Structural Connectivity of Sediment Affected by Check Dams in Loess Hilly-Gully Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Investigation and Classification of Connection Mode
2.3. Distribution and Number of Check Dams in four Watersheds
2.4. Evaluation of Structural Connectivity Degree
3. Results
3.1. Connection Mode and Degree
3.2. Degree of Structural Connectivity for Dam System
4. Discussion
4.1. The Effect of Connection Mode on Structural Connectivity of Sediment
4.2. Optimization of Connection Mode in Dam System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Water Resources of the People’s Republic of China. Zhongguo Heliu Nisha Gongbao; China Water&Power Press: Beijing, China, 2020.
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.H.; Song, C.Q. Water erosion processes: A historical review. J. Soil Water Conserv. 2016, 30, 1–10. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Lana-Renault, N.; Nadal-Romero, E.; Cerdà, A. Ongoing and emerging questions in water erosion studies. Land Degrad. Develop. 2017, 28, 5–21. [Google Scholar] [CrossRef]
- Marchamalo, M.; Hooke, J.M.; Sandercock, P.J. Flow and sediment connectivity in semi-arid landscapes in SE Spain: Patterns and controls. Land Degrad. Develop. 2016, 27, 1032–1044. [Google Scholar] [CrossRef]
- Xu, X.Z.; Zhang, H.W.; Zhang, O.Y. Development of check-dam systems in gullies on the Loess Plateau, China. Environ. Sci. Policy. 2004, 7, 79–86. [Google Scholar] [CrossRef]
- Liu, X.Y.; Gao, Y.F.; Ma, S.B.; Dong, G.T. Sediment reduction of warping dams and its timeliness in the Loess Plateau. SHUILI XUEBAO 2018, 49, 145–155. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Li, Z.B.; Wang, Z.Y. Some thoughts on the strategic positioning of check dam construction in the Loess Plateau. Soil Water Conserv. China. 2020, 9, 32–38. [Google Scholar] [CrossRef]
- Li, J.Z.; Liu, L.B. Analysis on the sediment retaining amount by warping dams above Tongguan section of the Yellow River in recent years. Yellow River 2018, 40, 1–6. [Google Scholar] [CrossRef]
- Conesa-García, C.; García-Lorenzo, R. Bed texture changes caused by check dams on ephemeral channels in Mediterranean semiarid environments. Z. Geomorpho. 2008, 52, 437–461. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Denisi, P.; Lucas-Borja, M.E.; Zimbone, S.M. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents. Sci. Total Environ. 2018, 642, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Galia, T.; Škarpich, V.; Ruman, S. Impact of check dam series on coarse sediment connectivity. Geomorphology 2021, 377, 107595. [Google Scholar] [CrossRef]
- Surian, N.; Ziliani, L.; Comiti, F.; Comiti, F.; Lenzi, M.A.; Mao, L. Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of North-Eastern Italy: Potentials and limitations for channel recovery. River. Res. Applic. 2010, 25, 551–567. [Google Scholar] [CrossRef]
- Wang, H.W.; Kondolf, G.M. Upstream sediment-control dams: Five decades of experience in the rapidly eroding Dahan River basin, Taiwan. J. Am. Water Resour. Assoc. 2014, 50, 735–747. [Google Scholar] [CrossRef]
- Marchi, L.; Comiti, F.; Crema, S.; Cavalli, M. Channel control works and sediment connectivity in the European Alps. Sci. Total Environ. 2019, 668, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.D.; Jian, L.L.; Li, Z.B.; Xu, G.C.; Zhao, B.H. Mechanism underlying impact of check damson runoff based graph theory in the hilly-gully loess region. Sci. Soil Water Conserv. 2015, 13, 1–8. [Google Scholar] [CrossRef]
- Wei, X.; Li, Z.B.; Shen, B.; Li, X.G.; Li, P. The water damage and the prevention measures in construction of check dam. J. Water Resour. Water Eng. 2004, 15, 55–59. [Google Scholar]
- Wang, Z.L.; Zhang, B.S.; Liu, H.Z.; Li, C.J.; Lin, X.Z.; Yang, J.S. Damage causes and sand-blocking effects of warping dams in Dalat Banner in 2016. Adv. Sci. Technol. Water Resour. 2019, 39, 1–6. [Google Scholar] [CrossRef]
- Wang, N.; Chen, Y.X.; Bai, L.C.; Wang, H.L.; Jiao, J.Y. Investigation on soil erosion in small watersheds under “7·26” extreme rainstorm in Zizhou county, northern Shaanxi province. Bull. Soil Water Conserv. 2017, 37, 338–344. [Google Scholar] [CrossRef]
- Yu, G.Q.; Zhang, M.S.; Li, Z.B.; Li, P.; Zhang, X.; Cheng, S.D. Piecewise prediction model for watershed-scale erosion and sediment yield of individual rainfall events on the Loess Plateau, China. Hydrol. Process. 2015, 28, 5322–5336. [Google Scholar] [CrossRef]
- Yang, J.S.; Yao, W.Y.; Zheng, M.G.; Li, L. Analysis on gravitational sediment yield in the check-dam controlled basins of Chabagou watershed. SHUILI XUEBAO 2017, 48, 241–245. [Google Scholar] [CrossRef]
- Li, C.Z.; Wang, H.; Yu, F.L.; Yang, A.M.; Yan, D.H. Impact of soil and water conservation on runoff and sediment in Yanhe River basin. Sci. Soil Water Conserv. 2011, 9, 1–8. [Google Scholar] [CrossRef]
- Wang, H.L.; Jiao, J.Y.; Tang, B.Z.; Chen, Y.X.; Bai, L.C.; Wang, N.; Zhang, Y.F. Characteristics of rill erosion and its influencing factors in slope farmland after “7·26” rainstorm in Zizhou County, Shaanxi Province. Trans. Chin. Soc. Agric. Eng. 2019, 35, 122–130. [Google Scholar] [CrossRef]
- Bai, L.C.; Wang, N.; Jiao, J.Y.; Chen, Y.X.; Tang, B.Z.; Wang, H.L.; Chen, Y.X.; Yan, X.Q.; Wang, Z.J. Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau, China. Int. J. Sediment Res. 2020, 35, 408–416. [Google Scholar] [CrossRef]
- Yu, H. The period and trend analysis of streamfall and sediment load in yan river based on time series. Master’s Thesis, Northwest Agricultural and Forestry University, Yangling, China, 2008. [Google Scholar]
- Yu, T.; Li, Z.B.; Chen, Y.T.; Yuan, S.L.; Wang, W. Analysis of structural characteristics of typical check dam system in the third subregion of loess hilly region. Res. Soil Water Conserv. 2019, 26, 26–30. [Google Scholar] [CrossRef]
- Hassanli, A.M.; Nameghi, A.E.; Beecham, S. Evaluation of the effect of porous check dam location on fine sediment retention (a case study). Environ. Monit. Assess. 2009, 152, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Li, Z.B.; Wu, J.H.; Li, B.B.; Du, Z. A Discussion on some deological problems in research of water damage hazards of check dam. Res. Soil Water Conserv. 2007, 14, 235–237. [Google Scholar]
- Luo, Z.B.; Yong, C.X.; Fan, J.; Shao, M.A.; Wang, S.; Jin, M. Precipitation recharges the shallow groundwater of check dams in the loessial hilly and gully region of China. Sci. Total Environ. 2020, 742, 140625. [Google Scholar] [CrossRef]
- Jiao, J.Y.; Wang, Z.J.; Wei, Y.H. Characteristics of erosion sediment yield with extreme rainstorms in Yanhe Watershed based on field measurement. Trans. Chin. Soc. Agric. Eng. 2017, 33, 159–167. [Google Scholar] [CrossRef]
- Li, L.; Wang, F.; Sun, W.Y.; Shi, X.J. Analysis of water damage of check dam in Loess Plateau. Soil Water Conserv. China 2014, 10, 20–22. [Google Scholar] [CrossRef]
- Yuan, S.L.; Li, Z.B.; Li, P.; Gao, H.D.; Wang, D.; Zhang, Z.Y. MIKE coupling model simulating effect of check dam construction on storm flood process in small watershed. Trans. Chin. Soc. Agric. Eng. 2018, 34, 152–159. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Jiao, J.Y.; Tang, B.Z.; Chen, Y.X.; Wang, N.; Bai, L.C.; Wang, H.L. Channel sediment connectivity and influence factors in small watersheds under extremely rainstorm–a case study at Zizhou county, Shaanxi province. Bull. Soil Water Conserv. 2019, 39, 302–309. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Wang, X.L.; Chen, W.L.; Deng, S.H.; Liu, M.H. Numerical simulation of dam-break flooding of cascade reservoirs. Trans. Tianjin Univ. 2017, 23, 570–581. [Google Scholar] [CrossRef]
Connection Modes | Number of Check Dams | ||||
---|---|---|---|---|---|
Hejiapan | Lujiabian | Yangjuangou | Majiagou | Total | |
Disconnected | 5 | 5 | 20 | 8 | 38 |
Shaft or horizontal pipe | 1 | 3 | / | 10 | 14 |
Spillway | / | 2 | 2 | 6 | 10 |
Shaft and spillway or horizontal pipe and spillway | / | / | / | 2 | 2 |
Shaft, horizontal pipe and spillway | / | / | / | 1 | 1 |
Dam body damaged gap | / | 2 | 2 | 4 | 8 |
Discharge canal to shaft (DS1) | / | / | / | 1 | 1 |
Discharge canal to dam body damaged gap (DD) | 2 | 9 | 1 | 2 | 14 |
Discharge canal (DC) | / | 4 | 23 | 4 | 31 |
Discharge canal to spillway (DS2) | / | 4 | 1 | 8 | 13 |
Discharge canal to shaft and spillway (DSS) | / | / | / | 4 | 4 |
Total | 8 | 29 | 49 | 50 | 136 |
Connection Modes | Number | Average SCCD (%) | ||||
---|---|---|---|---|---|---|
Hejiapan | Lujiabian | Yangjuangou | Majiagou | Average | ||
Disconnected | 38 | 0 | 0 | 0 | 0 | 0 |
Shaft or horizontal pipe | 14 | 0 | 0 | / | 0 | 0 |
Spillway | 10 | / | 0 | 0 | 0 | 0 |
Shaft and spillway or horizontal pipe and spillway | 2 | / | / | / | 0 | 0 |
Shaft, horizontal pipe and spillway | 1 | / | / | / | 0 | 0 |
Dam body damaged gap | 8 | / | 0 | 0 | 0 | 0 |
Discharge canal to shaft (DS1) | 1 | / | / | / | 5.32 ± 0 | 5.32 ± 0 |
Discharge canal to dam body damaged gap (DD) | 14 | 3.39 ± 0.03 | 58.20 ± 0.36 | 40.17 ± 0 | 63.42 ± 0.27 | 49.83 ± 0.37 |
Discharge canal (DC) | 31 | / | 82.36 ± 0.09 | 42.99 ± 0.29 | 58.36 ± 0.06 | 50.06 ± 0.29 |
Discharge canal to spillway (DS2) | 13 | / | 54.69 ± 0.34 | 31.50 ± 0 | 55.43 ± 0.16 | 53.36 ± 0.23 |
Discharge canal to shaft and spillway (DSS) | 4 | / | / | / | 61.63 ± 0.23 | 61.63 ± 0.23 |
Sum/Average | 136 | 1.13 ± 0.02 | 27.89 ± 0.33 | 19.11 ± 0.19 | 22.20 ± 0.28 |
Watershed | Dam System Number | Dam System | Dam System Area (km2) | Sum of Single Check Dam | Dam System | Difference (%) | ||
---|---|---|---|---|---|---|---|---|
Adcc (km2) | SCCD (%) | Adcc (km2) | SCCD (%) | |||||
Hejiapan | 1 | 1–8 | 3.02 | 0.07 | 2.33 | 0.00 | 0 | 2.33 |
Lujiabian | 2 | 3–5 | 1.54 | 0.47 | 30.25 | 0.00 | 0 | 30.25 |
3 | 6–20 | 3.76 | 2.31 | 61.49 | 1.54 | 40.86 | 20.63 | |
4 | 21–24 | 0.82 | 0.18 | 21.65 | 0.18 | 21.65 | 0 | |
5 | 27–29 | 0.83 | 0.22 | 26.36 | 0.22 | 26.36 | 0 | |
6 | 1–29 | 14.99 | 8.59 | 57.32 | 7.35 | 49.03 | 8.29 | |
Yangjuangou | 7 | 6–10 | 3.03 | 4.10 | 66.41 | 4.10 | 66.41 | 0 |
8 | 12–16 | 2.78 | 3.46 | 54.02 | 3.08 | 48.12 | 5.90 | |
9 | 17–19 | 6.17 | 0.25 | 6.23 | 0.00 | 0 | 6.23 | |
10 | 20–28 | 6.41 | 0.85 | 11.28 | 0.08 | 1.08 | 10.20 | |
11 | 29–49 | 17.42 | 0.67 | 21.69 | 0.67 | 21.69 | 0 | |
12 | 23–27 | 1.08 | 0.10 | 8.18 | 0.00 | 0.00 | 8.18 | |
13 | 39–49 | 7.56 | 4.11 | 23.61 | 3.09 | 17.74 | 5.87 | |
14 | 35–38 | 4.04 | 0.38 | 35.14 | 0.00 | 0 | 35.14 | |
15 | 45–49 | 3.08 | 0.58 | 20.74 | 0.00 | 0 | 20.74 | |
16 | 42–44 | 1.26 | 1.28 | 42.38 | 0.00 | 0 | 42.38 | |
17 | 1–49 | 47.03 | 19.02 | 40.45 | 15.76 | 33.51 | 6.94 | |
Majiagou | 18 | 8–15 | 8.02 | 0.92 | 11.47 | 0.00 | 0 | 11.47 |
19 | 34–37 | 8.46 | 0.37 | 4.41 | 0.37 | 4.41 | 0 | |
20 | 31–33 | 2.52 | 0.50 | 20.00 | 0.23 | 8.97 | 11.03 | |
21 | 26–37 | 15.77 | 2.88 | 18.25 | 2.60 | 16.49 | 1.76 | |
22 | 23–37 | 20.39 | 3.38 | 16.60 | 0.00 | 0 | 16.60 | |
23 | 43–50 | 12.63 | 3.14 | 24.86 | 3.14 | 24.86 | 0 | |
24 | 38–50 | 16.19 | 4.75 | 29.31 | 4.75 | 29.31 | 0 | |
25 | 17–50 | 47.38 | 15.21 | 32.10 | 11.82 | 24.96 | 7.14 | |
26 | 7–50 | 57.18 | 16.13 | 28.21 | 0.00 | 0.00 | 28.21 | |
27 | 1–50 | 71.50 | 20.48 | 28.65 | 4.35 | 6.09 | 22.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Jiao, J.; Wang, N.; Chen, Y. Structural Connectivity of Sediment Affected by Check Dams in Loess Hilly-Gully Region, China. Water 2021, 13, 2644. https://doi.org/10.3390/w13192644
Bai L, Jiao J, Wang N, Chen Y. Structural Connectivity of Sediment Affected by Check Dams in Loess Hilly-Gully Region, China. Water. 2021; 13(19):2644. https://doi.org/10.3390/w13192644
Chicago/Turabian StyleBai, Leichao, Juying Jiao, Nan Wang, and Yulan Chen. 2021. "Structural Connectivity of Sediment Affected by Check Dams in Loess Hilly-Gully Region, China" Water 13, no. 19: 2644. https://doi.org/10.3390/w13192644
APA StyleBai, L., Jiao, J., Wang, N., & Chen, Y. (2021). Structural Connectivity of Sediment Affected by Check Dams in Loess Hilly-Gully Region, China. Water, 13(19), 2644. https://doi.org/10.3390/w13192644