Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Site
2.2. Dye—Staining Experiment and Image Processing
2.3. Drainage Experiment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Preferential Flow Paths and Dye-Staining Coverage
3.2. Water Breakthrough Curves
3.3. Effectiveness of Hydraulically Equivalent Macropore
3.4. Relationship between Dye Coverage and Hydraulically Equivalent Macroporosity
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Stamm, C.; Flühler, H.; Gächter, R.; Leuenberger, J.; Wunderli, H. Preferential transport of phosphorus in drained grassland soils. J. Environ. Qual. 1998, 27, 515–522. [Google Scholar] [CrossRef]
- Kung, K.-J.; Kladivko, E.; Gish, T.; Steenhuis, T.; Bubenzer, G.; Helling, C. Quantifying Preferential Flow by Breakthrough of Sequentially Applied Tracers Silt Loam Soil. Soil Sci. Soc. Am. J. 2000, 64, 1296–1304. [Google Scholar] [CrossRef]
- Luo, L.; Lin, H.; Li, S. Quantification of 3-D soil macropore networks in different soil types and land uses using computed tomography. J. Hydrol. 2010, 393, 53–64. [Google Scholar] [CrossRef]
- Jarvis, N.; Larsbo, M.; Koestel, J. Connectivity and percolation of structural pore networks in a cultivated silt loam soil quantified by X-ray tomography. Geoderma 2017, 287, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Negishi, J.N.; Noguchi, S.; Sidle, R.C.; Ziegler, A.D.; Rahim Nik, A. Stormflow generation involving pipe flow in a zero-order basin of Peninsular Malaysia. Hydrol. Process. 2007, 21, 789–806. [Google Scholar] [CrossRef]
- Morris, C.; Mooney, S.J.; Young, S.D. Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils. Geoderma 2008, 146, 434–438. [Google Scholar] [CrossRef]
- Ronkanen, A.-K.; Kløve, B. Long-term phosphorus and nitrogen removal processes and preferential flow paths in Northern constructed peatlands. Ecol. Eng. 2009, 35, 843–855. [Google Scholar] [CrossRef]
- Fu, Z.; Li, Z.; Cai, C.; Shi, Z.; Xu, Q.; Wang, X. Soil thickness effect on hydrological and erosion characteristics under sloping lands: A hydropedological perspective. Geoderma 2011, 167, 41–53. [Google Scholar] [CrossRef]
- Sidle, R.C.; Noguchi, S.; Tsuboyama, Y.; Laursen, K. A conceptual model of preferential flow systems in forested hillslopes: Evidence of self-organization. Hydrol. Process. 2001, 15, 1675–1692. [Google Scholar] [CrossRef]
- Skovdal Christiansen, J.; Thorsen, M.; Clausen, T.; Hansen, S.; Christian Refsgaard, J. Modelling of macropore flow and transport processes at catchment scale. J. Hydrol. 2004, 299, 136–158. [Google Scholar] [CrossRef]
- Tsukamoto, Y.; Ohta, T. Runoff process on a steep forested slope. J. Hydrol. 1988, 102, 165–178. [Google Scholar] [CrossRef]
- Jones, J. Soil piping and catchment response. Hydrol. Process. 2010, 24, 1548–1566. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Nieber, J.L.; Sidle, R.C. How do disconnected macropores in sloping soils facilitate preferential flow? Hydrol. Process. 2010, 24, 1582–1594. [Google Scholar] [CrossRef]
- Liu, M.X.; Du, W.Z.; Zhang, H.L. Changes of preferential flow path on different altitudinal zones in the three gorges reservoir area, China. Can. J. Soil Sci. 2014, 94, 177–188. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, H.; Wang, W.; Zhang, Y.; Chen, Y. Changes in preferential flow path distribution and its affecting factors in southwest China. Soil Sci. 2011, 176, 652–660. [Google Scholar] [CrossRef]
- Price, K.; Jackson, C.R.; Parker, A.J. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. J. Hydrol. 2010, 383, 256–268. [Google Scholar] [CrossRef]
- Flury, M.; Flühler, H. Tracer characteristics of brilliant blue FCF. Soil Sci. Soc. Am. J. 1995, 59, 22–27. [Google Scholar] [CrossRef]
- Pang, D.; Wang, G.; Li, G.; Sun, Y.; Liu, Y.; Zhou, J. Ecological stoichiometric characteristics of two typical plantations in the karst ecosystem of southwestern China. Forests 2018, 9, 56. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, D.; Biggar, J. Miscible displacement in soils: I. Experimental information. Soil Sci. Soc. Am. J. 1961, 25, 1–5. [Google Scholar] [CrossRef]
- Radulovich, R.; Solorzano, E.; Sollins, P. Soil macropore size distribution from water breakthrough curves. Soil Sci. Soc. Am. J. 1989, 53, 556–559. [Google Scholar] [CrossRef] [Green Version]
- Öhrström, P.; Persson, M.; Albergel, J.; Zante, P.; Nasri, S.; Berndtsson, R.; Olsson, J. Field-scale variation of preferential flow as indicated from dye coverage. J. Hydrol. 2002, 257, 164–173. [Google Scholar] [CrossRef]
- Flury, M.; Flühler, H.; Jury, W.A.; Leuenberger, J. Susceptibility of soils to preferential flow of water: A field study. Water Resour. Res. 1994, 30, 1945–1954. [Google Scholar] [CrossRef]
- Noguchi, S.; Nik, A.R.; Kasran, B.; Tani, M.; Sammori, T.; Morisada, K. Soil physical properties and preferential flow pathways in tropical rain forest, Bukit Tarek, Peninsular Malaysia. J. For. Res. 1997, 2, 115–120. [Google Scholar] [CrossRef]
- Noguchi, S.; Tsuboyama, Y.; Sidle, R.C.; Hosoda, I. Morphological characteristics of macropores and the distribution of preferential flow pathways in a forested slope segment. Soil Sci. Soc. Am. J. 1999, 63, 1413–1423. [Google Scholar] [CrossRef]
- Tsuboyama, Y.; Sidle, R.C.; Noguchi, S.; Hosoda, I. Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resour. Res. 1994, 30, 879–890. [Google Scholar] [CrossRef]
- Weiler, M.; Naef, F. An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrol. Process. 2003, 17, 477–493. [Google Scholar] [CrossRef]
- Jardine, P.; Wilson, G.; Luxmoore, R. Unsaturated solute transport through a forest soil during rain storm events. Geoderma 1990, 46, 103–118. [Google Scholar] [CrossRef]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Chertkov, V.; Ravina, I. Tortuosity of crack networks in swelling clay soils. Soil Sci. Soc. Am. J. 1999, 63, 1523–1530. [Google Scholar] [CrossRef]
- Allaire, S.E.; Roulier, S.; Cessna, A.J. Quantifying preferential flow in soils: A review of different techniques. J. Hydrol. 2009, 378, 179–204. [Google Scholar] [CrossRef]
Types 1 | Sites Code | Elevation (m) | Slope Aspect | Soil TEXTURE |
---|---|---|---|---|
CO | A | 300 | north | sandy loam (clay loam) 2 |
B | 304 | north | sandy loam | |
HF | C | 1182 | north | sandy loam |
D | 1183 | northwest | sandy loam | |
MF | E | 1172 | northwest | sandy loam |
F | 1173 | northeast | sandy loam |
Soil Depth (cm) | Dye Section | Steady Effluent Rate (mL s−1) | Effluent Ratio of ds to dus (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CO | HF | MF | CO | HF | MF | ||||||||
A | B | C | D | E | F | A | B | C | D | E | F | ||
0–10 | ds | 0.56 | 0.34 | 0.31 | 0.48 | 1.02 | 0.43 | 1.90 | 1.54 | 2.36 | 2.00 | 2.41 | 0.54 |
dus | 0.29 | 0.22 | 0.13 | 0.24 | 0.42 | 0.79 | |||||||
10–20 | ds | 0.48 | 0.55 | 0.88 | 0.26 | 0.26 | 0.39 | 2.23 | 2.20 | 4.22 | 1.96 | 2.28 | 12.11 |
dus | 0.21 | 0.25 | 0.21 | 0.13 | 0.11 | 0.03 | |||||||
20–30 | ds | 0.30 | 0.73 | 0.11 | 0.55 | 0.43 | 2.82 | 3.08 | 0.89 | 2.01 | 8.67 | ||
dus | 0.11 | 0.10 | 0.24 | 0.13 | 0.27 | 0.05 | |||||||
30–40 | ds | / | / | 0.15 | 0.20 | 0.26 | 0.23 | 1.17 | 1.06 | 0.50 | 7.41 | ||
dus | / | / | 0.13 | 0.19 | 0.52 | 0.03 | |||||||
40–50 | dus | / | / | 0.04 | 0.26 | 0.22 | 0.11 |
Sites | Soil Layers | Sections | Number of Macropore in Size Range (m−2) | Macroporosity (%) | ||||
---|---|---|---|---|---|---|---|---|
1.4–1.7 mm | 1.2–1.4 mm | 1.0–1.2 mm | 0.7–1.0 mm | 0.3–0.7 mm | ||||
A | 1 | ds | 0 | 23 | 1.80 × 102 | 1.52 × 103 | 5.16 × 104 | 4.48 |
dus | 0 | 0 | 0.05 × 102 | 1.20 × 103 | 2.21 × 104 | 2.01 | ||
2 | ds | 1 | 14 | 0.63 × 102 | 2.06 × 103 | 7.59 × 104 | 6.47 | |
dus | 0 | 0 | 0 | 0.36 × 103 | 2.12 × 104 | 1.74 | ||
3 | ds | 0 | 0 | 0 | 0.37 × 103 | 2.01 × 104 | 1.66 | |
dus | 0 | 0 | 0 | 0 | 1.19 × 104 | 0.94 | ||
B | 1 | ds | 0 | 0 | 0.56 × 102 | 1.35 × 103 | 1.49 × 104 | 1.50 |
dus | 0 | 0 | 0 | 0.58 × 103 | 0.54 × 104 | 0.55 | ||
2 | ds | 7 | 28 | 1.07 × 102 | 2.36 × 103 | 7.65 × 104 | 6.60 | |
dus | 0 | 0 | 0 | 0.70 × 103 | 0.80 × 104 | 0.79 | ||
3 | dus | 0 | 0 | 0 | 0 | 2.00 × 104 | 1.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cao, Z.; Hou, F.; Cheng, J. Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods. Water 2021, 13, 219. https://doi.org/10.3390/w13020219
Zhang Y, Cao Z, Hou F, Cheng J. Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods. Water. 2021; 13(2):219. https://doi.org/10.3390/w13020219
Chicago/Turabian StyleZhang, Youyan, Zhe Cao, Fang Hou, and Jinhua Cheng. 2021. "Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods" Water 13, no. 2: 219. https://doi.org/10.3390/w13020219
APA StyleZhang, Y., Cao, Z., Hou, F., & Cheng, J. (2021). Characterizing Preferential Flow Paths in Texturally Similar Soils under Different Land Uses by Combining Drainage and Dye-Staining Methods. Water, 13(2), 219. https://doi.org/10.3390/w13020219