Impact of Industrial Production, Dam Construction, and Agriculture on the Z-IBI in River Ecosystems: A Case Study of the Wanan River Basin in China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Areas
2.2. Sampling and Analysis
2.3. Establishment of Z-IBI Assessment System
2.4. Statistical Analysis
3. Results
3.1. Difference in Composition and Structure of Zooplankton Community in Different Regions
3.2. Difference of Zooplankton Diversity
3.3. Z-IBI Evaluation System
3.4. Z-IBI Scores of Industrial, Dam-Controlled, and Agricultural Areas and at Reference Sites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karr, J.R. Assessment of Biotic Integrity Using Fish Communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Wu, N.; Cai, Q.; Fohrer, N. Development and evaluation of a diatom-based index of biotic integrity (D-IBI) for rivers impacted by run-of-river dams. Ecol. Indic. 2012, 18, 108–117. [Google Scholar] [CrossRef]
- Cui, W.Y.; Guo, S.Y.; Meng, X.Z.; Kong, F.Q. Application of adapted Benthic Index of Biotic Integrity (B-IBI) for river ecosystem health assessment in Zhanghe River Watershed, China. Pol. J. Ecol. 2019, 66, 407–415. [Google Scholar] [CrossRef]
- Pomari, J.; Kane, D.D.; Ferreira, R.A.R.; Nogueira, M.G. A new tool to assess ecosystem health in large subtropical reservoirs: Development and validation of a Planktonic Index of Biotic Integrity. Aquat. Ecosyst. Health Manag. 2019, 22, 15–29. [Google Scholar] [CrossRef]
- Zhu, W.T.; Liu, Y.Y.; Wang, S.; Yu, M.; Qian, W. Development of microbial community–based index of biotic integrity to evaluate the wetland ecosystem health in Suzhou, China. Environ. Monit. Assess. 2019, 191, 377. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q.; Cai, W.Q.; Lei, K.; Yin, X.W.; Han, J.; Sun, M.D. Assessment on Ecological Integrity of Rivers in Tianjin City. Res. Environ. Sci. 2020, 33, 2308–2317, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, W.; Wei, J.; Li, B.; Shi, X.; Wang, T.Y.; Dong, C.H.; Yin, D.P. Plankton Community Structure and Eutrophication Evaluation in Lake Junhai, Beijing. J. Biol. 2020. Available online: https://kns.cnki.net/kcms/detail/34.1081.Q.20200616.0914.004.html (accessed on 7 June 2020). (In Chinese with English Abstract).
- Liu, L.F.; Xu, Z.X.; Yin, X.W.; Li, F.L.; Wang, M. Assessment of the Water Quality in Jinan City by Using both Fish and Benthic- Macroinvertebrate Index of Biotic Integrity. Res. Environ. Sci. 2019, 8, 1134–1394, (In Chinese with English Abstract). [Google Scholar]
- Xiong, W.; Ni, P.; Chen, Y.Y.; Gao, Y.C.; Shan, B.Q.; Zhan, A.B. Zooplankton community structure along a pollution gradient at fine geographical scales in river ecosystems: The importance of species sorting over dispersal. Mol. Ecol. 2017, 26, 4351–4360. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xu, S.; Lin, J.; Li, H.; Lin, Q.; Han, B.-P. Urbanization increases biotic homogenization of zooplankton communities in tropical reservoirs. Ecol. Indic. 2019, 110, 105899. [Google Scholar] [CrossRef]
- Ye, L.; Chang, C.Y.; García-Comas, C.; Gong, G.C.; Hsieh, C.H. Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. J. Anim. Ecol. 2013, 82, 1052–1060. [Google Scholar] [CrossRef]
- Stamou, G.; Katsiapi, M.; Moustaka-Gouni, M.; Michaloudi, E. Trophic state assessment based on zooplankton communities in Mediterranean lakes. Hydrobiologia 2019, 844, 83–103. [Google Scholar] [CrossRef]
- Yao, C.; He, T.R.; Xu, Y.Y.; Ran, S.; Qian, X.L.; Long, S.X. Mercury bioaccumulation in zooplankton and its relationship with eutrophication in the waters in the karst region of Guizhou Province, southwest China. Environ. Sci. Pollut. Res. 2020, 27, 8596–8610. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.C.; Tang, T.; Wu, N.C.; Fu, X.C.; Cai, Q.H. Impacts of a small dam on riverine zooplankton. Int. Rev. Hydrobiol. 2008, 93, 297–311. [Google Scholar] [CrossRef]
- Mao, Y.; Yang, S.; Xue, C.; Zhang, M.M.; Wang, W.L.; Song, Z.L.; Zhao, X.Q.; Sun, J. Rapid degradation of malachite green by CoFe2O4-SiC foam under microwave radiation. R. Soc. Open Sci. 2018, 5, 180085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moitra, M.; Leff, L.G. Bacterial community composition and function along a river to reservoir transition. Hydrobiologia 2015, 747, 201–215. [Google Scholar] [CrossRef]
- Shiyomi, M.; Takahashi, S.; Kirita, H. Roles of plant biomass and vegetational heterogeneity, and energy-matter cycling in grassland sustainability. Ecol. Model. 2000, 132, 135–149. [Google Scholar] [CrossRef]
- Kornis, M.S.; Weidel, B.C.; Powers, S.M.; Diebel, M.W.; Cline, T.J.; Fox, J.M.; Kitchell, J.F. Fish community dynamics following dam removal in a fragmented agricultural stream. Aquat. Sci. 2015, 77, 465–480. [Google Scholar] [CrossRef]
- Poff, N.L.; Olden, J.D. Can dams be designed for sustainability? Science 2017, 358, 1252–1253. [Google Scholar] [CrossRef]
- Keefer, M.L.; Peery, C.A.; Caudill, C.C. Migration Timing of Columbia River Spring Chinook Salmon: Effects of Temperature, River Discharge, and Ocean Environment. Trans. Am. Fish. Soc. 2008, 137, 1120–1133. [Google Scholar] [CrossRef]
- Qiu, Z.; Walter, M.T.; Hall, C. Managing variable source pollution in agricultural watersheds. J. Soil Water Conserv. 2007, 62, 115–122. [Google Scholar]
- Huang, X.F.; Chen, W.M.; Cai, Q.M. Survey, observation and analysis of lake ecology. In Standard Methods for Observation and Analysis in Chinese Ecosystem Research Network; Series V; Standards Press of China: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Shen, J.; Tai, A.; Zhang, C.; Li, Z.; Song, D.; Chen, G. Fauna Sinica, Crustacea, Freshwater Copepod; Institute of Zoology, Academia Sinica: Beijing, China, 1979. (In Chinese) [Google Scholar]
- Chiang, S.C.; Du, N.S. Fauna Sinica, Crustacea: Freshwater Cladocera; Science Press, Academia Sinica: Beijing, China, 1979. (In Chinese) [Google Scholar]
- Sun, Y.K.; Yang, G.; Li, C.L.; Wang, N. Establishment of zooplankton index of biotic integrity for Jiaozhou Bay. Mar. Sci. 2015, 39, 1–7. [Google Scholar]
- Rutherford, S.; D’Hondt, S.; Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 1999, 400, 749–753. [Google Scholar] [CrossRef]
- Li, X.; Yu, Y.; Li, C.; Yan, Q. Comparative study on the gut microbiotas of four economically important Asian carp species. Sci. China Life Sci. 2018, 61, 696–705, (In Chinese with English Abstract). [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Zhang, M.; Chen, J.F.; Xu, J.; Xiao, B.D.; Zhou, M.; Zhang, M. Reduction in the phytoplankton index of biotic integrity in riverine ecosystems driven by industrial activities, dam construction and mining: A case study in the Ganjiang River, China. Ecol. Indic. 2021, 120, 106907. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Vasconcellos, R.; Nayfeh, A.H.; Hajj, M.R.; Badran, O. Nonlinear Analysis and Identification of Limit Cycle Oscillations in an Aeroelastic System. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Allan, J.D. Life history patterns in zooplankton. Am. Nat. 1976, 110, 165–180. [Google Scholar] [CrossRef]
- Kobayashi, T.; Shiel, R.J.; Gibbs, P.; Dixon, P.I. Freshwater zooplankton in the Hawkesbury-Nepean River: Comparison of community structure with other rivers. Hydrobiologia 1998, 377, 133–145. [Google Scholar] [CrossRef]
- Luo, X.T.; Gao, F.; Yi, Z.Z.; Pan, Y.; Al-Farraj, S.A.; Warren, A. Taxonomy and molecular phylogeny of two new brackish hypotrichous ciliates, with the establishment of a new genus (Ciliophora, Spirotrichea). Zool. J. Linn. Soc. 2017, 179, 475–491. [Google Scholar]
- Cooper, S.D.; Goldman, C.R. Opossum shrimp (Mysis relicta) predation on zooplankton. Can. J. Fish. Aquat. Sci. 1980, 37, 909–919. [Google Scholar] [CrossRef]
- Domingues, C.D.; Silva, L.H.S.; Rangel, L.M.; Magalhães, L.; Rocha, A.; Lobão, L.M.; Paiva, R.; Roland, F.; Sarmento, H. Microbial food-web drivers in tropical reservoirs. Microb. Ecol. 2017, 73, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Havel, J.E.; Medley, K.A.; Dickerson, K.D.; Angradi, T.R.; Bolgrien, D.W.; Bukaveckas, P.A.; Jicha, T.M. Effect of main-stem dams on zooplankton communities of the Missouri River (USA). Hydrobiologia 2009, 628, 121–135. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, J.; Xu, Y.; Pan, X.; Qu, Z.; Luo, X.; El-Serehy, H.A.; Warren, A.; Ma, H.; Pan, H. Diversity of free-living marine ciliates (Alveolata, Ciliophora): Faunal studies in coastal waters of China during the years 2011–2016. Eur. J. Protistol. 2017, 61, 424–438. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Zhang, M.; Liu, Z.G.; Zhang, Z.; Fang, H.Y. Assessment on freshwater ecosystem integrity and health in Ganjiang River basin through the fish IBI method. Resour. Environ. Yangtze Basin 2011, 20, 1098–1107, (In Chinese with English Abstract). [Google Scholar]
- Gernes, M.C.; Helgen, J.C. Indexes of Biological Integrity (IBI) for Large Depressional Wetlands in Minnesota; Minnesota Pollution Control Agency: St. Paul, MN, USA, 2002.
- Kummu, M.; Guillaume, J.H.A.; Moel, H.D.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, F.; van Slobbe, E.; Cofino, W. Climate change adaptation and Integrated Water Resource Management in the water sector. J. Hydrol. 2014, 518 Pt B, 235–242. [Google Scholar] [CrossRef]
- Jeppesen, E.; Nõges, P.; Davidson, T.A.; Haberman, J.; Nõges, T.; Blank, K.; Lauridsen, T.L.; Søndergaard, M.; Sayer, C.; Laugaste, R.; et al. Zooplankton as indicators in lakes: A scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 2011, 676, 279–297. [Google Scholar] [CrossRef]
- Silva, L.H.S.; Huszar, V.L.M.; Marinho, M.M.; Rangel, L.M.; Brasil, J.; Domingues, C.D.; Branco, C.C.; Roland, F. Drivers of phytoplankton, bacterioplankton, and zooplankton carbon biomass in tropical hydroelectric reservoirs. Limnologica 2014, 48, 1–10. [Google Scholar] [CrossRef]
- Oliveira, A.G.; Baumgartner, M.T.; Gomes, L.C.; Dias, R.M.; Agostinho, A.A. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshw. Biol. 2018, 63, 293–305. [Google Scholar] [CrossRef]
- Baxter, R.M. Environmental effects of dams and impoundments. Annu. Rev. Ecol. Syst. 1977, 8, 255–283. [Google Scholar] [CrossRef]
- Baumgartner, M.T.; Baumgartner, G.; Gomes, L.C. The effects of rapid water level changes on fish assemblages: The case of a spillway gate collapse in a Neotropical reservoir. River Res. Appl. 2017, 33, 548–557. [Google Scholar]
- Loken, L.C.; Crawford, J.T.; Dornblaser, M.M.; Striegl, R.G.; Houser, J.N.; Turner, P.A.; Stanley, E.H. Limited nitrate retention capacity in the Upper Mississippi River. Environ. Res. Lett. 2018, 13, 074030. [Google Scholar] [CrossRef]
- Lin, Q. Influence of Dams on River Ecosystem and Its Countermeasures. J. Water Resour. Prot. 2011, 3, 60–66. [Google Scholar] [CrossRef]
- Miracle, M.R.; Alfonso, M.T.; Vicente, E. Fish and nutrient enrichment effects on rotifers in a Mediterranean shallow lake: A mesocosm experiment. Hydrobiologia 2007, 593, 77–94. [Google Scholar] [CrossRef]
- Hegde, G.; Mandya, M.; Gokarnakar, S.S.; Babu, V.N.; Shivaramaiah, V.N.; Krishnamurthy, S.V. Influence of combinations of pesticides and fertilizers on aquatic productivity. J. Environ. Prot. 2014, 5, 434–440. [Google Scholar] [CrossRef] [Green Version]
Category | Candidate Metrics | Abbreviation |
---|---|---|
Species density | Total Species density | M1 |
Cladocera density | M2 | |
Copepoda density | M3 | |
Percentage of Cladocera density | M4 | |
Percentage of Copepoda density | M5 | |
Species richness | Number of total species | M6 |
Number of Cladocera species | M7 | |
Number of Copepoda species | M8 | |
Percentage of Cladocera species | M9 | |
Percentage of Copepoda species | M10 | |
Species biomass | Total species biomass | M11 |
Cladocera biomass | M12 | |
Copepoda biomass | M13 | |
Percentage of Cladocera biomass | M14 | |
Percentage of Copepoda biomass | M15 | |
Number of total individuals | M16 | |
Species diversity | Dominance Index | M17 |
Shannon-Wiener index | M18 | |
Margalef index | M19 | |
Pielou index | M20 |
Level | I | II | III | IV | V |
---|---|---|---|---|---|
Health status | Healthy | Good | Fair | Poor | Extremely poor |
>4.88 | 3.65–4.88 | 2.43–3.65 | 1.22–2.43 | ≤1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, N.; Feng, B.; Zhang, M.; He, L.; Zhang, H.; Liu, Z. Impact of Industrial Production, Dam Construction, and Agriculture on the Z-IBI in River Ecosystems: A Case Study of the Wanan River Basin in China. Water 2021, 13, 123. https://doi.org/10.3390/w13020123
Yao N, Feng B, Zhang M, He L, Zhang H, Liu Z. Impact of Industrial Production, Dam Construction, and Agriculture on the Z-IBI in River Ecosystems: A Case Study of the Wanan River Basin in China. Water. 2021; 13(2):123. https://doi.org/10.3390/w13020123
Chicago/Turabian StyleYao, Na, Bing Feng, Meng Zhang, Liang He, Huan Zhang, and Zugen Liu. 2021. "Impact of Industrial Production, Dam Construction, and Agriculture on the Z-IBI in River Ecosystems: A Case Study of the Wanan River Basin in China" Water 13, no. 2: 123. https://doi.org/10.3390/w13020123
APA StyleYao, N., Feng, B., Zhang, M., He, L., Zhang, H., & Liu, Z. (2021). Impact of Industrial Production, Dam Construction, and Agriculture on the Z-IBI in River Ecosystems: A Case Study of the Wanan River Basin in China. Water, 13(2), 123. https://doi.org/10.3390/w13020123