.10 | 186.86 | 94.30 |
max | 6.30 | 3.50 | 3.03 | 2.40 | 0.40 | 2.70 | 159.80 | 78.46 | 208.30 | 56.20 | 51.40 | 331.95 | 186.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, S.C.; Vinga, S.; Henriques, R. Spatiotemporal Correlation Feature Spaces to Support Anomaly Detection in Water Distribution Networks. Water 2021, 13, 2551. https://doi.org/10.3390/w13182551
Gomes SC, Vinga S, Henriques R. Spatiotemporal Correlation Feature Spaces to Support Anomaly Detection in Water Distribution Networks. Water. 2021; 13(18):2551. https://doi.org/10.3390/w13182551
Chicago/Turabian StyleGomes, Susana C., Susana Vinga, and Rui Henriques. 2021. "Spatiotemporal Correlation Feature Spaces to Support Anomaly Detection in Water Distribution Networks" Water 13, no. 18: 2551. https://doi.org/10.3390/w13182551
APA StyleGomes, S. C., Vinga, S., & Henriques, R. (2021). Spatiotemporal Correlation Feature Spaces to Support Anomaly Detection in Water Distribution Networks. Water, 13(18), 2551. https://doi.org/10.3390/w13182551