Improved Membrane Inlet Mass Spectrometer Method for Measuring Dissolved Methane Concentration and Methane Production Rate in a Large Shallow Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. CH4 Measurement Approach Using MIMS
2.1.1. Preparation of Standard Samples
2.1.2. Measurement of Standard Samples
2.1.3. Calculation of Dissolved CH4 in Standard Samples
2.1.4. Determination Range
2.1.5. Effect of Salinity on the Determination
2.2. Application to Lake Taihu
2.2.1. Study Sites
2.2.2. Method for Sampling and Data Acquisition
2.2.3. Incubation Experiment for Sediment CH4 Production Rate
2.2.4. Calculation of CH4 Production Rates
2.3. Comparison with GC Method
2.4. Statistical Analysis
3. Results
3.1. Instrument Response to CH4 Standards
3.2. Comparison of the MIMS and HGC Methods
3.3. CH4 Concentrations and Sediment CH4 Production Rates in Lake Taihu
4. Discussion
4.1. Assessment of the Analytical Technique
4.2. Comparison with HGC
4.3. Assessment of the MIMS Method in Lake Taihu
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S.C.B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 2009, 458, 1158–1162. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, V.; Feng, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ. 2009, 43, 37–50. [Google Scholar] [CrossRef]
- Montzka, S.A.; Dlugokencky, E.J.; Butler, J.H. Non-CO2 greenhouse gases and climate change. Nature 2011, 476, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Pall, P.; Aina, T.; Stone, D.A.; Stott, P.A.; Nozawa, T.; Hilberts, A.G.J.; Lohmann, D.; Allen, M.R. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature 2011, 470, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Grace, J.R.; Lim, C.J.; Zhang, L. Combustion of low-concentration coal bed methane in a fluidized bed. Energy Fuel 2011, 25, 975–980. [Google Scholar] [CrossRef]
- Deborde, D.; Anschutz, P.; Guérin, F.; Poirier, D.; Marty, D.; Boucher, G.; Thouzeau, G.; Canton, M.; Abril, G.; Jonathan, D.; et al. Methane sources, sinks and fluxes in a temperate tidal Lagoon: The Arcachon lagoon (SW France). Estuar. Coast. Shelf Sci. 2010, 89, 256–266. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Wan, Y.; Fan, M.; Liao, Y.; Li, Y.; Wang, B.; Gao, Q. Diffusive flux of CH4 and N2O from agricultural river networks: Regression tree and importance analysis. Sci. Total Environ. 2020, 717, 137244. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, M.; Hu, Z.; Gao, Y.; Hu, C.; Liu, C.; Liu, S.; Zhang, Z.; Zhao, J.; Xiao, W.; et al. Spatial variations of methane emission in a large shallow eutrophic lake in subtropical climate. J. Geophys. Res.-Biogeosci. 2017, 122, 1597–1614. [Google Scholar] [CrossRef]
- Lomond, J.S.; Tong, A.Z. Rapid analysis of dissolved methane, ethylene, acetylene and ethane s.ing partition coefficients and headspace-gas chromatography. J. Chromatogr. Sci. 2011, 49, 469–475. [Google Scholar] [CrossRef] [Green Version]
- Villa, J.A.; Smith, G.J.; Ju, Y.; Renteria, L.; Angle, J.C.; Arntzen, E.; Harding, S.F.; Ren, H.; Chen, X.; Sawyer, A.H.; et al. Methane 445 and nitrous oxide porewater concentrations and surface fluxes of a regulated river. Sci. Total Environ. 2020, 715, 136920. [Google Scholar] [CrossRef]
- Smith, R.L.; Böhlke, J.K. Methane and nitrous oxide temporal and spatial variability in two U.S. Midwestern streams containing high nitrate concentrations. Sci. Total Environ. 2019, 685, 574–588. [Google Scholar] [CrossRef]
- Carlsen, H.N.; Joergensen, L.; Degn, H. Inhibition by ammonia of methane utilization in Methylococcus capsulatus (Bath). Appl. Microbiol. Biotechnol. 1991, 35, 124–127. [Google Scholar] [CrossRef]
- Lauritsen, F.R.; Kotiaho, T. Advances in membrane inlet mass spectrometry (MIMS). Rev. Anal. Chem. 1996, 15, 237–264. [Google Scholar] [CrossRef]
- Kana, T.M.; Darkangelo, C.; Hunt, M.D.; Oldham, J.B.; Bennett, G.E.; Cornwell, J.C. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal. Chem. 1994, 66, 4166–4170. [Google Scholar] [CrossRef]
- Hou, L.; Yin, G.; Liu, M.; Zhou, J.; Zheng, Y.; Gao, J.; Zong, H.; Yang, Y.; Gao, L.; Tong, C. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ. Sci. Technol. 2014, 49, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xia, Y.; Ti, C.; Shan, J.; Li, B.; Xia, L.; Yan, X. Nitrogen removal capacity of the river network in a high nitrogen loading region. Environ. Sci. Technol. 2015, 49, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Bižić, M.; Klintzsch, T.; Ionescu, D.; Hindiyeh, M.Y.; Günthel, M.; Muro-Pastor, A.M.; Eckert, W.; Eckert, T.; Keppler, F.; Keppler, H.P. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv. 2020, 6, 5343. [Google Scholar] [CrossRef] [Green Version]
- Kana, T.M.; Weiss, D.L. Comment on “Comparison of Isotope Pairing and N2:Ar Methods for Measuring Sediment Denitrification” By B. D. Eyre, S. Rysgaard, T. Dalsgaard, and P. Bondo Christensen. 2002. Estuaries 25:1077–1087. Estuaries 2004, 25, 173–176. [Google Scholar] [CrossRef]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. J. Geophys. Res. Ocean. 1992, 97, 7373–7382. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, Q.; Yao, X.; Zhang, Y.; Zhang, M.; Shi, K.; Lee, X.; David, C.P.; Qin, B.; Robert, G.M.S.; et al. Accumulation of terrestrial dissolved organic matter potentially enhances dissolved methane levels in eutrophic Lake Taihu, China. Environ. Sci. Technol. 2018, 52, 10297–10306. [Google Scholar] [CrossRef]
- Liu, R.M.; Annette, H.; Fazil, O.G.; Pierre, Y.F.; Janusz, D. Methane concentration profiles in a lake with a permanently anoxic hypolimnion (Lake Lugano, Switzerland-Italy). Chem. Geol. 1996, 133, 201–209. [Google Scholar] [CrossRef]
- Gar’kusha, D.N.; Fedorov, Y.A. Distribution of methane concentration in coastal areas of the Gulf of Petrozavodsk, Lake Onega. Water Resour. 2015, 42, 331–339. [Google Scholar] [CrossRef]
- Juutinen, S.; Rantakari, M.; Kortelainen, P.; Huttunen, J.T.; Larmola, T.; Alm, J.; Martikainen, P.J. Methane dynamics in different boreal lake types. Biogeosciences 2009, 6, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Castro-Morales, K.; Macías-Zamora, J.V.; Canino-Herrera, S.R.; Burke, R.A. Dissolved methane concentration and flux in the coastal zone of the Southern California Bight-Mexican sector: Possible influence of wastewater. Estuar. Coast. Shelf Sci. 2014, 144, 65–74. [Google Scholar] [CrossRef]
- Gilbert, B.; Frenzel, P. Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission. Biol. Fertil. Soils 1995, 20, 93–100. [Google Scholar] [CrossRef]
- Tan, Y.; Wang, D.; Deng, H.; Li, Y.; Yu, Z.; Chen, Z. Methane and nitrous oxide dissolved concentration and emission flux of plain river network in winter. Sci. Sin. Chim. 2013, 43, 919–929. [Google Scholar]
- Yin, G.; Hou, L.; Liu, M.; Liu, Z.; Gardner, W.S. A novel membrane inlet mass spectrometer method to measure 15NH4+ for isotope-enrichment experiments in aquatic ecosystems. Environ. Sci. Technol. 2014, 48, 9555–9562. [Google Scholar] [CrossRef]
- Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of Lake Taihu, China. Hydrobiologia 2007, 581, 3–14. [Google Scholar] [CrossRef]
- Qin, B.; Zhu, G.; Gao, G.; Zhang, Y.; Li, W.; Paerl, H.W.; Carmichael, W.W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manag. 2011, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res.-Ocean. 2010, 115, C04002. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhan, X.; Xu, H.; Zhu, G.; Zou, W.; Zhu, M.; Kang, L.; Guo, Y.; Zhao, X.; Wang, Z.; et al. New insights into eutrophication management: Importance of temperature and water residence time. J. Environ. Sci. 2022, 111, 229–239. [Google Scholar] [CrossRef]
- Zhao, F.; Xu, H.; Zhan, X.; Zhu, G.; Guo, Y.; Kang, L.; Zhu, M. Spatial differences and influencing factors of denitrification and ANAMMOX rates in spring and summer in Lake Taihu. Environ. Sci. 2021. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, X.; Zhang, Y.; Zhang, Y.; Shi, K.; Tang, X.; Qin, B.; Podgorski, D.C.; Brookes, J.D.; Jeppesen, E. Response of dissolved organic matter optical properties to net inflow runoff in a large fluvial plain lake and the connecting channels. Sci. Total Environ. 2018, 639, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Donis, D.; Flury, S.; Stöckli, A.; Spangenberg, J.E.; Vachon, D.; McGinnis, D.F. Full-scale evaluation of methane production under oxic conditions in a mesotrophic lake. Nat. Commun. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risgaard-Petersen, N.; Nielsen, L.P.; Blackburn, T.H. Simultaneous measurement of benthic denitrification, with the isotope pairing technology and the N2 flux method in a continuous flow-through system. Water Res. 1998, 32, 3371–3377. [Google Scholar] [CrossRef]
- Mcmutrtry, G.M.; Wiltshire, J.C.; Bossuyt, A. Hydrocarbon seep monitoring using in situ deep sea mass spectrometry. In Europe Oceans; IEEE: Piscataway, NJ, USA, 2005. [Google Scholar]
- Eyre, B.D.; Rysgaard, S.; Dalsgaard, T.; Christensen, P.B. Comparison of isotope pairing and N2: Ar methods for measuring sediment denitrification-Assumptions, modifications, and implications. Estuaries 2020, 25, 1077–1087. [Google Scholar] [CrossRef]
- Lunstrum, A.; Aoki, L.R. Oxygen interference with membrane inlet mass spectrometry may overestimate denitrification rates calculated with the isotope pairing technique. Limnol. Oceangr. Methods 2016, 14, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Horruitiner, C.D.; Varner, R.K.; Palace, M.W.; Johnson, J.E.; Wik, M.; Lungren, D.J. Examining the Role of Aquatic Vegetation in Methane Production: Examples from a Shallow High Latitude Lake in Abisko, Sweden. Available online: https://agu.confex.com/agu/fm15/webprogram/Paper83308.html (accessed on 26 September 2021).
- William, E.W.; James, J.C.; Stuart, E.J. Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment. Freshw. Biol. 2012, 57, 949–955. [Google Scholar]
- Lay, J.; Miyahara, T.; Noike, T. Methane release rate and methanogenic bacterial populations in lake sediments. Water Res. 1996, 30, 901–908. [Google Scholar] [CrossRef]
- Strayer, R.F.; Tiedje, J.M. In situ methane production in a small, hypereutrophic, hard-water lakes: Loss of methane from sediments by vertical diffusion and ebullition. Limnol. Oceanogr. 1978, 23, 1201–1206. [Google Scholar] [CrossRef]
- Thebrath, B.; Rothfuss, F.; Whiticar, M.J.; Conrad, R. Methane production in littoral sediment of Lake Constance. FEMS Microbiol. Ecol. 1993, 102, 279–289. [Google Scholar] [CrossRef]
- Gentzel, T.; Hershey, A.E.; Rublee, P.A.; Whalen, S.C. Net sediment production of methane, distribution of methanogens and methane-oxidizing bacteria, and utilization of methane-derived carbon in an arctic lake. Inland Waters 2012, 2, 77–88. [Google Scholar] [CrossRef]
- Martens, C.S.; Klump, J.V. Biogeochemical cycling in an organic-rich coastal marine basin—I. Methane sediment-water exchange processes. Geochim. Cosmochim. Acta 1980, 44, 471–536. [Google Scholar] [CrossRef]
Water Bodies | Location | Type of Water | CH4 Concentration | Reference |
---|---|---|---|---|
Lake Lugano | Switzerland–Italy | Water column | 0.1–80 μmol L−1 | [21] |
Lake Onega | Russia | Water column | 0.116–5.45 μmol L−1 | [22] |
130 lakes | Finland | Water column | 1–20.6 μmol L−1 | [23] |
Coastal zone | Bight–Mexican sector | Surface water | 2.2–17.8 nmol L−1 | [24] |
Paddy field | Italy | Porewater | 0.1–0.7 mmol L−1 | [25] |
Rivers | China | Water column | 0.043–25.3 μmol L−1 | [26] |
Salinity = 0 | Salinity = 15 | Salinity = 30 | ||||
---|---|---|---|---|---|---|
Vial | V (μL) | C (μmol L−1) | V (μL) | C (μmol L−1) | V (μL) | C (μmol L−1) |
1 | 0 | 0.003 | 0 | 0.002 | 0 | 0.002 |
2 | 0.1 | 0.032 | 0.1 | 0.029 | 0.1 | 0.027 |
3 | 0.2 | 0.062 | 0.2 | 0.056 | 0.2 | 0.052 |
4 | 0.3 | 0.091 | 0.3 | 0.083 | 0.3 | 0.076 |
5 | 0.4 | 0.121 | 0.4 | 0.110 | 0.4 | 0.101 |
6 | 0.5 | 0.150 | 0.5 | 0.137 | 0.5 | 0.125 |
7 | 1 | 0.298 | 1 | 0.272 | 1 | 0.249 |
8 | 2 | 0.594 | 2 | 0.543 | 2 | 0.496 |
Location | Type | Method | CH4 Production Rates | Reference |
---|---|---|---|---|
Lake Izunuma | In sediment | Incubation, GC | 29.85 mmol m−2 d−1 | [41] |
Lake Wintergreen | Water–sediment | In situ determination, GC | 10–46 mmol m−2 d−1 | [42] |
Lake Constance | In sediment | Incubation, GC | 5–95 mmol m−2 d−1 | [43] |
Lake Toolik | Water–sediment | Incubation, GC | 0.393 mmol m−2 d−1 | [44] |
Marine basin | Water–sediment | Chamber, GC | 2.328 mmol m−2 d−1 | [45] |
Our study: Lake Taihu | Water–sediment | Incubation, MIMS | 0.12–0.48 mmol m−2 d−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Xu, H.; Kana, T.; Zhu, G.; Zhan, X.; Zou, W.; Zhu, M.; Kang, L.; Zhao, X. Improved Membrane Inlet Mass Spectrometer Method for Measuring Dissolved Methane Concentration and Methane Production Rate in a Large Shallow Lake. Water 2021, 13, 2699. https://doi.org/10.3390/w13192699
Zhao F, Xu H, Kana T, Zhu G, Zhan X, Zou W, Zhu M, Kang L, Zhao X. Improved Membrane Inlet Mass Spectrometer Method for Measuring Dissolved Methane Concentration and Methane Production Rate in a Large Shallow Lake. Water. 2021; 13(19):2699. https://doi.org/10.3390/w13192699
Chicago/Turabian StyleZhao, Feng, Hai Xu, Todd Kana, Guangwei Zhu, Xu Zhan, Wei Zou, Mengyuan Zhu, Lijuan Kang, and Xingchen Zhao. 2021. "Improved Membrane Inlet Mass Spectrometer Method for Measuring Dissolved Methane Concentration and Methane Production Rate in a Large Shallow Lake" Water 13, no. 19: 2699. https://doi.org/10.3390/w13192699
APA StyleZhao, F., Xu, H., Kana, T., Zhu, G., Zhan, X., Zou, W., Zhu, M., Kang, L., & Zhao, X. (2021). Improved Membrane Inlet Mass Spectrometer Method for Measuring Dissolved Methane Concentration and Methane Production Rate in a Large Shallow Lake. Water, 13(19), 2699. https://doi.org/10.3390/w13192699