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Abstract: The western Pacific subtropical high (WPSH) is one of the key systems affecting the summer
rainfall over the Yangtze River Valley in China. In this study, the forecasting capacity of the WPSH
for summer rainfall and streamflow is evaluated based on the WPSH index (WPSHI) derived from
the NCEP/NCAR reanalysis dataset. It has been found that WPSHI can identify extreme flood years
with a higher skill than normal wet years. Specifically, exceedance probability forecasting based
on WPSHI has higher skills for higher thresholds of rainfall. For streamflow, adding WPSHI as
a predictor only enhances the skill for higher thresholds of streamflow relative to models based on
antecedent streamflow. Under the same framework, performances of two postprocessing approaches
for dynamical forecasts, i.e., the model output statistics (MOS) approach and the reanalysis-based
(RAN) approach are compared. Hindcasts from Climate Forecast System version 2 from the National
Center for Environmental Prediction (CFSv2) are used to calculate WPSHI, which is used as the
predictor for rainfall and streamflow. The result shows that the RAN approach performs better than
the MOS approach. This study emphasizes the fact that the forecasting skill of exceedance probability
would largely depend on the selected threshold of the predictand, and this fact should be noticed in
future studies in the long-term forecasting field.

Keywords: western Pacific subtropical high; the Yangtze River Valley; model output statistics (MOS);
reanalysis-based (RAN) approach

1. Introduction

Managing water resources and controlling risks of flood damages largely depend
on the knowledge of the future rainfall and streamflow, leading to a relatively important
role of seasonal hydrological forecasting. For the data-driven method, the basic step for
making seasonal forecasts is to explore empirical relationships between predictors and
rainfall (streamflow). A statistical model that can be directly used for operational prediction
must utilize lag relationships, i.e., the relationship between antecedent ocean–atmospheric
signals and rainfall (streamflow) in the following season. This method has been frequently
used in the seasonal forecasting field [1,2].

At present, postprocessing outputs from dynamical forecasting systems is another
frequently used approach for seasonal rainfall forecasting [3–7]. The main reason for post-
processing is that general circulation models (GCMs) often have better skills for forecasting
large scale circulations than local precipitation [5,6]. Thus, forecasted circulation variables
can be treated as bridges between GCM forecasts and local rainfall [5,7,8]. Streamflow
can also be forecasted based on downscaling outputs of GCMs. Specifically, there are two
ways for downscaling of streamflow. The first method is to use a two-step procedure, i.e.,
downscaling GCM outputs to local precipitation and temperature, then using them to force
a hydrological model to output streamflow [9]. Another method is to downscale general
circulation variables to streamflow directly and skip the hydrological model [10–12].
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Considering the postprocessing methodology mentioned above, it is fundamentally
important to investigate synchronous relationships between rainfall (streamflow) and
circulation variables. The advantage of utilization of synchronous relationships is that
their physical mechanism is relatively clearer than lag relationships. In China, it is well
known that the western Pacific subtropical high (WPSH) is one of the most important
circulation systems affecting summer monsoon rainfall. The spatial distribution of summer
rainfall over China largely depends on the location and intensity of the WPSH. When the
WPSH extends southwestward, flood often occurs in the Yangtze River Valley, and the
summer rain band often locates more southern [13,14]. This mechanism can explain the
extreme flood years, such as 1998 in South China. Accordingly, the WPSH is considered
as an important factor affecting summer rainfall, and is treated as a key predictor in
operational forecasting [15]. Wang, Xiang and Lee [8] have shown that WPSH has higher
predictability, and also has a higher potential for seasonal forecasts for summer rainfall.

The Yangtze River Valley is the most important region in China, and the inter-annual
variation of the summer monsoon leads to frequent floods in this region. Although the rela-
tionship between the WPSH and East Asian summer monsoon has been studied [5,8,14,16],
some issues about the seasonal forecasting of summer rainfall and streamflow of this
region are still needed to be further explored, which are the main themes of this study. The
objectives of this study are summarized as follows.

The first goal of this study is to assess the forecasting skills for both summer rainfall
and streamflow over the Yangtze River Valley based on the perfect knowledge about WPSH.
For this task, we consider the effect of the definition of the positive event. Specifically, for
a given threshold T of the predictand Y (rainfall or streamflow), the positive event can be
defined as Y ≥ T. In this setting, the forecasting procedure will be a binary classification
problem. We view the forecasting skill as the function of T, and focus on forecasting skills
corresponding to different T (in other words, different definitions of the positive event). To
the best of the authors’ knowledge, limited efforts have been made for understanding the
relationship between the forecasting skill and the threshold T. If the characteristic of this
relationship is well understood, one can define a positive event that can be forecasted with
a much higher skill.

The second goal of this study is to compare different postprocessing approaches for
dynamical forecasting systems. Two different postprocessing procedures for dynamical
forecasts, i.e., the model output statistics (MOS) approach and the reanalysis-based (RAN)
approach, are tested and compared for predicting summer rainfall and streamflow over
the Yangtze River Valley. A review of the literature suggests that such comparison has
not been tried in previous studies in the long-term forecasting field. The Climate Forecast
System version 2 from the National Center for Environmental Prediction (CFSv2) is used
in this study. The forecasted WPSH index (WPSHI) by CFSv2 is used as the predictor for
forecasting summer rainfall and streamflow over the Yangtze River Valley.

The basic technique used in this study is logistic regression, which is used for gener-
ating exceedance probability forecasts of rainfall and streamflow. Note that probability
forecasting can describe uncertainty of the forecast, which is useful for decision-makers [17].
It should also be noted that summer streamflow is downscaled from WPSHI directly. This
approach allows us to downscale seasonal rainfall and streamflow based under the same
framework. Based on this framework, probability forecast can be applied for downscaling
of streamflow. For streamflow, both antecedent streamflow and WPSHI are used as predic-
tors, for considering both the initial state of the valley and the skill from the climate in the
target season (i.e., summer).

The structure of this manuscript is organized as follows. The dataset used in this
study and the definition of WPSHI are described in Section 2. In Section 3, we provide an
analysis of the predictability of rainfall based on the receiver operator characteristic (ROC)
analysis. Sections 4 and 5 present methods and results of a series forecasting experiments.
At last, discussions and conclusions are stated in Sections 6 and 7, respectively.
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2. Dataset Description
2.1. Rainfall Data and Streamflow

The NOAA’s PRECipitation REConstruction over Land (PREC/L) dataset [18] is used
as the observed rainfall data. Summer (June–July–August) streamflow of two stations
of the main stream of the Yangtze River, i.e., Hankou station in the middle reaches and
Datong station in the lower reaches, is also explored in this study. The record of Hankou
and Datong used in this study covers the period of 1960–2018. The location of the Yangtze
River Valley and two stations, i.e., Hankou and Datong, are shown in Figure 1.
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2.2. Reanalysis Dataset and Hindcasts of CFSv2

The NCEP/NCAR reanalysis dataset [19] is used in this study as the reanalysis fields
of meteorological variables. The geopotential height of 500-hPa (Z500) forecasted by the
CFSv2 system [20] is used as the forecasted fields. The hindcast dataset of CFSv2 from 1982
to 2010 is used in this study, and the operational forecasts from 2011 to 2018 are used to
extend the hindcast dataset to cover the period of 1982–2018. The skills of CFSv2 for global
and the East Asian summer monsoon have been evaluated by previous studies [21–23].
It has been found that CFSv2 can simulate many features of the East Asian monsoon
system [23]. However, CFSv2 often underestimates the intensity of the monsoon system,
which is true for both the Southern Asian monsoon and the East Asian monsoon [23].

For the middle time of each month, there are 24 members of forecasts released, which
is initiated at successive five days from the previous month (after 7th) to the current month.
The ensemble of these 24 models is used in this study. The forecasts with the released dates
in February, March, April, and May are selected, and the corresponding leading times are
4 months, 3 months, 2 months, and 1 month, respectively.

2.3. Definition of WPSHI

The starting point of our analysis is to define a western Pacific subtropical high
index (WPSHI) reflecting the characteristic of WPSH. The Z500 fields from CFSv2 and
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NCEP/NCAR reanalysis dataset are used to calculate the time series of WPSHI. The
definition of WPSHI used in this study is proposed by Sui et al. [24], who used the area
mean value of Z500 in JJA within the region (120◦ E–140◦ E, 10◦ N–30◦ N) for constructing
the WPSHI. This region corresponds to the largest variability of Z500 at the western North
Pacific. Figure 2a shows the standardized deviation of the Z500 field of the reanalysis
data. The calculation procedure is as follows. Firstly, the 1-order difference operator is
applied on the time series data for each grid to remove the low frequency change and
only retain the inter-annual component. Then, the standardized deviation is calculated for
each grid. At last, the standardized deviation is normalized based on the zonal mean and
zonal standardized deviation values. Although based on different procedure and different
time range, the region of the largest variability shown in Figure 2 is similar with the result
shown in Sui et al. [24].
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corresponding grade, and the thick red line is the 5880 gpm line of the corresponding mean Z500 field.

The WPSHI of the reanalysis data (denoted as WPSHI(R)) is standardized based on
the mean and standard deviation of the whole period 1960–2018, based on the following
equation:

XS =
X − X

Sd
(1)

where X is the time series needed to be standardized (here X is mean Z500 within the
region (120◦ E–140◦ E, 10◦ N–30◦ N)), X and Sd are the mean and standardized deviation
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of the X, and XS is the final standardized series. Figure 2b–d show the position of the
WPSH for different ranges of WPSHI, and it can be seen that WPSHI has a good indicative
capacity for the position of the WPSH.

When we standardize the WPSHI of CFSv2 (denoted as WPSHI(CFS)), the discontinu-
ity of the bias of the CFSv2 forecast is considered. One feature of the outputs of CFSv2 that
should be disposed of carefully is the abrupt change in 1999 in the CFSv2 forecast [20,25].
Kumar et al. [25] have shown that this abrupt change comes from the forecast bias for
SST in the equatorial Pacific and leads to changes in other variables. Figure 3a shows the
WPSHI(CFS) that is standardized based on the mean value of 1982–2018. It can be seen
that the forecasting bias is not stationary. Before 1999, there is an apparent larger negative
bias, which is true for all leads. Note that stationary bias does not affect the postprocessing
procedure, while nonstationary bias does. Thus, the final WPSHI(CFS) is calculated by the
following method. First, calculate the average value of the target zone of the Z500 field
from the CFSv2 forecast; then for the period of 1982–1998 and 1999–2018, the forecasting
climatology of each period are subtracted from sub-series of each period, respectively;
at last, the anomaly series is divided by the standard deviation calculated by the whole
period. The result of this method is shown in Figure 3b.
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Figure 3. Comparison between WPSHI from reanalysis dataset (WPSHI(R)) and from CFSv2 (WPSHI(CFS)) with different
released months. WPSHI (CFS) is standardized based on two different methods. (a) Standardized based on the mean
and the standard deviation of 1982–2018. (b) For 1982–1998 and 1999–2018, the mean value of each period is subtracted
respectively, then standardized by the standard deviation of the whole period, i.e., 1982–2018.
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3. ROC Analysis

Several metrics can be used to measure the linkage between the predictor and the pre-
dictand, with the most frequently used one likely being the Pearson correlation coefficient.
However, using the correlation coefficient neglects some important characteristics of the
linkage between predictors and the predictand, which will be discussed here. Specifically,
for rainfall of a given location, if a threshold T of rainfall is specified, we can define two
classes, i.e., a positive event with the rainfall larger than T, and a negative event with
the rainfall less that T. Then, we can test the capacity of the predictor to distinguish the
samples from these two classes. What we want to show is that this ability can be seen as
a function of the threshold T, i.e., it would change with T.

A term which is possible to be confused is the rainfall threshold. Sometimes, it is
used in the field of early warning of hydro-geological disasters [26]. In this case, rainfall is
the indicator for the target event. While in this paper, the rainfall threshold T is used to
define the positive event, i.e., the rainfall larger than T, which is the target event identified
by WPSHI.

The Receiver Operator Characteristic (ROC) curve is used here for evaluating the
forecasting ability. An ROC curve uses the hit rate (also known as the sensitivity) as the
y coordinate, versus the false alarm rate as the x coordinate. The area under the ROC
curve (AUC) can evaluate the capacity of WPSHI for discriminating between the positive
and the negative event. One simple explanation of AUC could be the probability to rank
a positive/negative sample pair, which is selected randomly from the sample set [27]. In
this approach, building a model for generating a formal probability forecast is not needed.
It is claimed that AUC should be treated as the potential skill of the predictor [28]. In
this section, we use AUC to evaluate the potential skill of WPSHI for indicating the class
of rainfall.

We have calculated the AUC values of WPSHI(R) for indicating class of the standard-
ized anomaly of rainfall with three thresholds, i.e., −1, 0, and 1, respectively (Figure 4). It
is clearly illustrated that AUC is higher for the threshold 1. This fact enlightens us that we
can find a better threshold of the predictand for which the binary classification has a higher
predictability. Figure 4 also shows that the grid located at the middle and lower reaches
of Yangtze River Valley have higher AUC values, indicating the higher predictability of
this region. Considering this fact, in the following analysis, we define the Yangtze River
Summer Rainfall Index (YRSRI) as the mean value of JJA rainfall over the box region
(27◦–32◦ N, 109◦–120◦ E) shown in Figure 4, which covers most of the middle and lower
reaches of the Yangtze River Valley. The YRSRI is also standardized by Equation (1).

The relationship between YRSRI and WPSHI is also analyzed (Figure 5). From
Figure 5a, it can be seen that WPSHI(R) and YRSRI are well correlated, and both series
show the same abrupt change as the late 1970s. This upward jump of WPSHI means that
the WPSH extends southwestward, leading to the wet anomaly over the Yangtze River
Valley from the late 1970s [29]. Another important fact is that for extreme flood years
such as 1980, 1983, and 1998, the WPSHI(R) has better indicative capacity for the YRSRI.
This is also illustrated by Figure 5b, which shows the scatterplot between WPSHI(R) and
YRSRI. Clearly, YRSRI only responds to WPSHI at the interval with higher WPSHI values
(larger than 0.5). Specifically, for the interval of WPSHI < 0.5 and WPSHI > 0.5, the Pearson
correlation coefficient between WPSHI and the YRSRI is 0.09 and 0.85, respectively. Ad-
ditionally, linear regression lines are fitted for the years of WPSHI < 0.5 and WPSHI > 0.5,
respectively, and the slopes are 0.45 and 1.23. AUC is calculated for different thresholds of
YRSRI (Figure 5c). Still, it is important to note that the highest AUC is reached when the
threshold is near 1. This is consistent with the result shown in Figure 4.
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Figure 5. (a) Time series of the YRSRI and WPSHI (R), and (b) the scatter plot of these two variables.
(c) The AUC values and their 95% confidence intervals corresponding to different thresholds of YRSRI.
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All results of this section indicate that the predictability largely depends on the
threshold of YRSRI, and the response of summer rainfall to the WPSH is asymmetric and
nonlinear. For larger WPSHI, i.e., when the WPSH is westward extending, the rainfall
of Yangtze River Valley is more sensitive to the variation of WPSHI. This feature leads
to different forecasting skills for different thresholds, and this will be investigated in the
following sections.

4. Modelling Methodology

Due to the limitation of the relatively small number of samples, we avoid using
sophisticated models, and a simple model, i.e., logistic regression, is used as the basic tool
for making probability forecasts for the binary classification. Based on logistic regression,
three testing procedures based on cross validation are implemented in this study. Technical
details of the three testing procedures, logistic regression, and the performance metrics are
described as follows.

4.1. Three Testing Procedures

In this study, three testing procedures, i.e., predictability assessment (PA), model
output statistics (MOS), and the reanalysis-based (RAN) approach are explored. These
approaches, except PA, have been discussed in Marzban et al. [30] in the background of
weather prediction. For illustrating differences among the above three testing procedures,
Figure 6 shows the corresponding schematic diagrams. The details are stated as follows.
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Figure 6. Three test procedures explored in this study for YRSRI. In the figure, LG means logistic regression and LR means
linear regression. For predicting streamflow, the procedures are similar with what have been shown in this figure, and the
only difference is that the antecedent streamflow is used as another predictor for forecasting the exceedance probability
of streamflow.

We first describe the procedures for predicting YRSRI. The procedures of PA and MOS
are quite straightforward. For PA, the procedure builds the relationship between WPSHI(R)
and YRSRI by logistic regression to forecast the exceedance probability of a given threshold.
Note that PA is not the real forecast, as the reanalysis data cannot be retrieved for making
operational forecasts. The result of PA reflects the predictability of the YRSRI based on
the perfect knowledge of the WPSHI in the following summer. Differently from PA, MOS
builds the relationship between WPSHI(CFS) and YRSRI. The advantage of MOS is that it
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is unbiased when making forecasts, which is not true for the perfect prog approach. This
fact makes MOS a popular method in the field of seasonal forecasts [31]. However, the
disadvantage is that the number of samples for training model is lower depending on the
length of hindcasts. In this study, as the hindcasts of CFSv2 are from 1982, only the years of
1982–2018 can be used for building MOS models.

The reanalysis-based (RAN) approach [30] consists of two steps for training the model
and making forecasts. The first step is to build an empirical model (linear regression is
used here) to map WPSHI(CFS) to WPSHI(R), and the second step is to map WPSHI(R) to
the predictand. Note that the error in the first step comes from the model deficiency, while
the error in the second step comes from the chaos of the climatic system. The advantage of
the RAN approach is that more samples can be used to train the model of the second step,
which is independent with the hindcasts of the dynamical model.

The testing procedures for streamflow are similar with that for YRSRI, and the only
difference is that the antecedent streamflow is used as another predictor when forecasting
JJA streamflow for PA, MOS, and the step 2 of the RAN approach.

All the tests of the above procedures are similar with the leave-one-out cross validation
(LOOCV); however, the difference with the LOOCV is that the whole training years and
the whole testing years are not the same in some cases. Specifically, the model is tested for
each year in the test year set, i.e., 1982–2018, no matter which testing procedure is used.
For testing a given year in 1982–2018, the current testing year is excluded from the training
set. For PA, the training set includes the years from 1960–2018; for MOS, the training set
includes the years from 1982–2018; for RAN, the training set for step 1 includes the years
from 1982–2018, while for the step 2, it contains the years from 1960–2018.

4.2. Logistic Regression

Logistic regression, which is a frequently used model for making probabilistic classifi-
cations, is used in this study to make class forecasts for rainfall and streamflow. An example
of an application of the Logistic regression on seasonal rainfall forecast can be seen in
Prasad et al. [32].

For a two class problem of a target variable Y, suppose that Y = 1 means the positive
class and Y = 0 means the negative class, and p = P(Y = 1), i.e., the probability of the
positive class. The logistic model supposes that the logit value, i.e., log

(
p

1−p

)
, is a linear

function of the predictor X:

log
(

p
1 − p

)
= β0 + β1X (2)

The coefficients of models can be estimated by the maximum likelihood estimation
method [33]. When the coefficients have been estimated, the probability p can be calcu-
lated by:

p =
exp

(
β̂0 + β̂1X

)
1 + exp

(
β̂0 + β̂1X

) (3)

4.3. Exceedance Probability Forecast

Exceedance probability forecasts of a given threshold are based on the logistic regres-
sion model. Here, we describe the method to generate exceedance probability forecasts of
all thresholds. In the following text, the predictand Y is the YRSRI or summer streamflow:

1. The series of thresholds are selected based on the observation of the predictand
Y. First, sort the Y values in the samples in 1982–2018 as the descending order{

Y[1], Y[2], Y[3], . . . , Y[n]

}
, where n is the number of all samples. Then, the thresholds

used here are
{

Y[5], Y[7], Y[8], . . . , Y[n−5]

}
. This setting will make at least 5 samples for

the positive or negative class.
2. Choose one threshold T in step 1 and one test year in the sample set (1982–2018). All

samples can be divided into two classes based on the value of the predictand Y, i.e.,
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years with Y ≥ T (the positive class) and years with Y < T (the negative class). Use
the training set to fit a logistic regression, and then use the fitted model to forecast
P(Y ≥ T) for the test year.

3. Repeat step 2 for all threshold T and all test years.

Note that for the threshold Y[i], the exceedance probability of the climatology forecast
is i/n.

For a larger or smaller threshold T, the sample set cut by T is not balanced, i.e., the
ratio of the number of positive class and the negative class (n+/n−) is not 1. In this case,
how large p = P(Y ≥ T) can allow us to forecast the occurrence of the positive class is
a key problem. Note that using the probability output from the model, or simply choose
p = 0.5 as the decision threshold, will be misleading [34]. The proper selection is that when

p
1−p > n+

n−
, we make a positive class forecast. Thus, if the forecasted p is larger than the

climatology forecast, the positive class will be forecasted.
It should also be noted that for a given test year, the exceedance probability P(Y ≥ T)

might not be monotonous decreasing as the threshold T increasing, which must be true
in theory. We use the shape constrained P-splines (SCOP-splines) [35] to smooth the
exceedance probability curve as monotonous decreasing. The calculation is implemented
based on the R package scam.

4.4. Skill Metric along the Threshold

Although neglected by other researchers, we want to show that the ability of WPSHI
for discriminating the positive/negative classes of rainfall (streamflow) largely depends on
the threshold. Thus, the skill for the exceedance probability forecasts is not calculated for
each year (as in Piechota et al. [36]) but for each threshold of the YRSRI or streamflow.

For a given threshold T, Brier score (BS) is used to calculate skill scores. The definition
of BS is:

BS =
1
n

n

∑
i=1

( fi − oi)
2 (4)

in which fi is the ith forecast of the probability of the positive class, oi is the observation of
the ith sample (1 means positive and 0 means negative), and n is the number of the samples.
The value of BS is between 0 and 1. BS = 0 means perfect forecast and BS = 1 corresponds
to the lowest skill forecast. Note that fi is calculated based on the model trained by the
sample set excluding the i sample, as the normal leave-one-out cross validation.

Based on BS, the BS skill score (BSS) can be calculated by:

BSS = 1 − BS
BSCLIM

(5)

where BSCLIM is the BS of the climatic forecast.
For different thresholds, BSS can be calculated respectively. Thus, we can get skill

scores for different threshold T.

5. Results
5.1. Results of PA

For evaluating the predictability of the YRSRI based on the WPSHI, skill is tested with
WPSHI(R) as the predictor, and this is the test procedure predictability assessment (PA)
that has been described in Section 4.1. Figure 7 shows the BSS of the logistic regression
models corresponding to various thresholds. One important feature shown in Figure 7
is that, generally, BSS is positive only when the threshold of the YRSRI is larger than 0.
Furthermore, BSS reaches the peak value (BSS = 31.5%) when the threshold of YRSRI is
0.97. This result is consistent with the relationship between AUC and the threshold, which
has been shown in Figure 5c.
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Figure 7. Brier skill score (BSS) of the forecast for different thresholds of the Yangtze River Valley
summer rainfall index (YRSRI) based on WPSHI(R).

Not surprisingly, the above effect of threshold on rainfall will also impact the pre-
dictability of streamflow. As summer streamflow is also affected by the antecedent state
of wetness of the basin, two models are built and tested for streamflow of Hankou and
Datong station. The first model only uses antecedent streamflow (streamflow of May) as
the predictor (denoted as AF hereafter), and the second model utilizes both antecedent
streamflow and WPSHI (R) as predictors (denoted as AF + WPSHI hereafter). If the model
AF + WPSHI has a higher skill than the model AF, it can thus be concluded that WPSHI
provides some skill independent of the memory of the basin.

Figure 8 shows the BSS for summer streamflow of Hankou and Datong. Note that
summer streamflow of Datong has relatively higher predictability than Hankou, which is
reflected in the BSS of the model AF for all thresholds. The most interesting result is that, for
both stations, WPSHI enhances the skill only for higher thresholds of streamflow, and this
feature is clearer for Datong than Hankou. The above results are consistent with the result
for the YRSRI, i.e., WPSHI shows higher skill for larger thresholds of the predictand. The
skill reflected in Figure 8 can also be explained by the coefficients in the logistic regression
models (Figure 9). As all predictors have been standardized, the coefficients can reflect the
influence of each predictor. The pattern in Figure 9 indicates that the WPSHI plays a much
dominant role in classification corresponding to higher thresholds of streamflow.
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Figure 8. Brier skill score (BSS) of the forecast for summer streamflow of Hankou and Datong based
on WPSHI(R). Two types of models are shown in the graph, i.e., the model only using antecedent
streamflow (AF) and the model using both antecedent streamflow and WPSHI(R) as predictors
(AF + WPSHI).
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Figure 9. Coefficients of the logistic regression model forecasting summer streamflow of Hankou
and Datong based on WPSHI(R) and antecedent streamflow (AF). The coefficients are the averaged
values of models for all testing years.
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5.2. Results of MOS and RAN

This section provides the results of two processing methods, i.e., the testing procedure
MOS and RAN. As shown in Figure 6, the first step is to forecast WPSHI(R) based on
WPSHI(CFS). A linear regression model is used for this task, and a leave-one-out test is
used to evaluate the skill of this linear regression model. For the four releasing months
(i.e., February, March, April, and May), the Nash–Sutcliffe efficiency coefficient is 0.43, 0.46,
0.48, and 0.62, respectively.

Figure 10 shows the skill scores of different leading times based on various thresholds.
Note that in almost all cases, BSS of the RAN approach is larger than the MOS approach,
indicating the advantage of the RAN approach. Similar to the characteristic we have shown
in Figure 7, BSS is also higher for larger thresholds of YRSRI. This result indicates that
WPSHI has higher skills for discriminate extreme events, especially flood summers.
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Figure 10. BSS by the MOS approach and the RAN approach for the YRSRI corresponding to four releasing months
of CFSv2.

The skill of streamflow forecasting based on the RAN approach corresponding to
CFSv2 released in May is shown in Figure 11. Not surprisingly, the feature shown in
Figure 8 is still obvious in Figure 11, which indicates the enhancement of the skill for larger
thresholds of streamflow.
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Figure 11. BSS by the RAN approach for summer streamflow of Hankou and Datong, corresponding
to the forecast of CFSv2 released in May.

6. Discussion

Although sophisticated models and various predictors have been used for building
seasonal forecasting models for the Yangtze River Valley, the effort to understand the
roles of some key predictors based on traditional statistical methods is still quite useful,
as this will lead to prediction with better interpretability. In this study, we focus on the
predictive capacity of the West Pacific Subtropical High Index (WPSHI) for summer rainfall
and streamflow over the Yangtze River Valley. WPSHI can be well forecasted by CFSv2,
which makes WPSHI useful as a bridge for generating forecasts of rainfall and streamflow
based on postprocessing of outputs of dynamical prediction systems. Thus, exploring the
synchronous relationship between WPSHI and rainfall (streamflow) is beneficial to making
skillful seasonal predictions.
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We have demonstrated that there is a nonlinear response of summer rainfall over the
Yangtze River Valley to the WPSHI, and rainfall is more sensitive to WPSHI when the value
of WPSHI is higher. Because of this feature, WPSHI only shows higher skills for forecasting
the exceedance probability of rainfall corresponding to larger thresholds. Similarly, for
streamflow, WPSHI only enhances the skill for higher thresholds relative to the persistence
forecast (i.e., the model with antecedent streamflow as the predictor). The above result
means that WPSHI is only a good indicator for identifying extreme flood summers of
the Yangtze River Valley. These findings allow us to select a new strategy for making
long-term hydrological forecasts, i.e., to find a proper definition of the positive event
based on selecting a proper threshold with higher predictability. We found that previous
studies have not adequately explored exceedance probability forecasting, such as Piechota
et al. [36], and this study provides a new perspective to treat probability forecasting.

With the same framework, two post-processing approaches, which have been applied
in the field of weather forecasting, are also explored. We have shown that the RAN approach
has a better performance than MOS. As discussed in the work of Marzban et al. [30], the
main advantage of the RAN approach is that more samples can be used to training the
model of step 2 as shown in Figure 6, as step 2 is independent from the dynamical model,
thus the number of samples is not limited by the hindcasts available. Although many
forecasting models based on downscaling technology have been explored [4,37], little
effort has been applied for comparison between different postprocessing approaches.
For example, for making forecasts for North China summer rainfall, Guo et al. [4] built
a downscaling model based on reanalysis data, and then substituted CFSv2 forecasting
values (bias-removed) to make real forecasts. In fact, this is the perfect prog (PP) approach.
It is possible that the skill could be enhanced when the circulation variables are not just
removed of bias but reforecasted, as what the RAN approach does. More comparisons are
still needed in future studies.

This study provides a framework for generating probability forecasting for rainfall and
streamflow of the Yangtze River Valley, then represents a contribution for the development
of an early warning system (EWS) [38] for the study area. We have shown that the
forecast can be skillful for larger thresholds of rainfall even from February. For converting
probability forecasts to binary forecasts, tools such as the ROC curve are useful for making
the trade-off between the benefit of hit and the cost of a false alarm, which is beyond the
topic of this paper.

7. Conclusions

In this study, we built forecasting models for summer rainfall and streamflow over
the Yangtze River Valley based on the knowledge of the western Pacific subtropical high
(WPSH). Several conclusions can be listed here:

1. The rainfall over the Yangtze River Valley is more sensitive to the variability of WPSHI
when WPSHI is high, while when WPSHI is less than 0.5, the rainfall shows low
sensitivity. Furthermore, the middle and lower reaches of Yangtze River Valley show
higher sensitivity to the variability of WPSHI than other regions. This characteristic
leads to higher forecasting skill of exceedance probability forecasts corresponding to
larger thresholds of rainfall.

2. The analysis of predictability of summer streamflow of the Yangtze River Valley
shows that WPSHI can only enhance the forecasting skill for binary classification
corresponding to larger thresholds of streamflow.

3. A comparison between two postprocessing approaches shows that the RAN approach
shows a higher skill than model output statistics (MOS), as RAN can utilize more
samples than MOS.

4. When building a long-term forecasting model for generating exceedance probability
forecasts, one should notice the effect of the threshold, and find a proper threshold
with a higher skill.
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