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Abstract: Accurate prediction of soil moisture is important yet challenging in various disciplines,
such as agricultural systems, hydrology studies, and ecosystems studies. However, many data-driven
models are being used to simulate and predict soil moisture at only a single depth. To predict soil
moisture at various soil depths with depths of 100, 200, 500, and 1000 mm from the surface, based
on the weather and soil characteristic data, this study designed two data-driven models: artificial
neural networks and long short-term memory models. The developed models are applied to predict
daily soil moisture up to 6 days ahead at four depths in the Eagle Lake Observatory in California,
USA. The overall results showed that the long short-term memory model provides better predictive
performance than the artificial neural network model for all depths. The root mean square error
of the predicted soil moisture from both models is lower than 2.0, and the correlation coefficient
is 0.80–0.97 for the artificial neural network model and 0.90–0.98 for the long short-term memory
model. In addition, monthly based evaluation results showed that soil moisture predicted from the
data-driven models is highly useful for analyzing the effects on the water cycle during the wet season
as well as dry seasons. The prediction results can be used as basic data for numerous fields such as
hydrological study, agricultural study, and environment, respectively.

Keywords: data-driven models; four layers; forecasting; soil moisture

1. Introduction

Soil moisture is a component of the natural hydrological cycle that is influenced by
rainfall, evapotranspiration, runoff, and fluctuations in the groundwater level, and it is an
important element that links climate, soil, and vegetation in this cycle. It is defined as the
moisture present in soil voids (space between soil particles) and controls the water–energy
exchange between the soil and the atmosphere, accounting for approximately 0.0001%
of the surface water [1]. Due to the high variability of soil moisture, it is very important
to understand changes in its spatial and temporal distribution. This information can be
used in many areas, such as weather forecasting, drought monitoring, runoff forecasting,
flood control, yield estimation, and reservoir management [2–7]. In certain fields, soil
moisture must be understood according to the soil depth. For example, for efficient yield
management, it is important to obtain the soil moisture information at relatively varied
depths because the root depth varies according to the crop type [8]. As the effect of
soil moisture, layer-by-layer, on flooding and drought varies in terms of hydrology, it is
essential to analyze the soil moisture at various depths rather than at specific depths.

There are two types of methodologies for measuring soil moisture content: direct
and indirect methods. The gravimetric method, which derives the moisture content from
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the weight difference of the collected soil samples before and after drying, is a typical
direct method. The indirect methods include those using a neutron probe, time-domain
reflectometry, and psychrometry [9,10]. However, to understand the spatial variability of
soil moisture throughout a region, soil moisture should be measured on a site-by-site or
point-by-point basis, using gravitational, nuclear, electromagnetic, tension, and humidity
techniques over a wide geographical area, which requires considerable time and expensive
equipment. For this reason, various physical models capable of predicting the amount
of soil moisture, such as the National Water Model (NWM), soil-plant-atmosphere-water
model (SPAW), the U.S. Department of Agriculture Hydrograph Laboratory model (US-
DAHL), and Sacramento-soil moisture accounting model (SAC-SMA) have been developed
and used [11–13].

To improve the quality of soil moisture prediction, techniques for predicting soil
moisture using a remote sensing system have been developed, which can provide a wide
range of practical information [14–17]. However, when predicting soil moisture using
a remote sensing system, a downscaling technique is required owing to the low spatial
resolution of the remote sensing system. Parinussa et al. [18] combined images of high-
and low-resolution measurement data and applied downscaling by using the smoothing
filter-based intensity modulation method. Chauhan et al. [19] downscaled the soil moisture
data using the special sensor microwave/imager and the advanced very high-resolution
radiometer data, with NDVI, land-surface temperature, and surface albedo used as the
parameters. Using this method, Ray et al. [20] downscaled the 25-km soil moisture data
obtained by the Advanced Microwave Scanning Radiometer on the Earth Observing System
to 1 km and compared them with the soil moisture data derived from the VIC-3L-model,
which is a physical/dynamic model. However, conventional measuring methods have
limitations in that the prediction reliability is reduced due to problems such as the increased
observation period, obsolescence of observation equipment, and missing points, as well
as the requirement of considerable time, manpower, and money. In addition, the soil
moisture data derived from remote sensing have limitations in terms of the lattice size and
observation depth and need to be calibrated as they are significantly influenced by factors
such as vegetation cover, soil temperature, and terrain. To overcome these limitations,
various data-driven models have recently been studied to estimate soil moisture.

With the recent development in computer technology, various models for estimating
soil characteristics, such as soil temperature and soil moisture, are being developed by
applying data-driven models such as artificial neural network (ANN), support vector
machine (SVM), and long short-term memory (LSTM) models. The main concept of data-
driven models, such as machine learning, is to determine the relationship between input
and output variables in the absence of a clear understanding of the physical process of a
certain system. These methods can be more effective than physical or dynamic models
for solving complex and nonlinear problems [21]. James et al. [22] applied convolutional
neural networks (CNN) for water segmentation using satellite imagery. The results have
shown that CNN is suitable for contributing to the wider use of satellite imagery for
water management. Furthermore, Kim et al. [23] applied a multilayer perceptron (MLP)
and an adaptive neuro-fuzzy inference system to predict the daily soil temperature at
two observation points (Champaign and Springfield stations) located in Illinois, USA. A
comparison of the simulation results with the observed data confirmed that both models
appropriately predicted the soil temperature. Feng et al. [24] confirmed the applicability
of various machine learning methods (extreme learning machine (ELM), generalized
regression neural networks, backpropagation neural networks, and random forest (RF))
using meteorological factors to predict soil temperature according to the soil depth. As a
result of the analysis, all models led to statistically significant results, and in particular, the
ELM model was excellent in terms of performance and computational speed. In addition,
Sutskever et al. [25] presented improved sequence-based data analysis results using a
sequence-to-sequence structure that can consider temporal dependence on the LSTM
model (LSTM-s2s). Various studies have been conducted to develop prediction models for
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soil moisture and soil temperature based on data-driven models [26–28]. Gill et al. [29]
developed two models to predict soil moisture by applying SVM and ANN and compared
their performances. Consequently, although both models performed well, SVM showed
a better performance. Prakash et al. [30] predicted soil moisture using machine learning
techniques, multiple linear regression, support vector regression (SVR), and recurrent
neural networks; evaluated the predictive power using mean square error (MSE) and
R2; and confirmed the applicability of various machine learning models for soil moisture
prediction. Achieng [31] predicted and evaluated soil moisture using machine learning
techniques such as the radial basis function (RBF), single-layer ANN, and deep neural
network, among which RBF was found to be outstanding. Adeyemi et al. [32] predicted soil
moisture through dynamic neural network modeling. The model was trained to generate a
one-day-ahead prediction of the volumetric soil moisture content based on the previously
conducted soil moisture, precipitation, and climatic measurements. In their study, the field
data obtained from three sites were used for the prediction, and an R2 value of above 0.94
was obtained in all sites through the model evaluation. Other studies have been conducted
for the prediction and evaluation of soil moisture using a machine learning technique and
comparison with existing methods [33–36].

However, in previous studies, since soil moisture at a single depth was simulated
and predicted, it is difficult to recognize the performance of the data-driven models for
soil moisture prediction at various depths from surface to deep layers. To address these
limitations, this study aims to develop prediction models to estimate soil moisture at
multiple depths by considering machine learning techniques (i.e., ANN) and deep learning
techniques (i.e., LSTM).

2. Materials and Methods
2.1. Study Area and Data

The Eagle Lake catchment (40◦37′ N latitude, 120◦43′ W longitude), located in Cal-
ifornia, USA, was designated as the study area (Figure 1). The hydrological data in this
area are in high demand due to the annual flood and drought damage caused by various
topographic and climate phenomena. Since flooding and drought are highly related to
soil moisture [37], it is important to observe and manage the soil moisture data to re-
duce the damage. The average annual precipitation in the region is 550 mm, where over
90% of the precipitation occurs from November to March. In addition, large amounts of
rainfall are generated in the region from extratropical cyclones or jet streams from the
Pacific Ocean [38], and heavy rains are generated from atmospheric rivers during the rainy
season [39,40].
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Figure 1. Study area and digital elevation model (DEM). The blue point indicates a SCAN observa-

tory for monitoring various elements. 
Figure 1. Study area and digital elevation model (DEM). The blue point indicates a SCAN observatory
for monitoring various elements.

In this study, five variables provided by the Soil Climate Analysis Network (SCAN),
containing air temperature, precipitation, vapor pressure, soil temperature, and relative
humidity, were used as input data for each model to predict soil moisture at four depths.
These data were collected on a daily time scale from November 2014 to February 2020 at
an observation station located in Eagle Lake (Figure 1). In the SCAN monitoring system,
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the dielectric constant measuring device was used for measuring soil moisture at multiple
depths. In this study, the soil temperature and soil moisture data were collected from
four layers at the monitoring site, with depths of 100, 200, 500, and 1000 mm from the
surface, for predicting the soil moisture at various depths. In this study, approximately
70% (November 2014 to June 2018) of the total data were used for training the model, and
the remaining 30% (July 2018 to February 2020) were used for testing.

2.2. Methods
2.2.1. Long Short-Term Memory Model (LSTM)

Long short-term memory (LSTM), introduced by Hochreiter and Schmidhuber (1997)
[41], is a deep learning model based on a recurrent neural network (RNN), which was
developed to solve the problem of gradient vanishing or gradient exploding of the error
slope in the RNN model when analyzing long-term data. LSTM model is used for learn-
ing continuously composed data, mainly for purposes such as language translation and
speech pattern recognition. In the field of hydrology, it is used for prediction through
learning the hydrological time-series data, such as runoff prediction [42–44] and water-level
prediction [45]. Figure 2 shows the structure and conceptual diagram of LSTM.
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Figure 2. Conceptual diagram of LSTM model.

LSTM is composed of several blocks, each of which comprises cells that can maintain
their state with time and three nonlinear gates that control the data flow (Figure 2). The
three gates are the forget gate (ft; Equation (6)), input gate (it; Equation (7)), and output
gate (ot; Equation (8)). The forget gate can determine how much of the information from
the previous block should be retained. The purpose of the input gate is to determine which
of the new information is stored in the cell. The output gate determines the final output
value among the information stored in the cell. The LSTM algorithm is operated from
an input sequence data Xt to final outcome Ot by looping through Equations (1)–(6) with
initial values of C0 = 0 and h0 = 0 [32].

ft = σ
(

W f ·[ht−1, xt] + b f

)
(1)

it = σ(Wi·[ht−1, xt] + bi) (2)

ot = σ(Wo·[ht−1, xt] + bo) (3)

C̃t = tan h(WC·[ht−1, xt] + bC) (4)

Ct = ft × Ct−1 + it × C̃t (5)

ht = Ot × tan h(Ct) (6)

where σ is the nonlinear activation function. Wf, Wi, Wo, and Wc are weight values of
forget gate, input gate, output gate, and memory cells, ht−1 denotes output data from
the previous cell, xt is current input data, and bf, bi, and bo are bias vectors of each gate,



Water 2021, 13, 2584 5 of 14

respectively. In addition, C̃t is the state of any cell generated from the activation function.
In this study, Rectified Linear Unit (Relu) functions were used as activation functions.

As the calculation process of LSTM is based on various parameters, it is some-
what more complicated and time-consuming than the other models but presents a high-
performance result. In addition, unlike other models, it is very useful for learning the
relation of long-term data because it uses the concept of a cell to store and update informa-
tion selectively according to the previous state and current input [46,47]. The LSTM model
is available as standard packages in various software programs, and the Keras framework
in the Python 3.4 was used to operate the models in this study.

2.2.2. Artificial Neural Network (ANN)

McCulloch and Pitts (1943) introduced the ANN model, which is a supervised ma-
chine learning algorithm. Generally, the ANN model is applied to solve problems for the
classification and prediction of specific variables that have undefined mathematical rela-
tionships. The ANN model is described as a mathematical structure capable of representing
the complex and nonlinear process correlating the input and output of the system [48]. The
ANN model has shown desirable performance for the analysis of nonlinear relationships
between independent and dependent variables in a given data set [49]. Figure 3 represents
the conceptual diagram of the ANN model.
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Figure 3. Conceptual diagram of the artificial neural network model [48].

The initial ANN model is a single-layer perceptron containing one input and output
layer. It is known as an effective method for linear separation, but it has the limitation
that it is hard to solve nonlinear problems [50]. To overcome this limitation, Multi-Layer
Perceptron (MLP), one of the most common neural network models, was implemented.
The MLP is a class of ANN model and is a complex network that consists of three different
types of layers, including input, hidden, and output layers (Figure 3). Since the ANN with
multiple layers was used, it can be called ANN, MLP, or ANN-MLP models (In this study,
the ANN term is used). These three layers contain sets of neurons that are fully connected
with neurons in the following layer, and each layer has different weight values. The ANN
model was designed to reduce the difference between estimated and targeted values by the
process of adjusting the parameters of the model. The ANN model can be mathematically
formulated as following Equation (7).

f1 = f (b1 + w11X1 + w21X2 + · · ·+ wn1Xn)
f2 = f (b2 + w12X1 + w22X2 + · · ·+ wn2Xn)
...
fm = f (bm + w1mX1 + w2mX2 + · · ·+ wnmXn)
Y = f (B0 + W10 f1 + W20 f2 + · · ·+ Wm0 fm)

(7)
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where f denotes the activation function in the layers, and X, w represent the input value
and weight values between layers. B and b indicate the biases in the output and hidden
layers. In the model algorithm, the X can be multiplied by the weight value (w), and then
the coupled value is converted by the activation function (f ). The representative activation
functions used in the ANN model include sigmoid, hyperbolic tangent function (tanh),
and Relu functions. In this study, the Relu function was used as an activation function for
the ANN model.

2.3. Model Development

In order to predict soil moisture for each layer at t + n time points, the historical
observation data from t − m to t time points were used as input for each model. Soil
moisture at four layers was predicted using Equation (8):

Sl(t + n) = f [I1(t, · · · , t−m) · · · Ik(t, · · · , t−m) & Sl(t, · · · , t−m)], l = 1, · · · , 4 (8)

where S is the soil moisture value, I indicates input variables, k is the number of input
variables, and l denotes the four layers. m means the previous time steps of input data, n
is the prediction time. In this study, the observed meteorological and soil moisture data
from the previous 12 days were used as input data to predict soil moisture from 1 to 6 days
ahead.

The collected input data required two pre-processing steps. The first step is to supple-
ment the missing values of the data generated during the observation, to enhance the data
continuity. The process of supplementing the missing values is essential for the data-driven
models, as the temporal continuity of the data is very important. In this study, a missing
value was substituted with the average value of the soil moisture data before and after the
time step. The second pre-processing step involved data normalization. As the unit and
range of each data set differ in each model, the function values are very likely to diverge,
thus degrading the simulation performance. Therefore, in this study, all input data were
converted to values between 0 and 1 through the normalization process (Equation (9)), as
follows:

Zi =
Xi − Xmin

Xmax − Xmin
(9)

where Zi is the normalized variable, Xi is the actual variable, and Xmax and Xmin are the
maximum and minimum values of the variable, respectively.

2.4. Evaluation Methods

In this study, the correlation coefficient (CC), root mean square error (RMSE), Nash–
Sutcliffe efficiency (NSE), and relative error (RE) were used to evaluate the predictive
performance of models applied for soil moisture prediction. CC is an index indicating the
degree of the linear relation between the actual and predicted values. A CC value close to
one indicates that the two variables have a very strong positive linear relation. RMSE is the
standard deviation of the prediction error, which is a difference between predicted results
and observation. As the value of RMSE is closer to zero, the prediction can be determined
to be more accurate with fewer errors. In addition, the NSE value of one indicates that
the model perfectly simulates the observed value, and a value less than zero means that
the average observed value is better than simulated results. RE denotes the ratio of the
difference between simulated and observed values to the observation. RE value of zero
means the best performance of simulated results. Equations (10)–(13) indicate the formula
for CC, RMSE, NSE, and RE, respectively.

CC =
∑
(
Ypre −Ypre

)(
Yobs −Yobs

)√
∑
(
(Ypre −Ypre

)2
√

∑
(
Yobs −Yobs

)2
(10)
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RMSE =

√
∑
(
Ypre −Yobs

)2

n
(11)

NSE = 1− ∑
(
Ypre −Yobs

)2

∑
(
Yobs −Yobs

)2 (12)

RE (%) =

(
Yobs −Ypre

)
Yobs

× 100 (%) (13)

where Yobs is the actual value, Ypre is the predicted value derived from the model, Yobs and
Ypre are the averaged value of Yobs and Ypre. n is the number of data sets.

3. Results
3.1. Comparison with Observations at Four Layers

In this study, the quality of daily soil moisture at four layers, predicted from the LSTM
and ANN models, was evaluated through a comparison with the soil moisture observed
at the soil moisture station in Eagle Lake. The evaluation was conducted on the daily soil
moisture data observed between July 2018 and February 2020.

Figure 4 shows scatter plots of the observed soil moisture and predicted results from
the two models (i.e., ANN and LSTM) for the four layers. All data-driven models predicted
soil moisture values acceptably, compared with the observed values. The comparison
results show that the LSTM model provides relatively better performance than the ANN
model for all depths. In addition, the predictive performance of the ANN model seems to
decrease as the lead time increases from 1 to 6 days. For example, for a lead time of 6 days,
the points representing soil moisture predicted from the ANN model appear to be relatively
far apart on the X = Y line. Moreover, it was found that the simulation performance for the
soil moisture of the surface layer was relatively worse than that of the deep layer. It can be
inferred that the large temporal variability of soil moisture in the surface layer than in the
deep layer affected the simulation results.

In this study, three statistical factors (e.g., CC, RMSE, and NSE) were used for the
statistical evaluation of the performance of the two models for soil moisture prediction.
With these factors, the prediction performance of the models, based on the predicted
amount and tendency of soil moisture, was compared with the observed data. Table 1
shows statistical metrics for the soil moisture predicted from the two data-driven models,
LSTM and ANN models. The prediction performance of the two models was found to be
generally acceptable based on the statistical factors. The statistical metrics showed that
the LSTM model showed relatively better predictive performance than the ANN model
in all layers. Considering that the CC values were ranged from 0.80 to 0.97 for ANN and
from 0.90 to 0.98 for the LSTM model, the RMSE value was lower than 2.0, and the NSE
values were ranged from 0.62 to 0.94 for ANN and from 0.74 to 0.96 for the LSTM model in
all layers. However, as the lead time increased, the difference in predictive performance
between the two models was obviously indicated. In the case of the ANN model, the
predictive performance decreased as the lead time increased, whereas the LSTM model
showed no significant differences.

3.2. Monthly Based Evaluation

It is very important to understand the prediction performance on a monthly basis,
as soil moisture significantly influences flooding and drought. Figures 5 and 6 show the
monthly based predictive performance of data-driven models for soil moisture prediction
with a lead time of 1 and 6 days for layers 1 and 4. Because the evaluation results of layers
2 and 3 were not significantly different from the results of layers 1 and 4, the evaluation
results for each top and deep layer were presented (i.e., layer 1 and layer 4). In the case of
layer 1 during the hydrologically wet season (November to March), the evaluation results
of the ANN model demonstrate that the average CC was analyzed to be 0.89 and 0.49,
RMSE values were 0.81 and 1.95, and NSE values were 0.72 and −0.04 for a lead time of 1
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and 6 days. The LSTM model showed better evaluation results, containing 0.85 and 0.87 for
CC, 0.99 and 0.90 for RMSE, and 0.65 and 0.71 for NSE. It was found that the ANN model
provides slightly better performance for a lead time of 1 day compared to the LSTM model,
but the predictive ability decreased as lead time increased.
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Figure 4. Comparison of predicted soil moisture with observations for the four layers ((a): Layer 1,
(b): Layer 2, (c): Layer 3, (d): Layer 4) using two data-driven models.

Table 1. Evaluation results obtained by statistical metrics for estimated soil moistures from the
two models.

Layers Lead Time (days)
ANN LSTM

CC RMSE NSE CC RMSE NSE

1

1 0.97 0.76 0.94 0.96 0.91 0.91
2 0.93 1.10 0.87 0.96 0.88 0.92
3 0.89 1.42 0.78 0.96 0.88 0.92
4 0.86 1.59 0.73 0.96 0.87 0.92
5 0.82 1.78 0.66 0.96 0.84 0.92
6 0.80 1.89 0.62 0.96 0.84 0.93

2

1 0.97 0.68 0.93 0.96 0.75 0.91
2 0.93 0.96 0.86 0.95 0.79 0.90
3 0.89 1.19 0.78 0.96 0.76 0.91
4 0.85 1.35 0.71 0.95 0.76 0.91
5 0.83 1.42 0.68 0.95 0.78 0.90
6 0.82 1.51 0.64 0.96 0.75 0.91
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Table 1. Cont.

Layers Lead Time (days)
ANN LSTM

CC RMSE NSE CC RMSE NSE

3

1 0.93 0.51 0.85 0.91 0.58 0.81
2 0.87 0.65 0.75 0.90 0.58 0.80
3 0.85 0.68 0.73 0.90 0.66 0.74
4 0.85 0.70 0.72 0.90 0.58 0.80
5 0.83 0.74 0.67 0.90 0.58 0.80
6 0.80 0.79 0.63 0.90 0.59 0.80

4

1 0.98 0.32 0.97 0.98 0.36 0.96
2 0.97 0.45 0.93 0.98 0.36 0.96
3 0.95 0.53 0.90 0.98 0.38 0.95
4 0.94 0.60 0.88 0.98 0.37 0.95
5 0.93 0.63 0.87 0.98 0.38 0.95
6 0.91 0.74 0.82 0.98 0.37 0.95
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Figure 6. Monthly evaluation results. (a–c) show the statistical metrics (CC, RMSE, and NSE) for
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of lead times.

In addition, these models showed sufficient potential for soil moisture prediction
during the dry season (April to October) as well as the wet season. Both models provide
suitable prediction performance with average CC values of 0.91 and 0.89, RMSE values of
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0.51 and 0.59, and NSE values of 0.81 and 0.78 for a lead time of 1 day (Figure 5). As shown
in Figure 6, both models provided moderate prediction results, but the ANN model has
worse performance for a lead time of 6 days. From the monthly based evaluation results, it
was concluded that the data-driven models are sufficient for soil moisture prediction for
wet and dry seasons for various soil layers, but it was recommended that the ANN model
is suitable for predicting soil moisture for only surface layer than a deep layer, and the
LSTM model can provide better soil moisture predictions for both surface and deep layers.

3.3. Errors in Predicted Soil Moisture

This study investigated how many errors are inherent in the prediction results as the
predictive models must be considered according to the characteristics of possible errors
for each layer and each lead time. For this, this study used another evaluation metric (i.e.,
RE (%)) to compare the errors in soil moisture prediction results from ANN and LSTM
models. Figure 7 shows box plots representing how much errors are inherent in predicted
soil moisture from both models for each layer and lead time from 1 to 6 days.
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As shown in Figure 7, it was found that the range of RE values became smaller as the
layer became deeper. For example, in layer 1, the maximum RE range was −400% to 100%
(lead time of t + 6), whereas in layer 4, it was found to be −100% to 75% (lead time of t + 3
and t + 4). This confirms that the ANN and LSTM models provide a lower prediction error
compared to the observation for deep layers, where the temporal variability of soil moisture
is relatively small. Moreover, this result shows that the data-driven models have sufficient
predictive power for soil moisture prediction for various depths from surface to deep
layers. However, comparing the performance of the two models, there was a significant
difference in the prediction performance, and the LSTM model clearly demonstrated better
prediction results than the ANN model for most of the lead times. ANN model shows
better performance for surface layers and short-term prediction. For example, ANN model
has better predictive performance for lead time of 1 h and layer 1 (CC = 0.97, RMSE = 0.76,
and NSE = 0.94) compared to the LSTM model (CC = 0.96, RMSE = 0.91, and NSE = 0.91).
In addition, the ANN model has values of RE ranged from −100% to 80%, whereas the
LSTM model has RE values that are ranged from −150% to 80%. Therefore, this study
suggested that it is important to select an appropriate model for soil moisture prediction
for various depths and lead times.

4. Discussions and Conclusions

In this study, the soil moisture at multiple layers was predicted using meteorological
variables with two data-driven models (i.e., ANN and LSTM). This study has the novelty
that it provides soil moisture prediction results for multiple layers instead of only a single
layer, as shown in other studies. In addition, the prediction results produced from two
data-driven models indicated that both models have sufficient potentials for soil moisture
analysis as an alternative to the physical-based methods and support to improve the
physical-based model’s prediction performance. The results of this study demonstrated
that both models showed acceptable prediction results, but the LSTM model showed better
predictive performance than the ANN model. More specifically, the LSTM model provided
high accurate prediction results with a lead time of 1 to 6 days for four layers. However,
the ANN model showed better performance for short-term and surface layers than the
LSTM model.

4.1. Limitations of the Data-Driven Models

Although both models showed highly accurate soil prediction results for multiple
depths, there are some limitations for the prediction of soil moisture using data-driven
models. First, the quality of predicted soil moisture during specific periods showed lower
performance compared to the observation. Second, the predicted soil moisture at the third
layer showed poor performance than the other three layers.

The main reason for these errors is uncertainties during the training process of the
models. The quality and quantity of training data sets affect the performances of the models
since the data-driven models predict the time series using the information learned from
the data sets [43]. This study used five input data sets to predict the soil moisture for each
layer, and if there is uncertainty in only one of them, it can affect the output quality. For
example, missing values of observation data affect the training process of the data-driven
models and model parameters, which can be transmitted as uncertainty in the validation
results. Therefore, it is essential to use quality-proven data sets for model training in order
to avoid the malfunction of the data-driven models.

Another reason for the errors in the predicted soil moisture is the uncertainty in the
process of driving the models. The data-driven models are called the black-box model
because it is difficult for users to capture the uncertainty generated during operating
the models. The performances of the data-driven models are significantly influenced by
parameters and model structure that are important for training. Inappropriate parameter
selection is able to cause overfitting or false-learned issues, which can provide prediction
results with lower accuracy. Therefore, it is essential to find optimal values such as dropout
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rate, various model parameters and use proper equations before the training. Although
this study tried to find optimal values of some key parameters and kept them constant
after the initial setting, some errors were shown in the predicted soil moisture. The effect
of the parameters on model performance is out of the scope of this study, and it will be an
important task for future studies.

4.2. Implications for Hydrological Analysis Using Soil Moisture

In this study, two types of data-driven models were applied to predict soil moisture at
multiple depths in Eagle Lake point as a case study. The proposed models showed excellent
performance, and they can be effective alternatives or supporters of the physical-based
model for soil moisture prediction. It was found that the data-driven models can be effective
approaches for soil moisture analysis in the area where it is difficult to observe soil moisture
directly at various depths due to physical limitations. In addition, it is noteworthy that the
data-driven models can collaborate with agricultural, hydrology, and environmental fields
that have different purposes of soil moisture usage for each layer. It is expected that the use
of the data-driven models will become valuable as the quality of forcing data is improved,
and as the technology of computing systems is getting more advanced, the application of
complicated data-driven models will be becoming more convenient.

This study suggests that the data-driven models are an effective alternative to the
layer-by-layer soil moisture observation method, which has temporal/spatial constraints
and is expensive. Moreover, the data-driven models, which have been verified for their
reliability in soil moisture prediction, can be used as a reference method for improving the
quality of physical models based on complex and diverse equations and methodologies.
In this study, a method for predicting the soil moisture value after six days was proposed
using meteorological and soil characteristic data. To improve the usability of the predicted
results, in future studies, we intend to develop a method for predicting soil moisture for
long-term lead time. In addition, based on the results of this study, we intend to develop a
complementary method that supplements the weaknesses of both the data-driven models
and physical models.
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