é
- water

Article

Modelling the Impact of Vegetation Change on Hydrological
Processes in Bayin River Basin, Northwest China

Xin Jin 1?3, Yanxiang Jin 1'2-3-*, Xufeng Mao >3, Jingya Zhai "?> and Di Fu 12

check for

updates
Citation: Jin, X.; Jin, Y.; Mao, X.;
Zhai, J.; Fu, D. Modelling the Impact
of Vegetation Change on
Hydrological Processes in Bayin
River Basin, Northwest China. Water
2021, 13,2787. https://doi.org/
10.3390/w13192787

Academic Editors: Dengfeng Liu,

Hui Liu and Xianmeng Meng

Received: 14 August 2021
Accepted: 29 September 2021
Published: 8 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

MOE Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation,

Qinghai Normal University, Xining 810016, China; jinx13@lzu.edu.cn (X.].); xfmao1001@163.com (X.M.);
jingyasea@163.com (J.Z.); jinxin201016@gmail.com (D.E.)

School of the Geographical Science, Qinghai Normal University, Xining 810016, China

Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810016, China

*  Correspondence: jinyx13@lzu.edu.cn

Abstract: Vegetation change in arid areas may lead to the redistribution of regional water resources,
which can intensify the competition between ecosystems and humans for water resources. This
study aimed to accurately model the impact of vegetation change on hydrological processes in an
arid endorheic river watershed undergoing revegetation, namely, the middle and lower reaches
of the Bayin River basin, China. A LU-SWAT-MODFLOW model was developed by integrating
dynamic hydrological response units with a coupled SWAT-MODFLOW model, which can reflect
actual land cover changes in the basin. The LU-SWAT-MODFLOW model outperformed the original
SWAT-MODFLOW model in simulating the impact of human activity as well as the leaf area index,
evapotranspiration, and groundwater table depth. After regional revegetation, evapotranspiration
and groundwater recharge in different sub-basins increased significantly. In addition, the direc-
tion and amount of surface-water-groundwater exchange changed considerably in areas where
revegetation involved converting low-coverage grassland and bare land to forestland.

Keywords: revegetation; irrigation; leaf area index; evapotranspiration; groundwater

1. Introduction

Vegetation is essential for regional carbon sequestration, soil and water conservation,
and climate regulation [1,2]. Arid areas, which account for 40% of the world’s land area,
are characterised by water shortages and uneven spatiotemporal distributions of water
resources [3]. Changes in vegetation and related management practices (e.g., irrigation) in
arid areas may lead to the redistribution of regional water resources, which can intensify
the competition between ecosystems and humans for water resources [1,4]. In this context,
the water demand and water consumption characteristics of vegetation change in arid
areas are of particular concern [5,6].

Nowadays, physically based distributed (or semi-distributed) hydrological models can
clearly reflect the spatial variability of hydrological processes in a basin, and these models
are playing an important role in simulations and predictions of the hydrological cycle in
basins [7-9]. Notably, SWAT (Soil and Water Assessment Tools) is a typical distributed
hydrological model with a strong physical foundation [10]. It is suitable for simulating
surface hydrological processes in a complex basin with a variety of soil types, land use
types, slopes, and management practices, and it can be used in data-poor regions [11-13].
Currently, SWAT is a key component of the USDA-Conservation Effect Assessment Project
and the USEPA-Hydrologic and Water Quality System [14]. Nevertheless, SWAT has a
weak ability to simulate groundwater processes, thereby limiting its application in arid
areas with strong surface-water-groundwater exchange [15-17].

The ability of SWAT to simulate groundwater processes can be improved by replacing
the groundwater module of SWAT with a well-established groundwater model [15,16].
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A relatively well-established practice for this approach is to couple SWAT with a MOD-
FLOW model by using the same temporal and spatial scales for both models, thereby
allowing SWAT to calculate and input hydrological response unit (HRU)-based groundwa-
ter recharge data to the MODFLOW model and then allowing the MODFLOW model to
calculate and return the groundwater flow between the aquifer and river to SWAT [15,16].
The SWAT-MODFLOW code developed by Bailey et al. couples the most recent SWAT code
with the MODFLOW-NWT code, which improves the solution of unconfined groundwater
flow problems [16,18]. This version of the SWAT-MODFLOW model has recently been
developed and is the most widely used. Semiromi and Koch [19] modelled complex inter-
action of surface-groundwater interactions by MODFLOW in the Gharehsoo River basin,
located in Northwest Iran. Mosase et al. [20] used SWAT-MODFLOW to assess the spatial
distribution of annual and seasonal groundwater recharge and interactions with surface
water in the Limpopo River basin, an arid basin in Africa. Jafari et al. [21] developed a
calibration tool for SWAT-MODFLOW and used the model to simulate the runoff and
groundwater in Shiraz catchment, located in southwestern Iran. The authors used SWAT-
MODFLOW to model the natural water cycle of ‘atmosphere-slope—underground-river’
components. In this process, the impact of human activities, such as land use/land cover
change, is generalised [17]. However, in view of increasingly intense human activities,
full consideration of both the impact of human activities and natural factors on the water
cycle process in a basin is paramount to ensure that distributed hydrological models can
accurately describe the water cycle process [22,23]. Intensive vegetation change is one of
the final results of human activities [4]. Vegetation growth in SWAT is a key process to
consider in the quantitative modelling of eco-hydrological processes, as it directly affects
evapotranspiration (ET), water interception, and soil erosion [23]. Therefore, accurate
determination of vegetation change in different HRUs is a key to modelling hydrological
processes [24]. SWAT can reflect vegetation changes in a basin by using a land-use update
module [23]. However, HRUs, the basic computational units of SWAT, are virtual units,
each of which is treated as a lumped unit to achieve the same soil type, land use/cover
type, and slope at different spatial sites. This makes it infeasible for SWAT to effectively
reflect partial land cover type conversions or land cover types converted to multiple other
landcovers within the same HRU. To the best of our knowledge, only a few studies have
overcome this limitation of HRUs in SWAT-MODFLOW.

Given the above context, in this study, we developed a LU-SWAT-MODFLOW model
by integrating a coupled SWAT-MODFLOW model with dynamic HRUs, which can over-
come the limitation of considering the vegetation change compared to the original HRUs for
the middle and lower reaches of the Bayin River basin, a typical arid endorheic river, where
there are frequent surface-water—groundwater interactions and evident vegetation changes.
With the advancement of remote sensing technology, data products with high spatiotempo-
ral resolution such as leaf area index (LAI) and ET, combined with observed hydrological
data, were used to calibrate the model [25-27]. The performance of SWAT-MODFLOW and
LU-SWAT-MODFLOW were compared first. Later, the hydrological effects of revegetation
were analysed based on the simulation results of LU-SWAT-MODFLOW. This study can
provide assistance for ensuring revegetation sustainability and rationally allocating water
resources in arid areas.

2. Materials and Methods
2.1. Study Area

The Bayin River, which is the fourth largest river in the Qaidam Basin, is situated
in the north-western region of China (Figure 1). The basin is in an arid area with annual
precipitation of approximately 200 mm. The main land cover types of the area are grassland,
shrubland, barren land, and farmland. The Bayin River flows out of the mountains into the
middle and lower reaches, where the human population and industrial and agricultural
activities are concentrated, and with frequent surface-water—groundwater exchange. The
vegetation in the Bayin River basin has been restored substantially with the implementation
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of a series of ecological restoration measures, such as the Grain-for-Green program, over
the past 20 years. However, irrigation has become essential for such artificial revegetation
projects because of the arid climate and the heterogeneity in the spatial distribution of
water resources.
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Figure 1. Study area.

2.2. SWAT-MODFLOW Model

In this study, the coupling of SWAT with the MODFLOW model was achieved by
using the method of Bailey et al. [16]. Given the inconsistency between the two models in
terms of computational spatial units, it was necessary to use a GIS platform to unify the
spatial resolution before model coupling (Figure 2). First, specific spatial locations were
allocated to the computational units (i.e., HRUs) of SWAT. Second, a mapping relationship
was established between the HRUs of SWAT and the computational grid cells of MOD-
FLOW on the same projected coordinate system using a GIS platform [14,15]. Third, the
SWAT model was run to simulate the groundwater recharge, evaporation, and extraction
with a temporal step of 1 d. Finally, the simulation results were taken as boundary condi-
tions on the corresponding computational grid cells of MODFLOW for groundwater flow
modelling [16]. The MODFLOW model was run to simulate the groundwater processes
while using the groundwater monitoring data of the basin (provided by Qinghai Provincial
Department of water resources) to calibrate and validate the model parameters. Meanwhile,
the simulated groundwater table depth from the MODFLOW model was transferred to the
computational units of surface water through the abovementioned mapping relationship
to impose boundary conditions on the simulation of irrigation groundwater extraction,
crop growth, and vegetation transpiration, as well as to test the simulation results [16].
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Figure 2. Integration of Soil and Water Assessment Tool (SWAT) and MODFLOW computing units.

2.3. SWAT-MODFLOW Model Coupled with Dynamic HRUs

In view of the inability of the original SWAT model to effectively reflect complete
or partial land cover type conversions within the same HRU, this study transformed the
HRUs of the original SWAT model to dynamic HRUs to improve the original model. The
generation process of dynamic HRUs is illustrated in Figure 3. In contrast to the original
HRUs, the generation process of dynamic HRUs involved the defining of spatial units
where there were land use/cover changes, i.e., it incorporated the concept of dynamic land
use/cover. Such spatial units were combined with soil type and slope data to generate
dynamic HRUs such that each had a specific and invariant location, area, and shape with
variable attributes. Such dynamic HRUs can more truly reflect the land use/cover changes
in the basin.
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Land use/ cover in Year | — .
A Dynamic Land use/ cover __ 1 C a L
2 A a 1
B C Overlay 3 C a 1
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Figure 3. Production of dynamic hydrological response units (HRUs).

The operational flow chart of the coupled SWAT-MODFLOW model based on dynamic
HRUs is shown in Figure 4. First, annual cycle simulations were performed by using
corresponding HRUs (land cover). Second, daily cycle simulations were performed in
which hydrological processes were simulated by SWAT. The simulation results on each
HRU were mapped to the computational grid cells of MODFLOW, where these were
taken as boundary conditions for groundwater flow simulations. Third, the simulated
groundwater data within the grid cells were mapped to the HRUs of SWAT for subsequent
SWAT computations. The above process was conducted in nested loops until the end of
the simulation. Considering that the dynamic HRU-based SWAT-MODFLOW coupled
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model could reflect the dynamic changes in land use/cover, the model was referred to as
LU-SWAT-MODFLOW.

Yearly loop

Last year of
simulation? ?

SWAT-call for
Dynamic HRUs

Print the final
result

SWAT-Surface water
simulation

SWAT HRU-MODFLOW

cell conversion

MODFLOW-Groundwater
Simulation

MODFLOW cell-SWAT
HRU conversion

SWAT
simulation

Figure 4. Flowchart of the SWAT-MODFLOW coupled model based on dynamic HRUs.

2.4. Model Establishment

Meteorological data required for establishing the SWAT model included the daily
monitoring data for precipitation, temperature, relative humidity, wind speed, and solar
radiation at the Delingha weather station, which is located at the inlet shown in Figure 1.
Agricultural, forestland, and grassland irrigation data were obtained from the Delingha Mu-
nicipal Water Affairs Bureau (Table 1). The newest digital elevation model data (Figure 1)
of 30 m resolution Shuttle Radar Topography Mission data [28] were used. Soil type data
(Figure 5a) at the scale 1:1,000,000 from China were used [29], and the corresponding soil
hydrological attributes were retrieved from the Qinghai Soil Record [30]. Figure 5b presents
the sub-basin division map of the study region.

Table 1. Irrigation volume in the study region.

Annual Irrigation Number of Times

Irrigation Type Rate (m?/hm?) of Irrigation Irrigation Duration
Agricultural irrigation 5800 6 March-October
Forest irrigation 5400 6 April-November
Grassland irrigation 3600 5 April-November

Land use type data for the simulated period (2000-2018) were derived from 30 m
Landsat images. Remote sensing interpretation marks were created according to spec-
tral features combined with field survey data and relevant geographic maps [31]. Data
quality was examined by comparatively analysing field survey patches versus randomly
selected patches, and the classification accuracy was determined to be over 90%. Figure 6
presents the regional spatial distribution of land use/cover in 2000 (Figure 6a) versus 2018
(Figure 6b). There were six types of land use/cover in 2000, namely, spring wheat, forest,
grassland, water, residences, and barren land. There were seven types in 2018, including
‘Chinese wolfberry” as a new type in addition to the existing six types. In the study region,
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Chinese wolfberry was the main tree species used for artificial revegetation. Considering
the absence of Chinese wolfberry-related parameters in the built-in land use and vegetation
database of SWAT, relevant initial parameters for apple trees in the SWAT model were taken
as default parameters for Chinese wolfberry, and these were calibrated using the LAI data
to simulate the growth process of Chinese wolfberry. Other relevant parameters of land
use/cover types were either set to the default values in the built-in database of the model
or obtained by calibration. Revegetation in the study region was mainly characterised by
the conversion of farmland to forestland and the conversion of bare land to forestland and
grassland. From 2000 to 2018, the years when evident vegetation changes (restoration)
occurred in the study region were 2005, 2008, 2015, and 2018. Accordingly, the land use
data for 2000, 2005, 2008, 2015, and 2018 were used to generate dynamic HRUs. In contrast,
land cover types in the other years were only weakly altered and therefore ignored.
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Figure 5. (a) Soil types in the study area and (b) sub-basins input to the SWAT model.

97°10% 97°20F 97°30F 97°40' 9T°0E 97°10E 9720 9730E OT4VE
n I I h

37°30N-

37°20N

Legend

I Chinese Wolfberry

[ Spring Wheat 5:10x]

[ Forest

[ Grassland
Water

Il Residence

[ Barren Land

0 5 10 km

370N+

N N

Al | J

37°20N

37°10N

S —

(a) (b)
Figure 6. Revegetation status of the study region in (a) 2000 and (b) 2018.

Basin boundaries delineated by the SWAT model were considered as impermeable
boundaries to groundwater flow in the MODFLOW model, where the western and east-
ern outlets of the basin were considered as constant flow boundaries. The river network
extracted by the SWAT model was considered to constitute river boundaries in the MOD-
FLOW model. The simulated steady-state groundwater head (Figure 7) was used as the
initial head for simulations of transient flow [32]. In addition, the shallow aquifers in the
study region were conceptualised as being non-homogeneous and anisotropic according to
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relevant studies [32], and the groundwater flow was conceptualised as a two-dimensional
transient flow.

%

Head(m)

— High : 2879

-5 0 10 20km
02

Figure 7. Initial groundwater head for MODFLOW.

2.5. Model Calibration

The years 2000-2001 were used as the model warm-up period, 2002-2011 as the model
calibration period, and 2012-2018 as the model validation period. Vegetation growth
parameters in the SWAT model were calibrated at HRU scales against the monthly 30 m
resolution LAI data of 2002-2018 provided by the National Tibetan Plateau/Third Pole
Environment Data Centre [29]. The dataset is the fusion of MODIS LAI and observed LAI
in Qilian mountainous area (including the Qaidam Basin).

ET simulated by the LU-SWAT-MODFLOW model was calibrated at sub-basin scales
against the ET data at a 0.1° x 0.1° resolution (Figure 8) provided by the National Tibetan
Plateau/Third Pole Environment Data Centre [29]. The dataset is derived by employing
a calibration-free nonlinear complementary relationship model with inputs of air and
dew-point temperature, wind speed, precipitation, and net radiation from the China
Meteorological Forcing Dataset. The dataset is validated in Northwest China and is proved
to have good spatial and temporal performance [24]. Furthermore, relevant parameters
(conductivity and storage) of the MODFLOW model were calibrated against monthly
recorded groundwater table depth at numerous observation wells (Figure 5b) in the basin.

In this study, land cover types in the LU-SWAT-MODFLOW model varied over the
years within some of the dynamic HRUs or remained invariant throughout a relatively long
period within some of the HRUs. The HRUs in the latter scenario were chosen to calibrate
the relevant vegetation growth parameters (Table 2) against monthly 30 m resolution LAI
data [26]. The calibrated parameters were stored in a separate file, which could be visited
during SWAT operations to directly tune parameters in HRUs where changes in land cover
type were detected. ET-related parameter (Table 2) calibration at sub-basin scales in the
present study was mainly based on the aforementioned remote sensing-derived ET data in
accordance with the method of White and Chaubey [33] and Immerzeel and Droogers [25].
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Table 2. Vegetation growth and ET-related parameters in SWAT.
Processes Parameter Description
BLAI Maximum potential leaf area index
LAIMX 1 Fraction of the maximum leaf area index corresponding to the 1st
- point on the optimal leaf area development curve
FRGRW1 Fraction of the plant growing season corresponding to the 1st
point on the optimal leaf area development curve
LAIMX 2 Fraction of the maximum leaf area index corresponding to the
Vegetation growth-related - 2nd point on the optimal leaf area development curve
parameters FRGRW?2 Fraction of the plant growing season corresponding to the 2nd
point on the optimal leaf area development curve
DLAI Fraction of growing season when leaf area begins to decline
BIO_E Radiation use efficiency
EXT_COEF Light extinction coefficient
GSI Maximum canopy stomatal conductance
HVSTI Harvest index for the optimal growing condition
T-BASE Minimum (base) temperature for plant growth
SOL_AWC Available water content
RFINC Monthly rainfall increment
lated GWREVAP Groundwater revap coefficient
ET-related parameters BLAI Maximum potential leaf area index
ESCO Soil evaporation compensation factor

EPCO

Plant uptake compensation factor
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2.6. Model Performance Metrics

The applicability of SWAT was evaluated in terms of Nash-Sutcliffe Efficiency (NSE),
percent bias (PBIAS), and squared correlation coefficient (R?). The NSE can range between
—oo and 1. If the value of the NSE was closer to 1, it was indicative of a better simulation
performance and high reliability of the SWAT model. When the NSE was closer to 0.5, the
model simulation results were similar to the mean of observations, that is, the model results
in general were reliable. A PBIAS between —10% and 10% indicated a good simulation
performance of the model. Additionally, larger values of R? were indicative of a better
simulation performance of the model. The calculation process and significance of the three
metrics have been elaborated elsewhere [34]. Model performance during the simulations
of the groundwater table depth was evaluated mainly in terms of the absolute error and R?
in this study:.

n obs sim 2
i=1 (Vi - Vi )

NSE =1 — 5 @
{1:1 (Viobs _ Vmean)
n 1 (Viobs — Visim) % 100
pBIAS — | Zi=t( Sih ) 1 )
i=1 V1
. — i 2
U 0 ) .

TN (v, (v )2

3. Results
3.1. Regional Vegetation Change

The main types of vegetation change in the study region from 2002 to 2018 are sum-
marised in Table 3. Specifically, the main types of vegetation change pertained to the
conversion of low-coverage grassland, farmland, and bare land to forestland, in which
the converted areas amounted to 2,877,518 and 321 hm?, respectively. Correspondingly,
the irrigation water volume of each revegetation plot underwent dramatic changes. In
addition, the conversion of farmland to forestland mainly occurred in the irrigated area of
the Gahai Lake in the south-eastern part of the basin, while the conversion of low-coverage
grassland and bare land to forestland mainly occurred in the irrigated area of Delingha,
which is situated in the north-western part of the basin (Figure 6).

Table 3. Main types of revegetation in the study region.

Revegetation Area Change in the Annual
Main Type of Revegetation & 2 Irrigation Rate
(m°/hm*-a)
Conversion of low-coverage grassland 2877 0-55400
to forestland
Conversion of farmland to forestland 518 5800—5400
Conversion of bare land to forestland 321 0—5400

3.2. Comparison of the Original SWAT-MODFLOW and LU-SWAT-MODFLOW
3.2.1. Difference in HRUs

Figure 9 shows the HRUs generated by the original SWAT-MODFLOW model versus
those from the LU-SWAT-MODFLOW model. The original SWAT-MODFLOW model
generated 1304 HRUs, and the LU-SWAT-MODFLOW model generated 2978 HRUs. The
higher number of HRUs in the new model was due to the land use/cover data of LU-
SWAT-MODFLOW being a superposition of years-long data and thereby covering a higher
number of patches. The higher number of HRUs also implied that the operation and
parameter tuning of the LU-SWAT-MODFLOW model would be more complicated [35].
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Figure 9. HRUs generated by (a) SWAT-MODFLOW and (b) LU-SWAT-MODFLOW.

3.2.2. Comparison of the LAI Simulation Results

Figure 10 shows the simulated LAI from the calibrated original SWAT-MODFLOW
model and the calibrated LU-SWAT-MODFLOW model for July 2005, 2010, 2015, and 2018.
Compared to the remote-sensed LAI, the calibrated LU-SWAT-MODFLOW model has
better performance in expressing the spatial variation of the LAI than SWAT-MODFLOW
since the LU-SWAT-MODFLOW model has more HRUs. In addition, we randomly chose
10 positions in different parts of the study area and calculated the performance metrics of
LAl in corresponding HRUs of original SWAT-MODFLOW and LU-SWAT-MODFLOW
model, respectively. The performance metrics for the calibrated and validated original
SWAT-MODFLOW model were NSE > 0.75, PBIAS of —25-25%, and R? > 0.73, and the
counterparts for the calibrated and validated LU-SWAT-MODFLOW were NSE > 0.83,
PBIAS of —20-20%, and R? > 0.83 (Table 4). This indicates that the LU-SWAT-MODFLOW
model was more accurate than the original SWAT-MODFLOW model in simulations of the
monthly LAI after both models were calibrated and validated.

»:

July, 2005

July, 2010

LAI
B 00198
I 0.199 - 0.524
[ 0.525-1.025
[ ] 1.02-1763
[ 1 1764-2826
L[ 2826409
" 4.091- 5830

July, 2018 July, 2018 Juty, 2015 I 5.830 - 9.807

July, 2015

Figure 10. Simulated leaf area index (LAI) from the (a—d) calibrated original SWAT-MODFLOW
model, (e-h) calibrated LU-SWAT-MODFLOW model, and (i-1) remote-sensed LAI
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Table 4. Performance of the original SWAT-MODFLOW model versus the LU-SWAT-MODFLOW
model in simulating LAL

SWAT-MODFLOW LU-SWAT-MODFLOW
HRU Calibration Period Validation Period Calibration Period Validation Period
NSE PBIAS R2 NSE PBIAS R? NSE PBIAS R*? NSE PBIAS R?

El 085 2084 083 081 1763 079 092 1411 088 087 1654 0.85
E2 08 2371 085 080 2125 076 091 11.13 087 0.86 1452 0.83
W1l 082 1989 082 078 1565 075 088 1345 090 0.84 17.89 0.88
w2 083 1741 081 075 1932 073 089 1265 089 083 1921 0.84
S1 08 1372 084 081 1729 077 090 1099 090 0.86 1654 0.86
52 083 1924 081 079 1423 078 091 1111 090 0.85 1732 0.87
N1 087 1536 08 077 1322 078 093 1465 092 088 1521 0.89
N2 08 1752 084 076 1121 0.77 090 1753 0.89 0.84 1856 0.90
C1 084 2149 083 078 2217 076 092 1646 090 0.87 1412 0.87
C2 085 2076 083 081 1978 074 091 13.02 092 083 1176 0.89

3.2.3. Comparison of the ET Simulation Results

During the calibration and validation period, the performance metrics of the original
SWAT-MODFLOW model were NSE > 0.65, PBIAS of —20%-20%, and R? > 0.63 in simula-
tions of the monthly mean ET for each sub-basin, while the counterparts for the LU-SWAT-
MODFLOW model were NSE > 0.72, PBIAS of —20%—-20%, and R? > 0.73 (Figure 11). This
indicates that the LU-SWAT-MODFLOW model was more accurate than the original SWAT-
MODFLOW in simulations of the monthly mean ET for most of the sub-basins. Figure 12
shows the multi-year mean of the simulated ET from the original SWAT-MODFLOW model
(Figure 12a) versus that of the LU-SWAT-MODFLOW model (Figure 12b) in comparison
with the multi-year mean of remote sensing-derived ET (Figure 12c). The multi-year mean
of remote sensing-derived ET exhibited a spatial distribution pattern of high values in the
north-eastern mountains and low values in the southwestern plains, and such a distribution
pattern existed for both calibrated models.

3.2.4. Comparison of the Simulation Results for Groundwater Table Depth

Groundwater table depth data were scarce within the study region. Observation wells
1,2, and 3 only provided monthly data for 2009-2011, and observation well 4 only provided
monthly data for 2013-2015; meanwhile, observation well 5 only provided monthly data
for 2014-2015. Thus, the observed groundwater table depth of wells 1, 2, and 3 were
used to calibrate the two models, and the rest were used to validate the models. Linear
regression results of the simulated groundwater table depth on observed groundwater
table depth were compared between the original SWAT-MODFLOW model and the LU-
SWAT-MODFLOW model (Figure 13). Both models performed well in simulating the
changes in the groundwater table depth of the study region, with an R? > 0.95 and absolute
error within 0.5 m. In addition, the simulation performance of LU-SWAT-MODFLOW was
slightly better than that of SWAT-MODFLOW, which was likely attributed to the detailed
consideration of the spatiotemporal changes in irrigation and land cover by the former
model versus the latter model.
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Figure 13. Monthly groundwater table depth simulated by the (a—e) SWAT-MODFLOW model versus
the (f-) LU-SWAT-MODFLOW model.

3.3. Impacts of Vegetation Change on Hydrological Processes

The case study area is located in a water consumption area of an inland river and
almost never generates runoff. Thus, here we focus on the analysis of the vegetation change
impacts on ET and groundwater processes.

3.3.1. Impacts on ET

The LU-SWAT-MODFLOW model was run in the following two scenarios to ac-
curately analyse the impacts of revegetation and the related extensive irrigation on ET:
(1) revegetation was assumed absent while considering the actual changes in other types
of land use/cover; and (2) the actual changes in land use/cover were considered, in-
cluding those pertinent to revegetation (irrigation) and other types of land use/cover.
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Figure 14a shows the simulated monthly ET in the revegetation-absent scenario versus
the revegetation-present scenario from 2002 to 2018. The results indicate that revegetation
and related irrigation did not change the trend of monthly ET in the basin, in which the
monthly ET in the revegetation-present scenario was only 1.5 mm higher than that in the
revegetation-absent scenario for most months. Similarly, the trend of annual ET was almost
the same in both scenarios. In 2004 and later years, ET showed weakly higher values in
the revegetation-present scenario than in the revegetation-absent scenario (Figure 14b).
Figure 13c illustrates the difference in the multi-year mean ET between the two scenarios
in each sub-basin. Such a difference was greater than 10 mm in sub-basins 4, 12, 13, 14,
26, and 33, that is, the ET increase was most obvious in these sub-basins. Comprehensive
comparisons of the land use/cover map (Figure 6) with the LAI map for the study region
during the study period further confirmed that relatively obvious revegetation had been
achieved in these sub-basins.

a e
—ET without revegetation ET with revegetation b —ET without revegetation ET with revegetation
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Figure 14. (a) Monthly and (b) yearly ET with revegetation and without revegetation; (c) yearly
average ET change in different sub-basins after revegetation.

3.3.2. Impacts on Groundwater Recharge

Groundwater is the most important water resource in the arid endorheic river water-
shed. Changes in groundwater recharge may affect the groundwater storage and further
impact the ecological environment. Figure 15 shows the monthly (Figure 15a) and yearly
(Figure 15b) groundwater recharge in the entire study area. After revegetation, the ground-
water recharge increased by approximately 1.27 mm on average per month and 14.02 mm
on average per year. Fan et al. [36], Yang and Lu [37], and Qubaja et al. [30] showed that
canopy interception and root water absorption would lead to reduction of soil water, sur-
face runoff, and groundwater recharge in woodland. However, here, although considerable
areas of low-coverage grassland, farmland, and bare land were converted to forestland,
the groundwater recharge with revegetation was evidently higher than that without reveg-
etation. We reported the yearly average groundwater recharge after revegetation in the
entire study area (Figure 14c). The groundwater recharge in the irrigation district where
the revegetation was applied was the highest (>14.51 m3/day); that is, the irrigation for the
recovered vegetation strongly affected the groundwater recharge.
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Figure 15. (a) Monthly and (b) yearly groundwater recharge with and without revegetation; (c) yearly
average groundwater recharge after revegetation in space.

3.3.3. Impacts on Surface Water and Groundwater Exchange

There was frequent surface-water-groundwater exchange in the study region, which
dominated the regional hydrological processes. We analysed the surface water and ground-
water exchange affected by revegetation. Figure 16 shows the amount of groundwa-
ter recharge and discharge in the revegetation-absent scenario minus the value in the
revegetation-present scenario. Specifically, river reach I was in the upper study region,
where groundwater was recharged by river water. River reach Il was situated in the lower
study region, where significant amounts of groundwater were discharged to the river. In
river reach III, both surface water recharge to groundwater and groundwater discharge to
surface water were present. River reach Il was situated in the irrigated area of Delingha,
where it was greatly affected by agricultural, forestland, and grassland irrigation, which led
to a relatively complex pattern of surface-water—-groundwater exchange. The area where
river reach III was situated was also the main revegetation area of the study region. Com-
parisons of Figure 16 revealed that the direction of surface-water—groundwater exchange
was reversed in six grid cells, which was attributed to the changes in the irrigation volume
within these grid cells after revegetation.
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Figure 16. Revegetation impacts on groundwater recharge and discharge.
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4. Discussion

The LU-SWAT-MODFLOW model was more accurate than the original SWAT-MODFLOW
model in simulating the monthly LAI after both models were calibrated and validated.
LAI plays a key role in SWAT for estimating ET, canopy interception, and biomass ac-
cumulation [35]. The enhanced modelling of LAI could improve the performance of the
SWAT model in eco-hydrological processes [26,38]. However, accurate simulation of LAI
relies on many parameters which are difficult to calibrate. Generally, parameters of SWAT-
MODFLOW are calibrated with observed data in watershed outlets or sub-basins [23,27].
Only few studies have calibrated the parameters at the HRU level because of its difficulty
and complexity. In this study, the remote-sensed monthly LAI data were used to calibrate
the SWAT-MODFLOW and LU-SWAT-MODFLOW at the HRU level using the SWAT-CUP
software (https://swat.tamu.edu/software/swat-cup/) (accessed on 1 October 2021) with
a satisfactory result. This suggests that the model calibration at the HRU level is possible
and effective if the related observation data exist.

The LU-SWAT-MODFLOW model was more accurate than the original SWAT-MODFLOW
in simulating the monthly mean ET for most sub-basins. Ma et al. [26] reported that canopy
interception and soil water content would be seriously affected by LAI in SWAT, which
would further affect ET. Therefore, the enhancements of LU-SWAT-MODFLOW in mod-
elling the monthly ET can be attributed to the more accurate simulation of the LAIL

Revegetation projects have been conducted in both the Gahai Lake irrigated area and
the irrigated area of Delingha, but the revegetation had a relatively high impact on the
direction and amount of surface-water-groundwater exchange in the latter area; in the
former area, there was an almost negligible impact. This discrepancy was attributed to
the fact that revegetation in the Gahai Lake irrigated area was mainly characterised by the
conversion of farmland to forestland, and the irrigation volume did not differ significantly
between the two land cover types [38]. In contrast, the irrigated area of Delingha was
dominated by the conversion of low-coverage grassland to bare land and forestland, and
the former two land cover types required no irrigation, while the latter land cover type
required a large irrigation volume.

This study is subjected to some limitations. On the one hand, we used land use/cover
map to analyse the revegetation process in our study area. In fact, plant density, age,
and growth status were not considered because of the limitations in the SWAT model.
Moreover, these factors may affect the eco-hydrological processes in such an arid area [26].
On the other hand, meteorological data were scarce in both original SWAT-MODFLOW and
LU-SWAT-MODFLOW models. This may impact the model performance in formulating
the water budget [39-41]. Nonetheless, these limitations should be addressed in future
studies by using and analysing different datasets.

5. Conclusions

This study was carried out in the middle and lower reaches of the Bayin River basin in
the north-eastern part of the Qaidam Basin, China, where there is frequent surface-water—
groundwater interaction and evident vegetation change. A LU-SWAT-MODFLOW model
was developed by integrating a coupled SWAT-MODFLOW model with dynamic HRUs in
view of their ability to reflect the actual land cover changes in the basin. The impacts of
revegetation and related irrigation on the main hydrological processes in the basin were
more accurately simulated and analysed by the LU-SWAT-MODFLOW model than by the
original SWAT-MODFLOW model.

The LU-SWAT-MODFLOW model generated dynamic HRUs by pre-defining spa-
tial units where land use/cover changes occurred during the simulated period, thereby
overcoming the inability of the original SWAT model to effectively reflect the complete or
partial land cover type conversion within the same HRU. This new model outperformed
the original SWAT-MODFLOW model in simulating the LAIL The LAI is an important
parameter of SWAT as it affects a series of processes, such as ET and infiltration; therefore,
accurate simulations of the LAI are a key to accurate hydrological simulations. Moreover,
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the LU-SWAT-MODFLOW model outperformed the original SWAT-MODFLOW model in
simulating the ET and groundwater table depth of the basin.

The LU-SWAT-MODFLOW model was run in two different scenarios, one with reveg-
etation and the other without it, to assess the impacts of revegetation and related irrigation
on the main hydrological processes in the study region. The results showed that after
regional revegetation, ET in the different sub-basins increased by approximately 1.5 mm per
month and by 6 mm per year. After revegetation, the groundwater recharge increased by
approximately 1.27 mm on average per month and 14.02 mm on average per year. Irrigation
for the recovered vegetation strongly affected the groundwater recharge. Meanwhile, the
direction and amount of surface-water-groundwater exchange underwent evident changes
in areas where revegetation was characterised by the conversion of low-coverage grassland
and bare land to forestland. In areas where revegetation was characterised by the conver-
sion of farmland to forestland, the irrigation volume was not greatly altered; thus, this
transition had a weak impact on the direction and amount of surface-water—groundwater
exchange. Changes in the direction and amount of surface-water-groundwater exchange
may lead to a series of ecological and environmental issues. To avoid problems in the
future, water-saving irrigation techniques should be advocated when conducting reveg-
etation in arid inland river basins. In addition, our findings indicate that it would be
advantageous to preferentially apply revegetation measures that promote the conversion
of farmland to forestland /grassland provided that they do not adversely affect regional
economic development.
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