Designing a Flood Storage Option on Agricultural Land: What Can Flood Risk Managers Learn from Drought Management?
Abstract
:1. Introduction
2. Learning from Drought Management
2.1. Background to Farmer-Centred Drought Programmes
2.1.1. Fallowing Agreements
2.1.2. MDB Exit Package
2.2. Key Design Elements to Take Forward to Floodplain Floodwater Storage Agreements
2.2.1. Balancing Objectives
2.2.2. Managing the Agreement
2.2.3. Eligibility Criteria
2.2.4. Payment Design
2.2.5. Externality Management
3. Discussion
3.1. Incentive Design Principles
3.2. Incentive Design Elements
3.2.1. Contracting Parties
3.2.2. Minimum Conditional Participation Requirements
3.2.3. Layering or Stacking?
3.2.4. Option Design and Evaluation
3.2.5. A Role for Intermediaries
3.3. Next Steps
3.3.1. Opportunity Mapping
3.3.2. Consider Farmer Preferences
Farming has a key role to play in flood management. Where farmers provide a service in mitigating flood risk to help protect others (for example, by providing land that can be flooded seasonally to reduce the severity or frequency of flooding in urban areas downstream) this must be a coherent, planned element of total catchment management. Farmers must be fairly compensated for delivering this service([46], page 5).
3.3.3. Consider Public Preferences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kousky, C.; Michel-Kerjan, E. Examining flood insurance claims in the United States: Six key findings. J Risk Insur. 2017, 84, 819–850. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. Flood risk in a range of spatial perspectives–from global to local scales. Nat. Hazard Earth Sys. 2019, 19, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Ahmadiani, M.; Ferreira, S.; Landry, C.E. Flood insurance and risk reduction: Market penetration, coverage, and mitigation in coastal North Carolina. South Econ. J. 2019, 85, 1058–1082. [Google Scholar] [CrossRef]
- IPBES. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for the Americas of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Rice, J., Seixas, C.S., Zaccagnini, M.E., Bedoya Gaitán, M., Valderrama, N., Anderson, C.B., Arroyo, M.T.K., Bustamante, M., Cavender-Bares, J., Diaz-de-Leon, A., et al., Eds.; IPBES Secretariat: Bonn, Germany, 2018; 44p. [Google Scholar]
- Lwasa, S.; Mugagga, F.; Wahab, B.; Simon, D.; Connors, J.; Griffith, C. Urban and peri-urban agriculture and forestry: Transcending poverty alleviation to climate change mitigation and adaptation. Urban Clim. 2014, 7, 92–106. [Google Scholar] [CrossRef]
- Shade, C.; Kremer, P. Predicting Land Use Changes in Philadelphia Following Green Infrastructure Policies. Land 2019, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Soto-Montes-de-Oca, G.; Bark, R.; González-Arellano, S. Incorporating the insurance value of peri-urban ecosystem services into natural hazard policies and insurance products: Insights from Mexico. Ecol. Econ. 2020, 169, 106510. [Google Scholar] [CrossRef]
- Christophers, B. The allusive market: Insurance of flood risk in neoliberal Britain. The allusive market: Insurance of flood risk in neoliberal Britain. Econ. Soc. 2019, 48, 1–29. [Google Scholar] [CrossRef]
- UN. Sendai Framework for Disaster Risk Reduction 2015–2030. UNISDR/GE/2015–ICLUX EN5000, 1st ed.; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Shultz, J.M.; McLean, A.; Herberman Mash, H.B.; Rosen, A.; Kelly, F.; Solo-Gabriele, H.M.; Youngs, G.A., Jr.; Jensen, J.; Bernal, O.; Neria, Y. Mitigating flood exposure. Disaster Health 2013, 1, 30–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wachinger, G.; Renn, O.; Begg, C.; Kuhlicke, C. The Risk Perception Paradox—Implications for Governance and Communication of Natural Hazards. Risk Anal. 2013, 33, 1049–1065. [Google Scholar] [CrossRef]
- Ntontis, E.; Drury, J.; Amlôt, R.; Rubin, G.J.; Williams, R. Emergent social identities in a flood: Implications for community psychosocial resilience. J. Community Appl. Soc. 2018, 28, 3–14. [Google Scholar] [CrossRef]
- Shepard, S.; Boudet, H.; Zanocco, C.M.; Cramer, L.A.; Tilt, B. Community climate change beliefs, awareness, and actions in the wake of the September 2013 flooding in Boulder County, Colorado. J. Environ. Stud. Sci. 2018, 8, 312–325. [Google Scholar] [CrossRef]
- Smith, A.; Jenkins, K. Climate change and extreme weather in the USA: Discourse analysis and strategies for an emerging ‘public’. J. Environ. Stud. Sci. 2013, 3, 259–268. [Google Scholar] [CrossRef]
- Davlasheridze, M.; Miao, Q. Does governmental assistance affect private decision to insure? An empirical analysis of flood insurance purchases. Land Econ. 2019, 95, 124–145. [Google Scholar] [CrossRef]
- Anderson, S.E.; Bart, R.R.; Kennedy, M.C.; MacDonald, A.J.; Moritz, M.A.; Plantinga, A.J.; Tague, C.L.; Wibbenmeyer, M. The Dangers of Disaster-Driven Responses to Climate Change. Nat. Clim. Change 2018, 8, 648–653. [Google Scholar] [CrossRef]
- Beck, U. Risk Society: Towards a New Modernity; Sage: London, UK, 1992. [Google Scholar]
- Lamond, J.; Penning-Rowsell, E. The robustness of flood insurance regimes given changing risk resulting from climate change. Clim. Risk Manag. 2014, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Achtnicht, M.; Osberghaus, D. The demand for index-based flood insurance in a high-income country. Ger. Econ. Rev. 2017, 20, 217–242. [Google Scholar] [CrossRef] [Green Version]
- Reynaud, A.; Nguyen, M.-H.; Auber, C. Is there a demand for flood insurance in Vietnam? Results from a choice experiment. Environ. Econ. Policy Stud. 2018, 20, 593–617. [Google Scholar] [CrossRef]
- Joseph, R.; Proverbs, D.; Lamond, J. Assessing the value of intangible benefits of property level flood risk adaptation (PLFRA) measures. Nat. Hazards 2015, 79, 1275–1297. [Google Scholar] [CrossRef] [Green Version]
- Glenck, K.; Fischer, A. Insurance, prevention or just wait and see? Public preferences for water management strategies in the context of climate change. Ecol. Econ. 2010, 69, 2279–2291. [Google Scholar] [CrossRef]
- FEMA. Federal Insurance and Mitigation Administration. National Flood Insurance Program: Community Rating System. A Local Official’s Guide to Saving Lives, Preventing Property Damage, and Reducing the Cost of Flood Insurance. FEMA B 573/2018; FEMA: Washington, DC, USA, 2018.
- Zahran, S.; Weiler, S.; Brody, S.D.; Lindell, M.K.; Highfield, W.E. Modeling National Flood Insurance Policy Holding at the County Scale in Florida, 1999–2005. Ecol. Econ. 2009, 68, 2627–2636. [Google Scholar] [CrossRef]
- Frimpong, E.; Petrolia, D.R.; Harris, A. Community-Level Flood Mitigation Effects on Household Flood Insurance and Damage Claims; Working Paper No. 17-1; Mississippi State University, Department of Agricultural Economics: Starkville, MS, USA, 2017. [Google Scholar]
- Li, J.; Landry, C.E. Flood risk, local hazard mitigation, and the Community Rating System of the National Flood Insurance Program. Land Econ. 2018, 94, 175–198. [Google Scholar] [CrossRef]
- Brody, S.D.; Zahran, S.; Highfield, W.E.; Bernhardt, S.P.; Vedlitz, A. Policy Learning for Flood Mitigation: A Longitudinal Assessment of the Community Rating System in Florida. Risk Anal. 2009, 29, 912–929. [Google Scholar] [CrossRef] [PubMed]
- Acreman, M.; Maltby, E.; Maltby, A.; Bryson, P.; Bradshaw, N. Wholescape Thinking: Towards Integrating the Management of Catchments, Coast and the Sea through Partnerships–A Guidance Note Natural Capital Initiative, London. 2018. Available online: www.naturalcapitalinitiative.org.uk (accessed on 2 September 2021).
- Kousky, C.; Walls, M. Floodplain conservation as a flood mitigation strategy: Examining costs and benefits. Ecol. Econ. 2014, 104, 119–128. [Google Scholar] [CrossRef]
- Treasury, H.M. The Green Book. Central Government Guidance on Appraisal and Evaluation; The Stationery Office: London, UK, 2020. [Google Scholar]
- Zanderson, M.; Oddershede, J.S.; Pedersen, A.B.; Nielsen, H.Ø.; Termansen, M. Nature based solutions for climate adaptation–Paying farmers for flood control. Ecol. Econ. 2021, 179, 106705. [Google Scholar] [CrossRef]
- Posthumus, H.; Rouquette, J.R.; Morris, J.; Gowing, D.J.G.; Hess, T.M. A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England. Ecol. Econ. 2010, 69, 1510–1523. [Google Scholar] [CrossRef]
- Caldecott, B.; Hall, S.; Ives, E. A Greener, More Pleasant Land: A New Market-Based Commissioning Scheme for Rural Payments. Bright Blue Campaign: London, UK, 2017. [Google Scholar]
- H.M. Government. Flood and Coastal Risk Management: Policy Statement; H.M. Government: London, UK, 2020. [Google Scholar]
- H.M. Government. A Green Future: Our 25 Year Plan to Improve the Environment. 2018. Available online: www.gov.uk/government/publications (accessed on 16 September 2021).
- DEFRA. Environmental Land Management. Policy Discussion Document; Department for Environment Food & Rural Affairs: London, UK, 2020.
- Rolfe, J.; Whitten, S.; Windle, J. The Australian experience in using tenders for conservation. Land Use Policy 2017, 63, 611–620. [Google Scholar] [CrossRef]
- Elliott, J.; Day, B.; Jones, G.; Binner, A.; Smith, G.; Skirvin, D.; Boatman, N.D.; Tweedie, F. Scoping the Strengths and Weaknesses of Different Auction and PES Mechanisms for Countryside Stewardship; Defra: London, UK, 2015. Available online: http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=19134 (accessed on 2 September 2021).
- Mohamad Ibrahim, I.H.; Gilfoyle, L.; Reynolds, R.; Voulvoulis, N. Integrated catchment management for reducing pesticide levels in water: Engaging with stakeholders in East Anglia to tackle metaldehyde. Sci. Total Environ. 2019, 656, 1436–1447. [Google Scholar] [CrossRef]
- Otto, S.; Poe, G.; Just, D. Provision point reverse auction: A new auction mechanism with applications for conservation contracts. J. Agric. Resour Econ. 2021, 46, 134–151. [Google Scholar]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.; Rowcroft, P.; Everard, M.; Couldrick, L.; Reed, M.; Rogers, H.; Quick, T.; Eves, C.; White, C. Payments for Ecosystem Services: A Best Practice Guide; Defra: London, UK, 2013. [Google Scholar]
- Bark, R.H.; Acreman, M.C. Investigating social processes that underpin local flood risk management action. Environ. Sci. Policy 2020, 109, 95–102. [Google Scholar] [CrossRef]
- NFU. Integrated Water Management; National Farmers Union: London, UK, 2017. [Google Scholar]
- Bark, R.H.; Martin-Ortega, J.; Waylen, K. Stakeholders’ views on natural flood management: Implications for the nature-based solutions paradigm shift? Environ. Sci. Policy 2021, 1115, 9–98. [Google Scholar] [CrossRef]
- PVID-MWD. PVID-MWD Forbearance and Fallowing Program Agreement. 2004, pp. 31–47. Available online: https://www.iid.com/home/showpublisheddocument/17553/636862744820530000 (accessed on 2 September 2021).
- CH2MHILL. IID/SDCWA Water Conservation and Transfer Project EIR/EIS–Scoping Summary Report. 2010. Available online: https://www.usbr.gov/lc/region/g4000/IID_FEIS/Vol_5/Apdx_B.pdf (accessed on 16 September 2021).
- Kendy, E.; Aylward, B.; Ziemer, L.S.; Richter, B.D.; Colby, B.G.; Grantham, T.E.; Sanchez, L.; Dicharry, W.B.; Powell, E.M.; Martin, S.; et al. Water transactions for streamflow restoration, water supply reliability, and rural economic vitality in the western united states. J. Am. Water Resour. Assoc. 2018, 54, 487–504. [Google Scholar] [CrossRef] [Green Version]
- SDCWA. Overview: Water Authority Fact Sheet; San Diego County Water Authority: San Diego, CA, USA, 2020.
- Federal Register. Federal Register: November 6, 2000, Volume 65, Number 215, Pages 66557–66558; Office of the Federal Register: College Park, MD, USA, 2000. [Google Scholar]
- Federal Register. Federal Register: September 27, 1999, Volume 64, Number 186, Pages 52102–52104; Office of the Federal Register: College Park, MD, USA, 1999. [Google Scholar]
- SDCWA. Colorado River Water Transfer Agreement; San Diego County Water Authority: San Diego, CA, USA, 2020; Available online: https://www.sdcwa.org/wp-content/uploads/2020/11/watertransfer-fs.pdf (accessed on 16 September 2021).
- IID. Imperial Irrigation District Fallowing Program Status Report; IID: Imperial, CA, USA, 2016. [Google Scholar]
- MWDSC. Securing Colorado River Supplies: An Urban-Agricultural Partnership in the Palo Verde Valley. 2018. Available online: http://www.mwdh2o.com/PDF_NewsRoom/6.4.2_Water_Reliability_Palo_Verde.pdf (accessed on 16 September 2021).
- PVID-MWD. PVID-MWD Forbearance and Fallowing Program Term Sheet for Forbearance and Fallowing Program Agreement. 2004, p. 2. Available online: https://www.mwdh2o.com/media/18478/palo-verde-irrigation-dist-mwd-forbearanceandfallowingprogramagreement.pdf (accessed on 16 September 2021).
- Page, S.; Goesch, T.; Dyack, B.; Hone, S.; Hughes, N. Purchasing Water in the Murray Darling Basin; ABARE Report to the Department of Environment and Water Resources; Department of Environment and Water Resources: Canberra, Australia, 2007. [Google Scholar]
- Kuehne, G.; Bjornlund, H. Non-profit-maximising values and attitudes influencing irrigators’ management response to new policy instruments. In Incentives and Instruments for Sustainable Irrigation; Bjornlund, H., Ed.; WIT Press: Southampton, UK, 2010; pp. 75–89. [Google Scholar]
- Wong, P. 2009; ‘Small Block Irrigators Exit Grant Package Expanded’. Media Release: Senator the Hon Penny Wong, Minister for Water and Climate Change. Available online: https://parlinfo.aph.gov.au/parlInfo/download/media/pressrel/2GET6/upload_binary/2get60.pdf (accessed on 16 September 2021).
- O’Donnell, M.; Colby, B.G. Dry-Year Water Supply Reliability Contracts: A Tool for Water Managers. 2009. Available online: https://climas.arizona.edu/sites/default/files/pdfewsr-dyo-final-5-12-101.pdf (accessed on 16 September 2021).
- Grafton, R.Q.; Wheeler, S. Economics of water recovery in the Murray-Darling Basin, Australia. Annu. Rev. Resour. Econ. 2018, 10, 3.1–3.24. [Google Scholar] [CrossRef]
- IID. Imperial Irrigation District 2004–2005 Fallowing Program Solicitation Announcement; IID: Imperial, CA, USA, 2004. [Google Scholar]
- MWDSC-PVID. Landowner Agreement for Fallowing in the Palo Verde Irrigation District (“Landowner Agreement”). 2004. Available online: https://www.mwdh2o.com/media/18478/palo-verde-irrigation-dist-mwd-forbearanceandfallowingprogramagreement.pdf (accessed on 16 September 2021).
- MWDSC-PVID. Fallowing Easement Deed. PVID-IID Landowner Agreement. Exhibit C. 2004. Available online: https://www.mwdh2o.com/media/18478/palo-verde-irrigation-dist-mwd-forbearanceandfallowingprogramagreement.pdf (accessed on 16 September 2021).
- Jones, L.; Colby, B. Farmer participation in temporary irrigation forbearance: Portfolio risk management. Rural. Connect. 2010, 43–48. [Google Scholar]
- MWDSC. Metropolitan Funded Palo Verde Irrigation District Forbearance and Fallowing Program Intentionally Created Surplus Certification Report. Calendar Year 2010. 2010. Available online: https://www.mwdh2o.com/media/18478/palo-verde-irrigation-dist-mwd-forbearanceandfallowingprogramagreement.pdf (accessed on 16 September 2021).
- IID. Final Report 2/12/04, revised October 7, 2004. IID 2003 13-Month Emergency Fallowing Program Participants. December 1, 2003–December 31, 2004; IID: Imperial, CA, USA, 2004. [Google Scholar]
- Kullman. Draft: Regional Assessment of Fallowing Programs. Lower Rio Grande Basin. Prepared for: New Mexico Interstate Stream Commission; Kullman Water Engineering, LLC: Santa Fe, NM, USA, 2020. [Google Scholar]
- MWDSC-PVID. Short Term Emergency Fallowing Program 2009–2010; 2009; 14p. 2009, p. 14. Available online: https://www.mwdh2o.com/media/18478/palo-verde-irrigation-dist-mwd-forbearanceandfallowingprogramagreement.pdf (accessed on 16 September 2021).
- IID. Imperial Irrigation District Fallowing Program Payments; IID: Imperial, CA, USA, 2017. [Google Scholar]
- Downey Brand Attorneys LLP. Memorandum: PVID Federal Income Tax Issues on Water Transfers. Draft. 2004. Available online: https://www.mwdh2o.com/media/18478/palo-verde-irrigation-dist-mwd-forbearanceandfallowingprogramagreement.pdf (accessed on 16 September 2021).
- Smith, E. “SLIDES: PVID/MWD Land Management, Crop Rotation and Water Supply Program”. Evolving Regional Frameworks for Ag-to-Urban Water Transfers. 11 December 2008. Available online: https://scholar.law.colorado.edu/evolving-regional-frameworks-for-ag-to-urban-water-transfers/4 (accessed on 16 September 2021).
- IID. Notice of Funding Availability Local Entity Mitigation Competitive Grant Program. IID Local Entity Mitigation: 2010 Competitive Grant Program Request for Proposals; IID: Imperial, CA, USA, 2010. [Google Scholar]
- IID. Imperial Irrigation District Local Entity Mitigation Payments; IID: Imperial, CA, USA, 2020. [Google Scholar]
- IID. 2021 Local Entity Closing Disbursement Program: Request for Consideration for Grant Award, Overview and Interest Form; IID: Imperial, CA, USA, 2021. [Google Scholar]
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; JHU Press: Baltimore, MA, USA, 1990. [Google Scholar]
- Perman, R.; Ma, Y.; Common, M.; Maddison, D.; McGilvray, J. Natural Resource and Environmental Economics, 4th ed.; Pearson Education: London, UK, 2011. [Google Scholar]
- Bark, R.; Kirby, M.; Connor, J.; Crossman, N.D. Water allocation reform to meet environmental uses while sustaining irrigation: A case study of the Murray-Darling Basin, Australia. Water Policy 2014, 16, 739–754. [Google Scholar] [CrossRef]
- Kiem, A.S. Drought and water policy in Australia: Challenges for the future illustrated by the issues associated with water trading and climate change adaptation in the Murray-Darling Basin. Global Environ. Chang. 2013, 23, 1615–1626. [Google Scholar] [CrossRef] [Green Version]
- Haensch, J.; Wheeler, S.A.; Zuo, A. Do neighbors influence irrigators’ permanent water selling decisions in Australia? J. Hydrol. 2019, 572, 732–744. [Google Scholar] [CrossRef]
- Bateman, I.J.; Balmford, B. Public funding for public goods: A post-Brexit perspective on principles for agricultural policy. Land Use Policy 2018, 79, 293–300. [Google Scholar] [CrossRef]
- ADA. An Introduction to Internal Drainage Boards. 2017. Available online: https://www.ada.org.uk/wp-content/uploads/2017/12/IDBs_An_Introduction_A5_2017_web.pdf (accessed on 16 September 2021).
- Campos, I.; Ng, K.; Penha-Lopes, G.; Pedersen, A.B.; Capriolo, A.; Olazabal, M.; Meyer, V.; Gebhardt, O.; Weiland, S.; Nielsen, H.Ø.; et al. Chapter 3-The Diversity of Adaptation in a Multilevel Governance Setting. In Adapting to Climate Change in Europe, Sanderson; Sanderson, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 49–172. ISBN 9780128498873. [Google Scholar]
- Hardiman, S.C.; Dunstone, N.J.; Scaife, A.A.; Smith, D.M.; Ineson, S.; Lime, J.; Fereday, D. The impact of strong El Niño and La Niña events on the North Atlantic. Geophys. Res. Lett. 2019, 46, 2874–2883. [Google Scholar] [CrossRef]
- Morris, J.; Brewin, P. The impact of seasonal flooding on agriculture: The spring 2012 floods in Somerset, England. J. Flood Risk Manag. 2014, 7, 128–140. [Google Scholar] [CrossRef]
- Arellano-Gonzalez, J.; Moore, F.C. Intertemporal arbitrage of water and long-term agricultural investments: Drought, groundwater banking, and perennial cropping decisions in California. Am. J. Agric. Econ. 2020, 102, 1368–1382. [Google Scholar] [CrossRef]
- Zhang, X. Conjunctive surface water and groundwater management under climate change. Front. Environ. Sci. 2015, 3, 59. [Google Scholar] [CrossRef]
- Casalini, F.; Bagherzadeh, M.; Gray, E. Building the Resilience of New Zealand’s Agricultural Sector to Floods; OECD Food, Agriculture and Fisheries Paper; No 160. May 2021; OECD: Paris, France, 2021. [Google Scholar]
- Gray, E.; Baldwin, K. Building the Resilience of United State’s Agricultural Sector to Extreme Floods; OECD Food, Agriculture and Fisheries Paper; No 161; OECD: Paris, France, May 2021. [Google Scholar]
- Cologna, V.; Bark, R.H.; Paavola, J. Flood risk perceptions and the UK media: Moving beyond “once in a lifetime” to “Be Prepared” reporting. Clim. Risk Manag. 2017, 17, 1–10. [Google Scholar] [CrossRef]
- Navrud, S.; Vondolia, G.K. Farmers’ preferences for reductions in flood risk under monetary and non-monetary payment modes. Water Resour. Econ. 2020, 30, 100151. [Google Scholar] [CrossRef]
- Stone, J.; Costanigro, M.; Goemans, C. Public opinion on Colorado water rights transfers: Are policy preference consistent with concerns over impacts? J. Agric. Resour. Econ. 2018, 43, 403–422. [Google Scholar]
- IPCC. Climate Change 2021, The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
SDCWA-IID | MWDSC-PVID | MDB Exit | |
---|---|---|---|
Balancing objectives | Explicit | Explicit | Explicit |
Managing the agreement | |||
Subscription conditions | Yes | Yes | N/A |
Solicitation | Yes | Yes | N/A |
Rules for repeat participation | Yes | Yes | N/A |
Monitoring and enforcement | Yes | Yes | N/A |
Emergency programme | Yes | Yes | |
Eligibility criteria | |||
Targeting | Yes | Yes | Yes |
History of farming | Yes | Yes | ? |
Minimum field/farm size | Yes | Yes | Yes |
Infrastructure requirements | Yes | No | ? |
History of compliance | Yes | Yes | ? |
Payment structure | |||
Up-front payment | No | Yes | Yes |
Exercise payment | Yes | Yes | N/A |
Option trigger | No | Yes | N/A |
Externality management | |||
Environmental | Yes | Yes | ? |
Local-level third party impacts | Yes | Yes | No |
Regional-level third party impacts | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bark, R.H. Designing a Flood Storage Option on Agricultural Land: What Can Flood Risk Managers Learn from Drought Management? Water 2021, 13, 2604. https://doi.org/10.3390/w13182604
Bark RH. Designing a Flood Storage Option on Agricultural Land: What Can Flood Risk Managers Learn from Drought Management? Water. 2021; 13(18):2604. https://doi.org/10.3390/w13182604
Chicago/Turabian StyleBark, Rosalind H. 2021. "Designing a Flood Storage Option on Agricultural Land: What Can Flood Risk Managers Learn from Drought Management?" Water 13, no. 18: 2604. https://doi.org/10.3390/w13182604
APA StyleBark, R. H. (2021). Designing a Flood Storage Option on Agricultural Land: What Can Flood Risk Managers Learn from Drought Management? Water, 13(18), 2604. https://doi.org/10.3390/w13182604