Location Matters: A Framework to Investigate the Spatial Characteristics of Distributed Flood Attenuation
Abstract
:1. Introduction
2. The Case for Distributed Flood Attenuation
2.1. Distributed Systems of Reservoirs (DSR)
2.2. Natural Flood Management (NFM)
2.3. Green Infrastructure (GI)
2.4. Distributed Attenuation Spatial Modeling
3. Framework
3.1. Study Area Characterization
3.2. Runoff Attenuating Features
3.3. Potential Locations
3.4. Hydrologic Model
3.5. Attenuation Effect
3.6. Effectiveness and Robustness
4. Case Study
4.1. Study Area and Stream Network Characterization
4.2. Runoff Attenuating Features
4.3. Potential Locations
4.4. Hydrologic Model
4.5. Spatial Distributions of Reservoirs
5. Results and Discussion
5.1. Single Reservoir vs. Distributed Reservoirs
5.2. In-Parallel vs. In-Series Distributions
5.3. Framework Role and Future Development
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USACE. Available online: https://www.iwr.usace.army.mil/Missions/Value-to-the-Nation/Fast-Facts/Fast-Facts-Sources/ (accessed on 25 May 2021).
- Heine, R.A.; Pinter, N. Levee effects upon flood levels: An empirical assessment. Hydrol. Process. 2012, 26, 3225–3240. [Google Scholar] [CrossRef]
- Jacobson, R.B.; Lindner, G.; Bitner, C. The Role of Floodplain Restoration in Mitigating Flood Risk, Lower Missouri River, USA. In Geomorphic Approaches to Integrated Floodplain Management of Lowland Fluvial Systems in North America and Europe; Hudson, P.F., Middelkoop, H., Eds.; Springer: New York, NY, USA, 2015; pp. 203–243. [Google Scholar]
- Graf, W.L. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 2006, 79, 336–360. [Google Scholar] [CrossRef]
- Piqué, G.; Batalla, R.J.; López, R.; Sabater, S. The fluvial sediment budget of a dammed river (upper Muga, southern Pyrenees). Geomorphology 2017, 293, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Walther, S.C.; Martinez, A.E.; Greenfield, B.K. Impact of Jordanelle Dam on sedimentological and ecohydrological regimes of the Provo River, Utah, USA. Int. J. River Basin Manag. 2021, 1–11. [Google Scholar] [CrossRef]
- Hauer, C.; Leitner, P.; Unfer, G.; Pulg, U.; Habersack, H.; Graf, W. The Role of Sediment and Sediment Dynamics in the Aquatic Environment. In Riverine Ecosystem Management; Springer International Publishing: Cham, Germany, 2018; pp. 151–169. [Google Scholar]
- McCluney, K.E.; Poff, N.L.; Palmer, M.A.; Thorp, J.H.; Poole, G.C.; Williams, B.S.; Williams, M.R.; Baron, J.S. Riverine macrosystems ecology: Sensitivity, resistance, and resilience of whole river basins with human alterations. Front. Ecol. Environ. 2014, 12, 48–58. [Google Scholar] [CrossRef]
- Ho, M.; Lall, U.; Allaire, M.; Devineni, N.; Kwon, H.H.; Pal, I.; Raff, D.; Wegner, D. The future role of dams in the United States of America. Water Resour. Res. 2017, 53, 982–998. [Google Scholar] [CrossRef]
- Silva, R.; Galloway, M.; Ritchey, J.; Smith, K.; Kula, J.; Ditchey, E.; McCormick, T.; Verigin, S. The cost of Rehabilitating Our Nation’s Dams. A Methodology, Estimate & Proposed Funding Mechanisms; Association of state dam safety officials: Lexington, KY, USA, 2019. [Google Scholar]
- Lovett, R.A. Dam removals: Rivers on the run. Nature 2014, 511, 521–523. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Rodríguez, J.T.; Needham, J.T.; Morales-Torres, A.; Escuder-Bueno, I. A combined risk analysis approach for complex dam–levee systems. Struct. Infrastruct. Eng. 2017, 13, 1624–1638. [Google Scholar] [CrossRef]
- Aureli, F.; Maranzoni, A.; Petaccia, G. Review of Historical Dam-Break Events and Laboratory Tests on Real Topography for the Validation of Numerical Models. Water 2021, 13, 1968. [Google Scholar] [CrossRef]
- Adnan, M.S.G.; Haque, A.; Hall, J.W. Have coastal embankments reduced flooding in Bangladesh? Sci. Total Environ. 2019, 682, 405–416. [Google Scholar] [CrossRef]
- Abdulkareem, M.; Elkadi, H. From engineering to evolutionary, an overarching approach in identifying the resilience of urban design to flood. Int. J. Disaster Risk Reduct. 2018, 28, 176–190. [Google Scholar] [CrossRef]
- Manocha, N.; Babovic, V. Planning Flood Risk Infrastructure Development under Climate Change Uncertainty. Procedia Eng. 2016, 154, 1406–1413. [Google Scholar] [CrossRef] [Green Version]
- Sayers, P.; Galloway, G.; Penning-Rowsell, E.; Yuanyuan, L.; Fuxin, S.; Yiwei, C.; Kang, W.; Le Quesne, T.; Wang, L.; Guan, Y. Strategic flood management: Ten ‘golden rules’ to guide a sound approach. Int. J. River Basin Manag. 2015, 13, 137–151. [Google Scholar] [CrossRef]
- Jongman, B.; Ward, P.J.; Aerts, J.C. Global exposure to river and coastal flooding: Long term trends and changes. Glob. Environ. Chang. 2012, 22, 823–835. [Google Scholar] [CrossRef]
- Green, C.H.; Parker, D.J.; Tunstall, S.M. Assessment of Flood Control and Management Options; Thematic Review IV.4 prepared as an input to the World Commission on Dams; World Commission on Dams: Cape Town, South Africa, 2000. [Google Scholar]
- Ayalew, T.B.; Krajewski, W.F.; Mantilla, R.; Wright, D.B.; Small, S.J. Effect of Spatially Distributed Small Dams on Flood Frequency: Insights from the Soap Creek Watershed. J. Hydrol. Eng. 2017, 22, 04017011. [Google Scholar] [CrossRef]
- Berry, P.; Yassin, F.; Belcher, K.; Lindenschmidt, K.-E. An economic assessment of local farm multi-purpose surface water retention systems in a Canadian Prairie setting. Appl. Water Sci. 2017, 7, 4461–4478. [Google Scholar] [CrossRef] [Green Version]
- Lavers, T.; Charlesworth, S. Opportunity mapping of natural flood management measures: A case study from the headwaters of the Warwickshire-Avon. Environ. Sci. Pollut. Res. 2018, 25, 19313–19322. [Google Scholar] [CrossRef]
- Nicholson, A.R.; O’Donnell, G.M.; Wilkinson, M.E.; Quinn, P.F. The potential of runoff attenuation features as a Natural Flood Management approach. J. Flood Risk Manag. 2020, 13. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.-L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef] [Green Version]
- McCuen, R.H. A regional approach to urban storm water detention. Geophys. Res. Lett. 1974, 1, 2. [Google Scholar] [CrossRef]
- Ali, G. Keeping Water on the Land: How, Where and When? Presentation to CWRA Luncheon and AGM. 2013. Available online: http://umanitoba.ca/interdisciplinary/programs/watershed/media/CWRApresentation_14May2013_GA.pdf (accessed on 26 May 2021).
- Wunsch, M.J. Distributed Storage Modeling in Soap Creek for Flood Control and Agricultural Practices. Master’s Thesis, University of Iowa, Iowa City, IA, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Sun, J. Hydrologic and Hydraulic Model Development for Flood Mitigation and Routing Method Comparison in Soap Creek Watershed. Master’s Thesis, University of Iowa, Iowa City, IA, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Tiessen, K.H.D.; Elliott, J.A.; Stainton, M.; Yarotski, J.; Flaten, D.N.; Lobb, D.A. The effectiveness of small-scale headwater storage dams and reservoirs on stream water quality and quantity in the Canadian Prairies. J. Soil Water Conserv. 2011, 66, 158–171. [Google Scholar] [CrossRef]
- Liu, Y.B.; Yang, W.H.; Yu, Z.Q.; Lung, I.; Yarotski, J.; Elliott, J.; Tiessen, K. Assessing Effects of Small Dams on Stream Flow and Water Quality in an Agricultural Watershed. J. Hydrol. Eng. 2014, 19, 14. [Google Scholar] [CrossRef]
- Emerson, C.H.; Welty, C.; Traver, R.G. Watershed-scale evaluation of a system of storm water detention basins. J. Hydrol. Eng. 2005, 10, 237–242. [Google Scholar] [CrossRef]
- Goff, K.M.; Gentry, R.W. The Influence of Watershed and Development Characteristics on the Cumulative Impacts of Stormwater Detention Ponds. Water Resour. Manag. 2006, 20, 829–860. [Google Scholar] [CrossRef]
- Ayalew, T.B.; Krajewski, W.F.; Mantilla, R. Insights into Expected Changes in Regulated Flood Frequencies due to the Spatial Configuration of Flood Retention Ponds. J. Hydrol. Eng. 2015, 20, 10. [Google Scholar] [CrossRef]
- Chen, C.N.; Tsai, C.H.; Tsai, C.T. Reduction of discharge hydrograph and flood stage resulted from upstream detention ponds. Hydrol. Process. 2007, 21, 3492–3506. [Google Scholar] [CrossRef]
- Mays, L.W.; Bedient, P.B. Model for Optimal Size and Location of Detention. J. Water Resour. Plan. Manag. Div. 1982, 108, 270–285. [Google Scholar] [CrossRef]
- Ravazzani, G.; Gianoli, P.; Meucci, S.; Mancini, M. Assessing Downstream Impacts of Detention Basins in Urbanized River Basins Using a Distributed Hydrological Model. Water Resour. Manag. 2014, 28, 1033–1044. [Google Scholar] [CrossRef]
- Yazdi, J.; Salehi Neyshabouri, S.A.A. A Simulation-Based Optimization Model for Flood Management on a Watershed Scale. Water Resour. Manag. 2012, 26, 4569–4586. [Google Scholar] [CrossRef]
- Wilkinson, M.E.; Quinn, P.F.; Welton, P. Runoff management during the September 2008 floods in the Belford catchment, Northumberland. J. Flood Risk Manag. 2010, 3, 285–295. [Google Scholar] [CrossRef]
- Addy, S.; Wilkinson, M. An assessment of engineered log jam structures in response to a flood event in an upland gravel-bed river. Earth Surf. Process. Landf. 2016, 41, 1658–1670. [Google Scholar] [CrossRef]
- Nicholson, A.R.; Wilkinson, M.E.; O’Donnell, G.M.; Quinn, P.F. Runoff attenuation features: A sustainable flood mitigation strategy in the Belford catchment, UK. Area 2012, 44, 463–469. [Google Scholar] [CrossRef]
- Thomas, H.; Nisbet, T. Modelling the hydraulic impact of reintroducing large woody debris into watercourses. J. Flood Risk Manag. 2012, 5, 164–174. [Google Scholar] [CrossRef]
- Hartmann, T.; Slavíková, L.; McCarthy, S. Nature-Based Solutions in Flood Risk Management. In Nature-Based Flood Risk Management on Private Land: Disciplinary Perspectives on a Multidisciplinary Challenge; Hartmann, T., Slavíková, L., McCarthy, S., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 3–8. [Google Scholar]
- McIntyre, N.; Ballard, C.; Bulygina, N.; Frogbrook, Z.; Cluckie, I.; Dangerfield, S.; Ewen, J.; Geris, J.; Henshaw, A.; Jackson, B.; et al. The potential for reducing flood risk through changes to rural land management: Outcomes from the Flood Risk Management Research Consortium. In Proceedings of the BHS Eleventh National Symposium, Hydrology for a Changing World, Dundee, Scotland, 6–8 September 2012. [Google Scholar]
- Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.; Holman, I.P.; Lane, S.N.; et al. A restatement of the natural science evidence concerning catchment-based ‘natural’ flood management in the UK. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, H.; Nisbet, T.R. An assessment of the impact of floodplain woodland on flood flows. Water Environ. J. 2007, 21, 114–126. [Google Scholar] [CrossRef]
- Wilkinson, M.E.; Quinn, P.F.; Barber, N.J.; Jonczyk, J. A framework for managing runoff and pollution in the rural landscape using a Catchment Systems Engineering approach. Sci. Total Environ. 2014, 468, 1245–1254. [Google Scholar] [CrossRef]
- Metcalfe, P.; Beven, K.; Hankin, B.; Lamb, R. A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29-km2 scale catchment in the United Kingdom. Hydrol. Process. 2017, 31, 1734–1748. [Google Scholar] [CrossRef] [Green Version]
- Pattison, I.; Lane, S.N.; Hardy, R.J.; Reaney, S.M. The role of tributary relative timing and sequencing in controlling large floods. Water Resour. Res. 2014, 50, 5444–5458. [Google Scholar] [CrossRef] [Green Version]
- Dixon, S.J.; Sear, D.A.; Odoni, N.A.; Sykes, T.; Lane, S.N. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surf. Process. Landf. 2016, 41, 997–1008. [Google Scholar] [CrossRef]
- Roy, A.H.; Wenger, S.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Shuster, W.D.; Thurston, H.W.; Brown, R.R. Impediments and solutions to sustainable, watershed-scale urban stormwater management: Lessons from Australia and the United States. Environ. Manag. 2008, 42, 344–359. [Google Scholar] [CrossRef]
- Huang, Y.J.; Tian, Z.; Ke, Q.; Liu, J.G.; Irannezhad, M.; Fan, D.L.; Hou, M.F.; Sun, L.X. Nature-based solutions for urban pluvial flood risk management. Wiley Interdiscip. Rev.-Water 2020, 7, 17. [Google Scholar] [CrossRef]
- Carmen, N.B.; Hunt William, F.; Anderson, A.R. Volume Reduction Provided by Eight Residential Disconnected Downspouts in Durham, North Carolina. J. Environ. Eng. 2016, 142, 05016002. [Google Scholar] [CrossRef]
- Jarden, K.M.; Jefferson, A.J.; Grieser, J.M. Assessing the effects of catchment-scale urban green infrastructure retrofits on hydrograph characteristics. Hydrol. Process. 2016, 30, 1536–1550. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Hondula, K.L.; Jarnagin, S.T. Effectiveness of landscape-based green infrastructure for stormwater management in suburban catchments. Hydrol. Process. 2018, 32, 2346–2361. [Google Scholar] [CrossRef] [Green Version]
- Fahy, B.; Chang, H. Effects of Stormwater Green Infrastructure on Watershed Outflow: Does Spatial Distribution Matter? Int. J. Geospat. Environ. Res. 2019, 6, 5. [Google Scholar]
- Zellner, M.; Massey, D.; Minor, E.; Gonzalez-Meler, M. Exploring the effects of green infrastructure placement on neighborhood-level flooding via spatially explicit simulations. Comput. Environ. Urban Syst. 2016, 59, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Shuster, W.; Rhea, L. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA). J. Hydrol. 2013, 485, 177–187. [Google Scholar] [CrossRef]
- Yang, B.; Li, S. Green Infrastructure Design for Stormwater Runoff and Water Quality: Empirical Evidence from Large Watershed-Scale Community Developments. Water 2013, 5, 2038–2057. [Google Scholar] [CrossRef]
- Pennino, M.J.; McDonald, R.I.; Jaffe, P.R. Watershed-scale impacts of stormwater green infrastructure on hydrology, nutrient fluxes, and combined sewer overflows in the mid-Atlantic region. Sci. Total Environ. 2016, 565, 1044–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mejia, A.I.; Moglen, G.E. Impact of the spatial distribution of imperviousness on the hydrologic response of an urbanizing basin. Hydrol. Process. 2010, 24, 3359–3373. [Google Scholar] [CrossRef]
- Loperfido, J.V.; Noe, G.B.; Jarnagin, S.T.; Hogan, D.M. Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale. J. Hydrol. 2014, 519, 2584–2595. [Google Scholar] [CrossRef]
- Fry, T.J.; Maxwell, R.M. Evaluation of distributed BMPs in an urban watershedHigh resolution modeling for stormwater management. Hydrol. Process. 2017, 31, 2700–2712. [Google Scholar] [CrossRef]
- Di Vittorio, D.; Ahiablame, L. Spatial Translation and Scaling Up of Low Impact Development Designs in an Urban Watershed. J. Water Manag. Model. 2015, 23, 9. [Google Scholar] [CrossRef] [Green Version]
- Potter, K.W. Small-scale, spatially distributed water management practices: Implications for research in the hydrologic sciences. Water Resour. Res. 2006, 42, 2. [Google Scholar] [CrossRef] [Green Version]
- Sitzenfrei, R.; Moderl, M.; Rauch, W. Assessing the impact of transitions from centralised to decentralised water solutions on existing infrastructures—Integrated city-scale analysis with VIBe. Water Res. 2013, 47, 7251–7263. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.C.; Welty, C. Effects of spatial configuration of imperviousness and green infrastructure networks on hydrologic response in a residential sewershed. Water Resour. Res. 2017, 53, 8084–8104. [Google Scholar] [CrossRef]
- Golden, H.E.; Hoghooghi, N. Green infrastructure and its catchment-scale effects: An emerging science. Wiley Interdiscip. Rev.-Water 2018, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Rodak, C.M.; Moore, T.L.; David, R.; Jayakaran, A.D.; Vogel, J.R. Urban stormwater characterization, control, and treatment. Water Environ. Res. A Res. Publ. Water Environ. Fed. 2019, 91, 1034–1060. [Google Scholar] [CrossRef] [Green Version]
- Lane, S.N. Natural flood management. WIREs Water 2017, 4, e1211. [Google Scholar] [CrossRef] [Green Version]
- Wingfield, T.; Macdonald, N.; Peters, K.; Spees, J.; Potter, K. Natural Flood Management: Beyond the evidence debate. Area 2019, 51, 743–751. [Google Scholar] [CrossRef]
- Jenson, S.K.; Domingue, J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information-System Analysis. Photogramm. Eng. Remote Sens. 1988, 54, 1593–1600. [Google Scholar]
- Li, J.; Wong, D.W.S. Effects of DEM sources on hydrologic applications. Comput. Environ. Urban Syst. 2010, 34, 251–261. [Google Scholar] [CrossRef]
- Guo James, C.Y. Off-Stream Detention Design for Storm-Water Management. J. Irrig. Drain. Eng-ASCE 2012, 138, 371–376. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Gash, J.H.C. Rainfall Interception Loss by Forest Canopies. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions; Levia, D.F., CarlyleMoses, D., Tanaka, T., Eds.; Ecological Studies-Analysis and Synthesis; Springer: Dordrecht, The Netherlands, 2011; Volume 216, pp. 407–423. [Google Scholar]
- Holder, C.D.; Gibbes, C. Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrol. Sci. J.-J. Sci. Hydrol. 2017, 62, 182–190. [Google Scholar] [CrossRef]
- Mantilla, R.; Gupta, V.K. A GIS numerical framework to study the process basis of scaling statistics in river networks. Ieee Geosci. Remote Sens. Lett. 2005, 2, 404–408. [Google Scholar] [CrossRef]
- Sanders, B.F.; Pau, J.C.; Jaffe, D.A. Passive and active control of diversions to an off-line reservoir for flood stage reduction. Adv. Water Resour. 2006, 29, 861–871. [Google Scholar] [CrossRef]
- Marchese, D.; Johnson, J.; Akers, N.; Huffman, M.; Hlas, V. Quantitative Comparison of Active and Passive Stormwater Infrastructure: Case Study in Beckley, West Virginia. In Proceedings of the WEFTEC, New Orleans, LA, USA, 29 September–3 October 2018. [Google Scholar]
- Open Source Geospatial Foundation. GDAL/OGR Contributors GDAL/OGR Geospatial Data Abstraction Software Library. Available online: https://gdal.org/ (accessed on 28 September 2021).
- Poff, N.L.; Hart, D.D. How dams vary and why it matters for the emerging science of dam removal. Bioscience 2002, 52, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Brewitt, P.K.; Colwyn, C.L.M. Little dams, big problems: The legal and policy issues of nonjurisdictional dams. Wiley Interdiscip. Rev.-Water 2020, 7, 16. [Google Scholar] [CrossRef]
- ESRI. Surface Volume. Available online: https://desktop.arcgis.com/en/arcmap/10.6/tools/3d-analyst-toolbox/surface-volume.htm (accessed on 23 September 2021).
- Gupta, R.S. Hydrology and Hydraulic Systems: Fourth Edition; Waveland Press: Long Grove, IL, USA, 2016. [Google Scholar]
- Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Int. Conf. Water Resour. Coast. Ocean Eng. 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Rigon, R. Python Resources for Hydrologists. Available online: https://abouthydrology.blogspot.com/2016/11/python-resources-for-hydrologists.html (accessed on 5 May 2021).
- Schellekens, J. OpenStreams Wflow Documentation Release 2019.1. Deltares. Available online: http://wflow.readthedocs.org/en/latest/ (accessed on 23 September 2021).
- Iowa Stormwater Urban Design and Specifications. Ch. 2-Stormwater. 2B-2 Rainfall and Runoff Periods. Iowa SUDAS Des. Man. 2013. Revised edition 2015. Available online: https://intrans.iastate.edu/app/uploads/sites/15/2020/03/2B-2.pdf (accessed on 23 September 2021).
- Del Giudice, G.; Rasulo, G.; Siciliano, D.; Padulano, R. Combined Effects of Parallel and Series Detention Basins for Flood Peak Reduction. Water Resour. Manag. 2014, 28, 3193–3205. [Google Scholar] [CrossRef]
- Babbar-Sebens, M.; Barr, R.C.; Tedesco, L.P.; Anderson, M. Spatial identification and optimization of upland wetlands in agricultural watersheds. Ecol. Eng. 2013, 52, 130–142. [Google Scholar] [CrossRef]
- Tao, T.; Wang, J.; Xin, K.; Li, S. Multi-objective optimal layout of distributed storm-water detention. Int. J. Environ. Sci. Technol. 2014, 11, 1473–1480. [Google Scholar] [CrossRef] [Green Version]
- Bellu, A.; Fernandes, L.F.S.; Cortes, R.M.V.; Pacheco, F.A.L. A framework model for the dimensioning and allocation of a detention basin system: The case of a flood-prone mountainous watershed. J. Hydrol. 2016, 533, 567–580. [Google Scholar] [CrossRef]
- Cimorelli, L.; Morlando, F.; Cozzolino, L.; Covelli, C.; Della Morte, R.; Pianese, D. Optimal Positioning and Sizing of Detention Tanks within Urban Drainage Networks. J. Irrig. Drain. Eng-ASCE 2016, 142, 12. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Theller, L.O.; Pijanowski, B.C.; Engel, B.A. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana. Sci. Total Environ. 2016, 553, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.S.; Mays, L.W. Optimal Design of Detention and Drainage Channel Systems. J. Water Resour. Plan. Manage.-ASCE 1985, 111, 99–112. [Google Scholar] [CrossRef]
- Park, M.; Chung, G.; Yoo, C.; Kim, J.H. Optimal design of stormwater detention basin using the genetic algorithm. KSCE J. Civ. Eng. 2012, 16, 660–666. [Google Scholar] [CrossRef]
- Ngo, T.T.; Yoo, D.G.; Lee, Y.S.; Kim, J.H. Optimization of Upstream Detention Reservoir Facilities for Downstream Flood Mitigation in Urban Areas. Water 2016, 8, 290. [Google Scholar] [CrossRef] [Green Version]
- Alves, A.; Vojinovic, Z.; Kapelan, Z.; Sanchez, A.; Gersonius, B. Exploring trade-offs among the multiple benefits of green-blue-grey infrastructure for urban flood mitigation. Sci. Total Environ. 2020, 703, 14. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sarma, A.K.; Hack, J. Cost-Effective Optimization of Nature-Based Solutions for Reducing Urban Floods Considering Limited Space Availability. Environ. Process. 2020, 7, 297–319. [Google Scholar] [CrossRef]
- Tarpanelli, A.; Franchini, M.; Brocca, L.; Camici, S.; Melone, F.; Moramarco, T. A simple approach for stochastic generation of spatial rainfall patterns. J. Hydrol. 2012, 472, 63–76. [Google Scholar] [CrossRef]
- Benoit, L.; Allard, D.; Mariethoz, G. Stochastic Rainfall Modeling at Sub-kilometer Scale. Water Resour. Res. 2018, 54, 4108–4130. [Google Scholar] [CrossRef]
- Antolini, F. Python Code for Distributed Attenuation. Available online: https://github.com/federicoantolini/distributed_attenuation (accessed on 23 September 2021).
Distribution | Description | Number of Reservoirs | Capacity [m3] | Regulated Drainage [km2] |
---|---|---|---|---|
Baseline | No reservoir | 0 | 0 | 0 |
Single Reservoir | One large reservoir (ID 601667) near the outlet | 1 | 87,258 | 39.13 |
DSR 1 | Reservoirs on reaches of Strahler order 3, 4 and 5, scattered across the watershed | 6 | 87,819 | 8.03 |
DSR 2 | Same as DSR 1, with the addition of Single Reservoir | 7 | 175,077 | 39.13 |
Upstream Parallel | Reservoirs on reaches of Strahler order < 5, in the upstream region of the watershed; all reservoirs in parallel | 15 | 300,611 | 5.16 |
Midstream Parallel | Reservoirs on reaches of Strahler order < 5, in the midstream region of the watershed; all reservoirs in parallel | 23 | 300,649 | 5.06 |
Downstream Parallel | Reservoirs on reaches of Strahler order < 5 in the downstream region of the watershed; all reservoirs in parallel | 17 | 300,916 | 5.02 |
Upstream Series | Reservoirs on reaches of Strahler order < 5, in the upstream region of the watershed; some reservoirs in series on longer reaches | 12 | 300,520 | 8.56 |
Midstream Series | Reservoirs on reaches of Strahler order < 5, in the midstream region of the watershed; some reservoirs in series on longer reaches | 23 | 300,267 | 9.26 |
Downstream Series | Reservoirs on reaches of Strahler order < 5, in the downstream region of the watershed; some reservoirs in series on longer reaches | 19 | 300,639 | 7.64 |
Region | Upstream | Midstream | Downstream | |||
---|---|---|---|---|---|---|
Total reach length (Strahler < 5) | 29.70 | 55.01 | 50.08 | |||
Distributions | parallel | series | parallel | series | parallel | series |
Total length of regulated reaches [km] (% of total reaches) | 11.71 (39.4%) | 10.21 (34.4%) | 19.40 (35.3%) | 23.91 (43.5%) | 17.77 (35.5%) | 18.32 (36.6%) |
Regulated drainage [km2] | 5.16 | 8.56 | 5.06 | 9.26 | 5.02 | 7.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antolini, F.; Tate, E. Location Matters: A Framework to Investigate the Spatial Characteristics of Distributed Flood Attenuation. Water 2021, 13, 2706. https://doi.org/10.3390/w13192706
Antolini F, Tate E. Location Matters: A Framework to Investigate the Spatial Characteristics of Distributed Flood Attenuation. Water. 2021; 13(19):2706. https://doi.org/10.3390/w13192706
Chicago/Turabian StyleAntolini, Federico, and Eric Tate. 2021. "Location Matters: A Framework to Investigate the Spatial Characteristics of Distributed Flood Attenuation" Water 13, no. 19: 2706. https://doi.org/10.3390/w13192706
APA StyleAntolini, F., & Tate, E. (2021). Location Matters: A Framework to Investigate the Spatial Characteristics of Distributed Flood Attenuation. Water, 13(19), 2706. https://doi.org/10.3390/w13192706