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Abstract: Urban flood modeling benefits from new remote sensing technologies, which provide high-
resolution data and allow the consideration of small-scale urban key features. Since high-resolution
data often result in large simulation runtimes, coarsening of the 2D grid via resampling techniques
can be used to achieve a good balance between accuracy and computation time. However, the
representation of urban features and topographical properties degrades, since small-scale features are
blurred. Therefore, narrow flow paths between buildings are often not considered, building’s sizes are
overestimated, and their arrangement in the grid changes. Thus, flow paths change and waterways
are blocked, leading to incorrect inundations around buildings. This paper develops a method
to improve the simulation results of coarser grids by adding virtual surface links (VSL) between
buildings. The VSL mimic the flow paths of a high-resolution model in the areas of interest. The
approach is developed for dual-drainage 1D/2D models. The approach shows a visible improvement
at the localized level where the VSL are applied, in terms of under/overestimating flooding and a
moderate overall improvement of the simulation results. Relatively to the model resolution of 2 m,
the computational time, by applying this method, is reduced by 93.6% when using a 5 m grid and by
99% when using a 10 m grid. For a small test case, where the local effects are investigated, the error
in the maximum water volume, relative to a grid size of 2 m, is reduced from 69.63% to 5.03% by
using a 5 m grid and from 152.75% to 22.92% for a 10 m grid.

Keywords: urban flood modeling; buildings; resampling; 1D/2D dual-drainage models; 2D overland
flow models

1. Introduction

Flash floods, resulting from heavy rainfall events, constitute a serious risk to urban
areas [1]. The recent events of 14 July 2021, in Germany and Belgium, remind us that this is
a global threat that is not limited to developing countries. Urban areas are characterized by
a heterogeneous area, which influences the flow routing. The flood extent is significantly
affected by the underground and surface drainage systems, as well as other key urban
features [2]. Buildings, in particular, affect the flow path of water, and thus the flood
inundation [3]. By means of new technologies, such as light detection and ranging (LiDAR),
small-scale features can be better considered in flood models, and enable a more accurate
simulation [4]. The complex interaction of the water flow with the surrounding leads to a
great variation in the flood dynamics in space and time. Additionally, local changes in flow
regimes result in complex flow characteristics [5]. One-dimensional models, which benefit
from a fast simulation runtime, are insufficient for representing complex topographies,
because of their limitations in representing 2D flood routing [6]. Hence, 2D hydraulic
models and high-resolution data are necessary for an accurate representation of urban key
features and 2D flood routing. As a consequence, the computation time increases, often
leading to unreasonable runtimes [7]. Hence, a compromise between computation time
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and accuracy is required. Established resampling techniques, such as nearest, bilinear, or
cubic, can be used to coarsen the digital terrain model (DTM) resolution and reduce the
runtime [8]. In resampling, the grid values of a finer grid are interpolated to generate a new
raster dataset with a different resolution. This approach leads to an undesired degradation
in the representation of urban features, including the shape, location, and elevation of such
features [9]. Buildings often lead to an overestimation of the flood depths, due to a larger
blockage effect of the routes for flooding [10]. Resampling may lead to the merging of close
buildings, whereby narrow flow paths between buildings may disappear. The opposite can
also occur if small buildings are suddenly removed due to the coarsening of the grid [11].
Subsequently, flow routing processes are significantly changed, affecting the local and
temporal pattern of the flow [12]. Moreover, coarsening the grid has a large influence on
the depiction of the topography. Resampling techniques reduce the heterogeneity and
complexity of the topography, resulting in a change in the flood wave travel time and the
spatial distribution of potential floodplains [7,12].

Research regarding a good balance between precision and model runtime, and im-
provements in the representation of urban features have been the focus of recent researchers.
The recommended mesh size for urban areas varies depending on the study area and the
aim. While Maksimovic and Prodanovic suggest a mesh size of 1–2 m [13], Mark, Weesakul,
Apirumanekul, Aroonnet, and Djordjević recommend a range of 1–5 m [14]. Parallelization
methods, through the use of multiple cores, can reduce the computational time signifi-
cantly [15]. Several GPU-based parallel algorithms have been developed, which enable
large-scale simulation using the full St. Venant equation and high-resolution data [16].
Besides parallelization methods, different mesh design approaches have been developed
to speed up the computation time, with reducing deterioration in the overall accuracy. A
common method constitutes the adaptive mesh refinement method (AMR). The mesh is
refined locally, where high-resolution data are necessary [17]. Another procedure consti-
tutes the active-cell method and the multigrid method. The first method speeds up the
computational time by focusing on the areas that are affected by inundation, whereas the
multigrid method divides the area into several grids with different resolutions. These
grids are classified into the main grid, and upstream and downstream extended grids. To
speed up the calculations, the extended grids are simulated with a lower resolution [18].
However, these methods show a limited improvement in the computational time, since
finer resolutions are still required for the relevant areas, and those are the ones responsible
for very small computational time steps, bounded by the Courant number (or accuracy
restrictions in the case of implicit schemes). Another alternative approach is to preserve the
fine terrain details by including them in coarser models. In this case, the 2D calculations
depend on constructing linear data tables for the accurate non-linear interpolation of the
instantaneous volume stored in a cell and the corresponding surface area, taking into
account the detailed terrain geometry (e.g., [19]). Another method to represent small-scale
features in coarser grids more accurately constitutes porosity models. Porosity models
aim to keep the computational benefits of coarse grids, by including the overall impact
of smaller-scale effects, through the use of porosity parameters [20]. These approaches,
however, may not allow complex independent paths that may exist between buildings to
be described. These may be responsible for the transfer of discharge across two coarse grid
cells that may not necessarily share common cell boundaries.

This paper introduces a methodology that is applicable to 1D/2D dual-drainage
models with a regular grid, for improving the simulation results for coarser grids, while
benefiting from faster simulation times. One-dimensional/two-dimensional dual-drainage
models are the state-of-the-art tool for the simulation of floods in urban areas. Here, a 1D
sewer network model (minor system) is coupled with a 2D overland flow model (major
system) for simulating the bi-directional interaction between the major and the minor
system. This allows for a more precise simulation, by considering the retention capacity
of the sewer system, as well as the surcharge and drainage flow from and to the drainage
system [21]. Since the accurate representation of the flow around the buildings is one
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of the most important aspects for an accurate flood simulation in urban areas, this new
approach focuses on improving the flow routing of narrow flow paths between buildings
in coarser grids. Herein, the concept of virtual surface links (VSL) is developed with the
aim of mimicking high-resolution flow paths in a coarser 2D model. As such, narrow flow
paths can be explicitly included in the simulation while keeping the efficient computational
time of coarser grids. A detailed description of the new approach, the validation procedure,
and applied models are presented in Section 2. Section 3 shows the results and provides
an overview of the effectiveness of the new approach. The results are evaluated in the
Discussion section, and the final section summarizes and concludes the work.

2. Materials and Methods

This approach focuses on the narrow flow paths around buildings. Since resampling
techniques change the topographic properties and representations of buildings, the flow
routing is altered in urban areas. This study assumes that high-resolution meshes provide
a more accurate representation of small-scale features and thus a better prediction of flow
routing and flood inundation extent [12]. Buildings are considered by the building blocking
(BB) method, whereas the ground elevation is increased by the height of the buildings [22].
The validation follows a two-stage procedure. The first is conducted for a very small area
for testing, and the second larger area is for final validation.

2.1. Virtual Surface Links (VSL) Principle and Setup

The principle of the virtual surface links (VSL) approach is to mimic the overland flow
of high-resolution meshes. One-dimensional virtual links are added to the 1D/2D dual-
drainage flow model, similarly to conduits of a sewer network model. The VSL represent
the narrow flow paths around buildings, obtained from a high-resolution mesh. The
high-resolution flow paths around buildings are determined by an automatic delineation
of the 1D overland flow based on the fine mesh. VSL focus on the simulation around (or
between) buildings, correcting water accumulations due to missing small-scale waterways,
and incorrect representations of buildings. Since this concept requires a 1D model for
simulating the VSL, a 2D overland flow model for representing the bi-dimensional flow
surface and an exchange module for capturing the bi-directional interaction between
the two, it is more suitable to implement directly in 1D/2D dual-drainage models. By
allowing a bi-directional flow, backwater effects and reverse flow can be considered. The
dual-drainage model allows the flow to be calculated, and the exchange between the
two models for each time step, at the correct time and without continuity losses [23]. A
detailed mathematical description of the flow equations and the coupling process is given
in Section 2.4. The advantages of the VSL concept are that high-resolution flow paths can
be included by only increasing the computational time marginally. Since most of the area is
simulated in 2D, the VSL method ensures an accurate flow simulation by reducing incorrect
backwater effects close to urban features (e.g., buildings, etc.) due to coarsening. Also,
complex flow paths that may connect non-neighboring cells are kept as the VSL method
alone defines the entry and exit points. Lastly, this approach benefits from an easy and fast
implementation by means of automatic delineation, which only needs to be defined in the
areas of interest.

In the first step, the setup of the 1D flow paths is conducted in PCSWMM [24,25].
An automatic delineation function is used to determine the flow path on the 2 m mesh
to create an overland drainage network consisting of nodes and VSL. In the second step,
the generated drainage system is reduced to sites where the coarser representation of
buildings leads to an obstruction of the flow path determined by the 2 m model. In
the third step, the generated nodes are converted into storage nodes and outfall nodes,
representing the starting point and endpoint of the obstruction. In the fourth and final step,
manual adaptions of the flow paths are required for some sites, which in the first run still
show an incorrect inundation. Herein, the calculated flow paths of the benchmark model
serve as validation for the generated overland drainage network. The shape of the VSL is
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defined as open rectangular with dimensions according to the represented topography of
the considered site. To investigate the influence of the storage volume and to examine if
this volume can be used to counteract changes in the building’s contour and steepness of
the topography due to the resampling, different storage coefficients of 1, 0.1, and 0 (=no
storage) are used. By means of these values, a range of small fractions regarding the cell’s
size is considered as storage area. The roughness of VSL is set according to the roughness
of the local topography. Thereby, the center of each cell/link decides the value of roughness
taken. The pre-processed DEMs and the roughness rasters are used to set up the model
for the 2D overland flow model. Rainfall is assigned to the 2D overland flow model. An
overview of the isotropic roughness distribution over the case study is shown in Figure 1.
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2.2. Model Runs and Validation Strategy

The investigations of the developed VSL are examined for different model resolutions
including a 2 m, 5 m, and 10 m mesh resolution. To validate the methodology the results of
the 2 m mesh functions are used as a benchmark for the validation procedure since the aim
is to improve the results of the models using a coarser grid. The validation is conducted in
a two-stage procedure. In the first stage, only a very small area is considered. This is used
for verifying the suitability of the method in retaining the flow features of the finer grid.
At this stage rainfall intensities of 5, 30 and 50 years return period, namely, 31.6 mm/h,
47.5 mm/h, and 52 mm/h, as well as a rainfall intensity of 40 mm/h are considered. In
the second stage, a larger area is used for discussing the method applicability to real cases
in terms of accuracy and computational time, and final validation. At this stage, VSL are
extended to the whole case study, which consists of an urban dense area in the northwest
of the city of Kulmbach (see Section 2.3).

Results are validated by investigating the simulated maximum water depth of all
mesh resolutions. The 2 m model is used as observation data and the benchmark model.
To deal with the different mesh resolutions, the results of coarser models with a 5 m and
10 m resolution are resampled by a simple nearest neighbor approach to a 2 m resolution
with the same extent and cell number. The nearest neighbor approach guarantees that the
water depth of each cell is maintained without any averaging and interpolation.

To validate the simulation results, three different goodness-of-fit (GOF) criteria are
applied that determine the accordance of the coarser models with the benchmark model.
The first GOF constitutes the coefficient of determination r2, which gives information about
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the linear correlation between simulated (i.e., 5 m and 10 m) and observed data (2 m),
as follows:

r2 =

 ∑n
i=1(Oi −O)(Pi − P)√

∑n
i=1 (Oi −O)

2
√

∑n
i=1 (Pi − P)2

2

(1)

where Oi = observed value, Pi = predicted value, O = average of observed values, P = average
of predicted values and n = total amount of data. A value of 1 is interpreted as a full
correlation and a value of 0 as no correlation. The second GOF is the LogNSE, which
weights small values higher and mitigates extreme values, and is calculated as follows:

log NSE = 1− ∑n
i=1 (ln Oi − ln Pi)

2

∑n
i=1 (ln Oi − ln O)

2 (2)

The range is from −∞ to 1, where 1 means a perfect match of the observed and pre-
dicted values. The last GOF is the root mean square error (RMSE), which gives information
about the error distribution, and is calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(Pi −Oi)
2 (3)

The range of this GOF reaches from 0 to ∞ with a perfect fit at 0.
For further investigation, the confusion matrix is determined by means of the flood

extent. The cells are classified into dry and flooded cells, whereas a threshold regarding
the max. water depth of 0.1 m is used to define a cell’s state (Table 1).

Table 1. Schematic of confusion matrix.

Observation (2 m Simulation)

Dry (0) Flooded (1)

Stimulation
Dry (0) True negative

(0/0)
False negative

(0/1)
NPV
FOR

Flooded (1) False positive
(1/0)

True positive
(1/1)

PVV
FDR

TNR
FPR

TPR
FNR

Total
Accuracy

The cells are classified into the following four categories:

• True positive (TP) = number of cells that are flooded in the simulation and observation;
• True negative (TN) = number of cells that are not flooded in the simulation and observation;
• False positive (FP) = number of cells that are flooded in the simulation, but dry in

the observation;
• False negative (FN) = number of cells that are dry in the simulation, but flooded in

the observation.

By means of these cells the percentage of the correct prediction of dry and flooded
cells is determined by the following expression (Table 2):
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Table 2. Determined terms by means of the confusion matrix.

Type Description Equation

Positive predictive value (PVV) Percentage of correctly predicted flooded cells PVV = ∑ TP
∑ TP+∑ FP

False discovery rate (FDR) Percentage of wrongly predicted flooded cells FDR = ∑ FP
∑ TP+∑ FP

False omission rate (FOR) Percentage of wrongly predicted dry cells FOR = ∑ FN
∑ FN+∑ TN

Negative predictive value (NPV) Percentage of correctly predicted dry cells NPV = ∑ TN
∑ FN+∑ TN

True positive rate (TPR) Percentage of flooded cells that are also simulated as flooded TPR = ∑ TP
∑ TP+∑ FN

False negative Rate (FNR) Percentage of flooded cells that are not simulated as flooded FNR = ∑ FN
∑ TP+∑ FN

False positive rate (FPR) Percentage of flooded cells that are not simulated as dry FPR = ∑ FP
∑ FP+∑ TN

True negative Rate (TNR) Percentage of flooded cells that are also simulated as dry TNR = ∑ TN
∑ FP+∑ TN

Total accuracy (ACC) Percentage of the overall correctly simulated cells ACC = ∑ TP+∑ TN
∑ TP+∑ FP+∑ TN+∑ FN

2.3. Site Description

Kulmbach is a city in Germany located at the River Main. As a case study, a small part
in the southwest of Kulmbach is considered. As shown in Figure 2, the catchment area is
characterized by a steep area in the southeast and an urban dense area in the northwest.
Since the new approaches focus on buildings, the highly dense area covered by buildings
in the northwest is of high interest (red marked area in Figure 2). The case study is chosen
due to its steep characteristic, which enhances the blockage effect of buildings.
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2.4. Model Description

Hydraulic models are commonly used for flood simulation in urban areas. Depending
on the complexity of topography and computational resources, 1D or 2D approximations
of the shallow water equations (SWE) are used to simulate the motion of water [26]. These
models can simulate the flow routing on complex topographies and thus constitute a
common tool for urban flood modeling. In this work, the commercial software Personal
Computer Storm Water Management Model (PCSWMM), the 1D Storm Water Management
Model (SWMM), and the 2D diffusive wave model P-DWave 2D are used. The mathematical
background is given in the following sub-sections.
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2.4.1. PCSWMM/SWMM—1D Dynamic Model

PCSWMM is commercial software, which combines the SWMM engine with the sup-
port of a geoinformation system for water management tasks. The water transportation is
calculated by means of a drainage system consisting of storage nodes, conduits, and outfall
nodes. The one-dimensional flow is simulated with the following St. Venant equations:

∂A
∂t

+
∂Q
∂x

= S (4)

∂Q
∂t

+
∂
(
Q2/A

)
∂x

+ gA
∂H
∂x

+ gAS f = 0 (5)

where Q = discharge [m3/s], t = time [s], A = cross-sectional area [m2], 2, x = distance [m],
H = hydraulic head [m], Sf = friction slope (head loss per unit length), S = VSL sink/source
term, and g = gravitational constant [m2/s]. The equation for the dynamic routing process
is obtained by combining Equations (4) and (5), as follows:

∂Q
∂t

= 2U
∂A
∂t

+ U2 ∂A
∂x
− gA

∂H
∂x
− gAS f (6)

where U = flow velocity [m/s]. By means of finite difference approximations, Equation (6)
can be written as follows:

∆Q
∆t

= 2U
∆A
∆t

+ U2 (A2 − A1)

L
− gA

(H2 − H1)

L
− gη2 Q

∣∣U∣∣
R4/3 (7)

where η = n/1.486. A = average cross-sectional area, U = average flow velocity [m/s],
R = average hydraulic radius of the flow cross-section (m). Average values for A, U, and
R can be approximated using the heads H1 = hydraulic head at the upstream end of the
conduit and H2 = hydraulic head at the downstream end of the conduit (m). It should
be noted that there are many established softwares that solve the dynamic equations in a
non-conservative form (e.g., HYSTEM-EXTRAN [27], PCSWMM [28], INFOWORKS [29]
or MOUSE [30]). This solution has supported the extensive use of such models for practical
purposes and experimental validation [31–34]. SWMM provides two types of nodes,
junction nodes without a storage volume or surface area and storage nodes, which contain
both properties. The water head H at a certain time step is calculated by the following:

∂H
∂t

=
∑ Q

ASN + ∑ ASL
(8)

where ASN = storage surface area, ASL = surface area contributed by a connecting link and
∑ Q = net discharge in the node assembly [m3/s]. The geometric shape of a storage unit is
defined by a storage coefficient A, an exponent B, and a constant C in the following:

Area = A·DepthB + C (9)

where area = surface area of a storage unit and depth = surface depth above the bottom
of a storage unit. A finite difference approximation substitutes the spatial and temporal
derivations. In case of a surcharge, the overland flow rate is determined by the following:

Qovfl = 0.5(∑ Qt + ∑ Qt+∆t) (10)

where t = current time [s] and ∆t = timestep [s]. Further details can be found in [24].
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2.4.2. P-DWave 2D—2D Diffusive Wave Model

P-DWave 2D is a parallelized diffusive wave model [35]. The momentum equation of
the 2D SWE is simplified by neglecting all the momentum equations except the pressure
and friction term resulting in the following equations:

∂h
∂t

+∇(uh) = S (11)

g∇(h + z) = gS f (12)

where g = acceleration due to gravity, z = bed elevation, h = water depth, u = depth average
flow velocity vector, S = VSL sink/source term and Sf = bed friction vector [Sfx Sfy]T. The
bed friction term is approximated by Manning’s formula The continuity equation is solved
by an explicit finite volume method of the first order, whereas a cell-centered control
volume discretizes the spatial domain, as follows:

ht+1
i − ht

i
∆t

+
1
Ai

4

∑
j=1

hijuijLij = S (13)

With the following:

hij =
hi + hj

2
(14)

uij =
h4/3

ij

n2
ij

∣∣uij
∣∣ In,ij (15)

where Ai = cell area [m2], i = index of current cell, j = index of adjacent cell, ij = index con-
sidering cell i and j, Lij = contact face between cells, uij = water velocity [m/s], hij = water
depth [m], In,ij water level surface gradient vector multiplied by unit normal vector,
S = sink/source term, n = Manning’s coefficient, t = current time [s] and ∆t = timestep [s].
A prediction-correction wet–dry scheme is applied to obtain absolute mass conservation.
Further details can be found in [35].

2.4.3. Coupling Process between SWMM and P-DWave 2D

SWMM 5.1 uses a dynamic link library (DLL) consisting of functions that simplify the
linking procedure to other models. The coupling is conducted by adding three additional
functions to SWMM 5.1 code called SWMM-Link, SWMM-to-2D, and 2D-to-SWMM. The
SWMM-Link DLL enables the extraction of the node ID, crest, and elevation from SWMM,
whereas the ID is linked as input data. Furthermore, the function extracts the simulation
time and time step of SWMM to initiate and synchronize the linking time step between the
two models. The second function SWMM-to-2D uses the node ID as input to exchange the
information about the discharge for each simulation time step and extract the node water
levels. The last function 2D-to-SWMM exchanges the information about the discharge.
The values are positive in case of a water transfer from P-DWave to SWMM or negative
otherwise. Herein we assume that the discharge along the VSL can be approximated by a
weir equation (Equation (16)) or a submerged weir equation (in case of backwater in the
link) (Equation (17)), as follows:

Q = cwwh2D
√

2gh2D (16)

Q = co Amh

√
2g(h2D + Z2D − h1D ) (17)

where Q = discharge [m3/s], cw = weir discharge coefficient [-], w = crest width [m],
Amh = channel flow area [m2], co = orifice discharge coefficient, Z2D = ground surface
elevation in the 2D model, h1D = hydraulic head in the 1D model, h2D = hydraulic head in
the 2D model. Equation (16) is applied if h1D < Z2D and Equation (17) if h1D > Z2D. The
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negative form of the submerged weir equation is applied to calculate the discharge in case
of reverse flow, as follows:

Q = −co Amh

√
2g(h1D − Z2D − h2D) (18)

Since the time steps of both models differ, the time step of both models needs to be
synchronized. Further details can be found in [36].

3. Results
3.1. DSWMM/2DP-DWave 2D Dual-Drainage Model
3.1.1. First Stage of Validation: Test Case

For the first stage, only the test case is considered. The VSL are automatically placed
according to the determined flow path in the 2 m model at the location, where the water
accumulates incorrectly. This is conducted following the procedure in Section 2.4.1. After
the main flow paths are identified in the 2 m model, only the ones crossing between
buildings are kept and added to the models with coarser grids in the dual-drainage version.
Figure 3 shows an example of the placement of VSL. Figure 4a shows the maximum water
depth obtained by the 2 m resolution model. Figure 4b shows the overestimation of the
maximum water depth by the 5 m resolution model, if no placement of virtual channels
is considered. Figure 4c shows the local improvement obtained with the automatized
placement of virtual channels. Figure 4d shows the further local improvement after
manual refinement.
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For a better interpretation of the results, the test case is additionally divided into
several subzones, which are not affected by backwater effects and, hence, are regarded as
independent of each other (Figure 3).

The boundaries are chosen to depict the effect on water accumulation and flow de-
velopment in the vicinity of a building. Therefore, the chosen area covers a small part
of the upstream and downstream areas close to buildings, which are highly affected by
VSL. Thereby, the 5 m model is subdivided into five subzones and the 10 m model into
four subzones.

The procedure in Figure 4 is repeated for each subzone. Each subzone functions as an
individual validation area. The calculated GOFs for these areas are shown below (Figure 5).
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The GOFs illustrate a general improvement for most of the subzones. The greatest
change can be observed in the RMSE for the 10 m model, but the LogNSE also shows a sig-
nificant increase. The r2 only shows small improvements and has an almost constant trend.
The change in the GOFs differs depending on the subzones, and reveals a dependency on
individual characteristics of the considered area and the model resolution.

To interpret the effectiveness of the approach, the results are compared to the GOFs
obtained by different model resolutions, so the improvements can be better evaluated
(Figure 6). The mesh resolutions range from 3 m to 10 m, thus the results of the dual-
drainage model can be compared to a wide range. Thereby, the calculated GOFs only refer
to the area of the set subzones and do not consider the whole area. Thus, the impact on the
flow around buildings can be better evaluated.
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The comparison shows an improvement for all the GOFs. The 5 m coupled model
approximates the 4 m model for the logNSE and r2. The 10 m model for these GOFs shows
larger improvements and approximates the 7 m model for the logNSE, and has a slightly
better value than the 7 m model for the r2. The largest improvements can be observed
for the RMSE. The 5 m model has a smaller RMSE than the 3 m model, and the 10 m
model shows similar values to the 4 m model. Figure 7 shows the confusion matrix for the
first stage.
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The matrix shows a modest total improvement of 0.9% regarding the 5 m model
and 2% when considering the 10 m model with VSL. The TPR of the 5 m model shows a
deterioration, observed by the decrease in the percentage of correct predicted flooded cells.
To investigate the effectiveness, depending on the rainfall intensity, the difference in total
accuracy is determined between the coupled and original model for several rainfall events
(Figure 8).
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Figure 8. Total accuracy for different rainfall events (hN5 = 31.6 mm/h, hN30 = 47.5 mm/h,
hN50 = 52 mm/h).

The first three subzones reveal a positive trend, whereas the trend for the fourth and
fifth subzones differs. The graphic representation demonstrates an improvement in the
total accuracy for values greater than zero. Comparing the results, a difference between the
subzones and rainfall intensities can be observed. Apart from the small deterioration in
the second subzone (10 m/40 mm) and the fourth subzone (5 m/h N 5, 40 mm, hN 30),
the coupling process reveals an improvement of the simulation results. A variation in the
defined storage volume by different storage coefficients, and the usage of average width,
defined by the minimum and maximum width in the 2 m model, shows no significant
improvements in the results.

After the third step of the VSL methodology, the fourth and final step is executed.
Herein, manual adaptions are made for sites that still have incorrect flood inundation
extents. This step is only conducted for the first (5 m) and fourth subzones (5 m and
10 m), which still reveal larger inundations compared to the benchmark model, due to the
different arrangement and size of the buildings. The flow path of the benchmark model is
used as a template to adapt the flood routing, according to the more precise flow in the 2 m
model. The determined GOFs after the fourth step are shown in Figure 9.
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Figure 9. GOFs for the original (2 m), first coupling and the additional manual adaption (modified).

By means of the additional manual adaption, the accordance with the benchmark
model can be significantly enhanced. The deterioration for the 10 m model in the fourth
subzone also reveals that this should be conducted with caution. The usage of different
storage coefficients shows no significant changes.

The error in the maximum water volume, only considering the subzones, is signifi-
cantly reduced. The deviation, with regards to the benchmark model, for the 5 m model is
reduced from 69.63% to 29.73%, only considering step 1–3, and to 5.03% when the manual
adaption in step 4 of the VSL methodology is included. Regarding the 10 m model, the
deviation is reduced from 152.75% to 22.92%, and to 19.16%, considering the fourth step of
the VSL methodology.

3.1.2. Second Stage of Validation: Case Study

Given the overall improvement in the first stage, the procedure is now applied to the
whole case study area. The results of the inundation are shown in Figure 10.

Water 2021, 13, 2629 14 of 20 
 

 

 
Figure 9. GOFs for the original (2 m), first coupling and the additional manual adaption (modified). 

By means of the additional manual adaption, the accordance with the benchmark 
model can be significantly enhanced. The deterioration for the 10 m model in the fourth 
subzone also reveals that this should be conducted with caution. The usage of different 
storage coefficients shows no significant changes. 

The error in the maximum water volume, only considering the subzones, is signifi-
cantly reduced. The deviation, with regards to the benchmark model, for the 5 m model 
is reduced from 69.63% to 29.73%, only considering step 1–3, and to 5.03% when the man-
ual adaption in step 4 of the VSL methodology is included. Regarding the 10 m model, the 
deviation is reduced from 152.75% to 22.92%, and to 19.16%, considering the fourth step 
of the VSL methodology. 

3.1.2. Second Stage of Validation: Case Study 
Given the overall improvement in the first stage, the procedure is now applied to the 

whole case study area. The results of the inundation are shown in Figure 10. 

  
(a) (b) 

Figure 10. Cont.



Water 2021, 13, 2629 15 of 20
Water 2021, 13, 2629 15 of 20 
 

 

  
(c) (d) 

Figure 10. (a) Inundation in the 5 m model before the coupling process; (b) inundation in the 5 m model after the coupling 
process; (c) inundation in the 10 m model before the coupling process; (d) inundation in the 10 m model after the coupling 
process. 

The implementation of VSL by coupling leads to contrary effects on the inundation 
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(200, 350). The 5 m model shows an increase in inundation depth for this area, whereas 
the coupling in the 10 m model leads to a decrease. The results indicate a generally higher 
consistent flow, which is also shown by the higher water depths in the 10 m model at the 
catchment’s outlet at the grid points around (100, 500). The calculated GOFs are shown in 
Figure 11. 

 
Figure 11. GOFs for the dense urban area. 

The GOFs demonstrate that the usage of VSL enhances the simulation results. Only 
the RMSE for the 5 m model deteriorates slightly. Since a larger area is considered, as for 
the test case/subzones, the improvements are less significant. Since the dense area com-
plicates the manual adaptation after the first coupling process, this procedure is primarily 
conducted in the rural area around the dense urban area. Consequently, the additional 

Figure 10. (a) Inundation in the 5 m model before the coupling process; (b) inundation in the 5 m model after the
coupling process; (c) inundation in the 10 m model before the coupling process; (d) inundation in the 10 m model after the
coupling process.

The implementation of VSL by coupling leads to contrary effects on the inundation
in the 5 m and 10 m models. The greatest effect can be observed around the grid points
(200, 350). The 5 m model shows an increase in inundation depth for this area, whereas
the coupling in the 10 m model leads to a decrease. The results indicate a generally higher
consistent flow, which is also shown by the higher water depths in the 10 m model at the
catchment’s outlet at the grid points around (100, 500). The calculated GOFs are shown in
Figure 11.
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Figure 11. GOFs for the dense urban area.

The GOFs demonstrate that the usage of VSL enhances the simulation results. Only the
RMSE for the 5 m model deteriorates slightly. Since a larger area is considered, as for the test
case/subzones, the improvements are less significant. Since the dense area complicates the
manual adaptation after the first coupling process, this procedure is primarily conducted
in the rural area around the dense urban area. Consequently, the additional modifications
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do not result in large changes in the GOFs. The deterioration in the 10 m model, for the
RMSE, reveals that the adaptions can also have negative impacts on the flow.

The confusion matrix in Figure 12 additionally demonstrates a total improvement of
the predicted dry and flooded cells. The total accuracy rises by 0.1% for the 5 m model
and 0.7% for the 10 m model. The TNR and TPR also show a better prediction of dry
cells for the urban area in the 5 m model, but a worse prediction of flooded cells and an
improvement for both states in the 10 m model.
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The biggest advantage of resampling constitutes the faster computation time. By using
a 5 m grid instead of a 2 m resolution, the computation time can be reduced by 92.6%, and
by 99% when using a 10 m grid. The implementation of VSL slows down the runtime
minimally, due to the coupling process, with a reduction of 91.2% for the 5 m model and
98.5% for the 10 m model, compared to the benchmark model.

Considering the change in maximum water volume, the volume of water increases in
the area of interest. Thus, the deviation with regard to the benchmark model rises slightly,
from 6.28% to 7.96%, for the 5 m model, and from 28.64% to 29.66% for the 10 m model.
However, considering the whole catchment area, an improvement in the deviation, from
5.27% to 4.57%, for the 5 m model, and from 24.46% to 23.86% for the 10 m model, is still
achieved, highlighting the benefit of the developed approach.

4. Discussion

By means of the VSL approach, the flood routing in coarse grids is adapted to the flow
paths in the fine mesh in the case of incorrect water accumulation. These occur primarily
due to missing flow paths between buildings, overestimation of the building’s size, or
differences in contour and form. Hence, incorrect inundations are reduced, allowing a
more continuous flow.

The GOFs (Figure 5) show that the simulation results can be significantly enhanced
by implementing VSL in a 1D/2D model. Incorrect water accumulations can thus be
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reduced and the flow path can be adjusted according to a finer model resolution. The
approach shows higher effectiveness for the 10 m model, indicating a better performance
the coarser the grid is. The differences in the improvement of the GOFs, depending on the
subzones, are traced back to the individual characteristics of each area. Thereby, especially
the number and size of the buildings represent an important factor, but also the topography
(i.e., depressions, steepness, etc.). Depending on the rainfall, the improvements can differ.
Thereby, no clear trend with a higher rainfall intensity can be observed. This stems from
the variation in flow routing based on the rainfall. For example, for very large rainfall
intensity, depressions in the topography can be overcome, resulting in more inundation
areas and affecting the flow direction. Moreover, backwater effects can change, leading to
higher inundation in the upstream direction. Consequently, the effectiveness of the VSL
approach can vary depending on the flow regime for a given rainfall event.

The comparison with other model resolutions shows a negative trend the coarser
the grid is (Figure 6). Nevertheless, deviations from this trend, for a highly coarse grid
(i.e., 8–10 m), can be observed. These deviations are limited to the coarsest grids, where
the GOF’s value and their differences are small, due to general low agreement with the
benchmark model. Thus, an already small variation in the building’s representation can
lead to positive and negative influences on the overall agreement.

The additional modifications and adaptions of the flow path in the fourth step of
the VSL methodology focus on water depth reductions, which are not clearly identifiable
during the first coupling process (Figure 9). The adaptions can have significant positive im-
pacts on the simulation. Since this process risks transporting too much water downwards,
this should be conducted with caution, to avoid deterioration in the simulation results.
Moreover, highly urban dense areas, with large inundations, complicate the procedure,
since significant locations, which are responsible for an incorrect accumulation, become
difficult to identify.

The determination of flood extent and confusion matrix demonstrates that the VSL
approach also risks having a negative impact on the prediction of flooded cells (Figure 7).
This is the result of flooding being underpredicted in the upstream direction of the build-
ings, due to an overprediction of the water amount, which is conveyed downwards. This
is promoted by the contours of the buildings, which are smoothed by the resampling
procedure. Thus, areas where water accumulates due to the complex contours of a building
are reduced (or disappear) in coarser grids. By placing VSL at a coarse cell, a larger area is
directly affected. The coarser the grid is, the higher the error of the accumulation due to the
complex building’s contour becomes. The larger water amount conveyed by VSL can also
lead to an overestimation of flooding in the downstream direction. To avoid both phenom-
ena, the flow through VSL may require a post-calibration for limiting the discharges. For
post-calibration, the authors would suggest the use of the storage parameters in Equation
(9), which determine the surface area of a storage unit, as the calibration parameter, and
the observed error in flooded volume as the objective function. The determination of the
maximum flooded volume around the buildings is particularly effective for areas with a
low density, and where incorrect inundations result primarily from an overestimated size
of the buildings.

The application on a highly dense area illustrates that the VSL approach can have two
opposite effects (Figure 10). On the one hand, the water depth can increase, since water in
the upstream direction is allowed to flow downwards, but accumulates downstream due to
the resampling effects, such as larger depressions in topography and different flow paths
(as compared to high-resolution grids). On the other hand, the maximum water depth
is reduced upstream, due to a more continuous flow, allowing the water to be drained.
Therefore, the implementation of VSL can also lead to a slight overestimation of flooding in
localized areas. Nevertheless, the confusion matrix clearly demonstrates an improvement
in the simulation of the flood extent and distribution obtained by the proposed approach
(Figures 11 and 12). Compared to the test case, the improvements in the larger urban dense
area are less obvious because of the more complex dynamics of the flood routing.
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Another advantage of the proposed VSL methodology is that if the flow regime
becomes critical around buildings and through narrow gaps, the 1D model, based on the
dynamic flow equations, would still be able to solve it. This is an advantage, since some
2D urban flood models (such as the model tested in this study) do neglect the inertia terms
in the shallow water equations and cannot capture these localized phenomena. In any
case, it should be stated that applying the full dynamic model per se does not guaranty
that such features will be captured. In fact, if the resolution is not fine enough (e.g., 0.1 m
for the typical benchmark hydraulic jump over an obstacle [37]), both the diffusive wave
and full dynamic model would produce similar solutions. This supports the fact that in
many urban flood studies, the diffusive wave often performed equally well [21,38], or even
out-performed other shallow water models where real data were available [39].

5. Conclusions

The resolution at which buildings are represented in 2D models affects the quality
of the numerical simulation of floods in urban areas. Accumulation around buildings
increases, due to the coarser and larger representation of buildings and the missing flow
paths between them. The degree to which the water depths differ from finer resolutions
depends primarily on the size, density, and arrangement of the buildings.

These adverse effects of resampling can be significantly reduced by implementing the
proposed VSL, by including the flow path in coarser models, based on a fine resolution
model. The method enables narrow flow paths between buildings to be considered, and
allows water to flow through buildings, which incorrectly leads to inundation in coarser
grids. Overall improvements in a larger area can be smaller or bigger depending on
the local impact of the missing flow paths. In any case, it was shown that incorrect
accumulations around buildings could be significantly reduced. The reduction in the max.
water volume, from 69.63% to 5.03%, using a 5 m grid, and from 152.75% to 22.92% for a
10 m grid demonstrates a significant improvement for smaller areas with a lower density
of buildings. The VSL methodology is thus more appropriate for areas in which flow paths
are well defined.

Further research needs to be conducted on the possibility of underestimating flooding
in the upstream direction and overestimation in the downstream direction of a building,
if too much water is conveyed downstream. Even if dry cells are better predicted, the
approach can lead, in some cases, to a deterioration in the simulation of flooded cells. To
reduce this effect, a calibration procedure was investigated. It was shown that a manual
procedure can significantly improve the results. However, the suggested procedure be-
comes more complex for highly dense areas, making it a non-trivial optimization problem.
Given the significant improvement, in terms of run times gained by the VSL, the future
focus could be on its application to flood forecast systems.
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