Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Geological and Hydrogeological Setting
- (a)
- The deep karstic aquifer of the Triassic‒Jurassic limestones, which form the mountainous boundaries and the basement of the Sarigkiol Basin,
- (b)
- Perched aquifer systems that are developed in the highly fractured serpentinites of Vermio Mt. due to secondary porosity,
- (c)
- Small in size and capacity, karstic aquifers developed in the scattered Cretaceous limestones. There are many aquifers in which the water table varies from +700 up to +900 m. They are hydraulically connected and recharge the groundwater of the screes and talus cones in the ridges of the basin. The general flow direction of the groundwater is from the mountainous area to the center of the basin, i.e., NE–SW.
2.3. Sampling, Chemical Analyses, and Data Treatment
2.4. Spearman’s Rank Correlation Coefficient
2.5. Shapiro‒Wilks Test
2.6. Quantile–Quantile Plot
2.7. Geochemical modeling
2.8. Calculation of NBLs of Cr
2.9. Threshold Values (TVs) Derivation
2.10. Meteoric Genesis Index (MGI)
2.11. Meteorological Data
3. Results
3.1. Chemometric Analysis
3.2. Correlation Analysis of Water Samples
4. Discussion
4.1. Hydrogeochemical Characterization of the Natural Springs of Western Vermio Mt. the Ultramafic Fingerprint
4.2. Hydrogeochemistry of Cr in Natural Ultramafic Springs
4.3. NBLs of Cr in the Ultramafic Environment of Vermio Mt.
5. Conclusions
- (a)
- the time response of the aquifers systems to precipitations; direct infiltration on the geological formation of the aquifer results in immediate recharge of it. As a consequence, quick contaminant dilution takes place and fluctuations in Cr concentrations are observed depending on the time response of the aquifers to precipitation,
- (b)
- the water–rock contact time; the longer the water–rock contact time is, the higher the Cr leaching is,
- (c)
- the flow path of groundwater; a flow path through weathered ultramafic rocks results in the enrichment of groundwater in Cr,
- (d)
- the degree of the serpentinisation of ultramafic rocks; the more serpentinised the ultramafic rocks are, the higher their leaching potential in Cr is, and
- (e)
- the prevailing geochemical processes that favor the oxidation of Cr(III) to the soluble and mobile Cr(VI), such as alkaline pH, oxidative environment, presence of manganese oxides.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Union. EU Groundwater Directive 2006/118/EC. Off. J. Eur. Union 2006, L 372, 19–31. [Google Scholar]
- Amiri, V.; Nakhaei, M.; Lak, R.; Li, P. An integrated statistical-graphical approach for the appraisal of the natural background levels of some major ions and potentially toxic elements in the groundwater of Urmia aquifer, Iran. Environ. Earth Sci. 2021, 80, 432. [Google Scholar] [CrossRef]
- Edmunds, W.; Shand, P.; Hart, P.; Ward, R. The natural (baseline) quality of groundwater: A UK pilot study. Sci. Total. Environ. 2003, 310, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Gemitzi, A. Evaluating the anthropogenic impacts on groundwaters: A methodology based on the determination of natural background levels and threshold values. Environ. Earth Sci. 2012, 67, 2223–2237. [Google Scholar] [CrossRef]
- Preziosi, E.; Giuliano, G.; Vivona, R. Natural background levels and threshold values derivation for naturally As, V and F rich groundwater bodies: A methodological case study in Central Italy. Environ. Earth Sci. 2009, 61, 885–897. [Google Scholar] [CrossRef]
- Urresti-Estala, B.; Carrasco-Cantos, F.; Pérez, I.V.; Gavilán, P.J. Determination of background levels on water quality of groundwater bodies: A methodological proposal applied to a Mediterranean River basin (Guadalhorce River, Málaga, Southern Spain). J. Environ. Manag. 2013, 117, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, E.; Bergamini, M.; Lazzari, E.; Musacchio, A.; Mor, J.-R.; Pugliaro, E. Natural Background Levels of Potentially Toxic Elements in Groundwater from a Former Asbestos Mine in Serpentinite (Balangero, North Italy). Water 2021, 13, 735. [Google Scholar] [CrossRef]
- Libera, N.D.; Fabbri, P.; Mason, L.; Piccinini, L.; Pola, M. A local natural background level concept to improve the natural background level: A case study on the drainage basin of the Venetian Lagoon in Northeastern Italy. Environ. Earth Sci. 2018, 77, 487. [Google Scholar] [CrossRef]
- Parrone, D.; Ghergo, S.; Preziosi, E. A multi-method approach for the assessment of natural background levels in groundwater. Sci. Total. Environ. 2018, 659, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Preziosi, E.; Parrone, D.; del Bon, A.; Ghergo, S. Natural background level assessment in groundwaters: Probability plot versus pre-selection method. J. Geochem. Explor. 2014, 143, 43–53. [Google Scholar] [CrossRef]
- Muller, D.; Blum, A.; Hart, A.; Hookey, J.; Kunkel, R.; Scheidleder, A.; Tomlin, C.; Wendland, F. D18: Final Proposal for a Methodology to Set Up Groundwater Threshold Values in Europe; Background Criteria for the Identification of Groundwater Thresholds; Bridge Publications: Vienna, Austria, 2006. [Google Scholar]
- Wendland, F.; Berthold, G.; Blum, A.; Elsass, P.; Fritsche, J.-G.; Kunkel, R.; Wolter, R. Derivation of natural background levels and threshold values for groundwater bodies in the Upper Rhine Valley (France, Switzerland and Germany). Desalination 2008, 226, 160–168. [Google Scholar] [CrossRef]
- Hinsby, K.; de Melo, M.T.C.; Dahl, M. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci. Total Environ. 2008, 401, 1–20. [Google Scholar] [CrossRef]
- Ducci, D.; de Melo, M.T.C.; Preziosi, E.; Sellerino, M.; Parrone, D.; Ribeiro, L. Combining natural background levels (NBLs) assessment with indicator kriging analysis to improve groundwater quality data interpretation and management. Sci. Total Environ. 2016, 569–570, 569–584. [Google Scholar] [CrossRef] [PubMed]
- Biddau, R.; Cidu, R.; Lorrai, M.; Mulas, M. Assessing background values of chloride, sulfate and fluoride in groundwater: A geochemical-statistical approach at a regional scale. J. Geochem. Explor. 2017, 181, 243–255. [Google Scholar] [CrossRef]
- Masciale, R.; Amalfitano, S.; Frollini, E.; Ghergo, S.; Melita, M.; Parrone, D.; Preziosi, E.; Vurro, M.; Zoppini, A.; Passarella, G. Assessing Natural Background Levels in the Groundwater Bodies of the Apulia Region (Southern Italy). Water 2021, 13, 958. [Google Scholar] [CrossRef]
- Filippini, M.; Zanotti, C.; Bonomi, T.; Sacchetti, V.; Amorosi, A.; Dinelli, E.; Rotiroti, M. Deriving Natural Background Levels of Arsenic at the Meso-Scale Using Site-Specific Datasets: An Unorthodox Method. Water 2021, 13, 452. [Google Scholar] [CrossRef]
- Oze, C.; Fendorf, S.; Bird, D.K.; Coleman, R.G. Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California. Am. J. Sci. 2004, 304, 67–101. [Google Scholar] [CrossRef]
- Tashakor, M.; Modabberi, S.; van der Ent, A.; Echevarria, G. Impacts of ultramafic outcrops in Peninsular Malaysia and Sabah on soil and water quality. Environ. Monit. Assess. 2018, 190, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelepertzis, E.; Galanos, E.; Mitsis, I. Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva Valley (central Greece). J. Geochem. Explor. 2013, 125, 56–68. [Google Scholar] [CrossRef]
- Ryan, P.C.; Kim, J.; Wall, A.J.; Moen, J.C.; Corenthal, L.G.; Chow, D.R.; Sullivan, C.M.; Bright, K.S. Ultramafic-derived arsenic in a fractured bedrock aquifer. Appl. Geochem. 2011, 26, 444–457. [Google Scholar] [CrossRef]
- Nriagu, J.; Nieboer, E. Chromium in the Natural and Human Environments; John Wiley & Sons: New York, NY, USA, 1988; Volume 20. [Google Scholar]
- Rai, D.; Sass, B.M.; Moore, D.A. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorg. Chem. 1987, 26, 345–349. [Google Scholar] [CrossRef]
- Sperling, M.; Xu, S.; Welz, B. Determination of chromium(III) and chromium(VI) in water using flow injection on-line pre-concentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Anal. Chem. 1992, 64, 3101–3108. [Google Scholar] [CrossRef]
- Kotaś, J.; Stasicka, Z. Chromium occurrence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Berna, E.C.; Johnson, T.M.; Makdisi, R.S.; Basu, A. Cr Stable Isotopes As Indicators of Cr(VI) Reduction in Groundwater: A Detailed Time-Series Study of a Point-Source Plume. Environ. Sci. Technol. 2009, 44, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Xyla, A.G. The oxidation of chromium(III) to chromium(VI) on the surface of manganite (γ-MnOOH). Geochim. Cosmochim. Acta 1991, 55, 2861–2866. [Google Scholar] [CrossRef]
- Fendorf, S.E.; Fendorf, M.; Sparks, D.L.; Gronsky, R. Inhibitory mechanisms of Cr(III) oxidation by δ-MnO2. J. Colloid Interface Sci. 1992, 153, 37–54. [Google Scholar] [CrossRef]
- Fantoni, D.; Brozzo, G.; Canepa, M.; Cipolli, F.; Marini, L.; Ottonello, G.; Zuccolini, M. Natural hexavalent chromium in groundwaters interacting with ophiolitic rocks. Environ. Earth Sci. 2002, 42, 871–882. [Google Scholar] [CrossRef]
- Tziritis, E.; Kelepertzis, E.; Korres, G.; Perivolaris, D.; Repani, S. Hexavalent Chromium Contamination in Groundwaters of Thiva Basin, Central Greece. Bull. Environ. Contam. Toxicol. 2012, 89, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Dermatas, D.; Mpouras, T.; Chrysochoou, M.; Panagiotakis, I.; Vatseris, C.; Linardos, N.; Theologou, E.; Boboti, N.; Xenidis, A.; Papassiopi, N.; et al. Origin and concentration profile of chromium in a Greek aquifer. J. Hazard. Mater. 2015, 281, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hausladen, D.M.; Alexander-Ozinskas, A.; McClain, C.N.; Fendorf, S. Hexavalent Chromium Sources and Distribution in California Groundwater. Environ. Sci. Technol. 2018, 52, 8242–8251. [Google Scholar] [CrossRef]
- Papazotos, P.; Vasileiou, E.; Perraki, M. Elevated groundwater concentrations of arsenic and chromium in ultramafic envi-ronments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities: The case of the Gerania Mountains, NE Peloponnese, Greece. Appl. Geochem. 2020, 121, 104697. [Google Scholar] [CrossRef]
- Coyte, R.; McKinley, K.; Jiang, S.; Karr, J.; Dwyer, G.S.; Keyworth, A.J.; Davis, C.C.; Kondash, A.J.; Vengosh, A. Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA. Sci. Total. Environ. 2019, 711, 135135. [Google Scholar] [CrossRef]
- Perraki, M.; Vasileiou, E.; Bartzas, G. Tracing the origin of chromium in groundwater: Current and new perspectives. Curr. Opin. Environ. Sci. Heal. 2021, 22, 100267. [Google Scholar] [CrossRef]
- Vithanage, M.; Kumarathilaka, P.; Oze, C.; Karunatilake, S.; Seneviratne, M.; Hseu, Z.-Y.; Gunarathne, V.; Dassanayake, M.; Ok, Y.S.; Rinklebe, J. Occurrence and cycling of trace elements in ultramafic soils and their impacts on human health: A critical review. Environ. Int. 2019, 131, 104974. [Google Scholar] [CrossRef]
- Liang, J.; Huang, X.; Yan, J.; Li, Y.; Zhao, Z.; Liu, Y.; Ye, J.; Wei, Y. A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. Sci. Total Environ. 2021, 774, 145762. [Google Scholar] [CrossRef]
- Papazotos, P.; Vasileiou, E.; Perraki, M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: The case of the Psachna basin, central Euboea, Greece. Environ. Monit. Assess. 2019, 191, 317. [Google Scholar] [CrossRef]
- Oze, C.; Bird, D.K.; Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. USA 2007, 104, 6544–6549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margiotta, S.; Mongelli, G.; Summa, V.; Paternoster, M.; Fiore, S. Trace element distribution and Cr(VI) speciation in Ca-HCO3 and Mg-HCO3 spring waters from the northern sector of the Pollino massif, Southern Italy. J. Geochem. Explor. 2012, 115, 1–12. [Google Scholar] [CrossRef]
- Remoundaki, E.; Vasileiou, E.; Philippou, A.; Perraki, M.; Kousi, P.; Hatzikioseyian, A.; Stamatis, G. Groundwater Deteriora-tion: The Simultaneous Effects of Intense Agricultural Activity and Heavy Metals in Soil. Procedia Eng. 2016, 162, 545–552. [Google Scholar] [CrossRef] [Green Version]
- Kaprara, E.; Kazakis, N.; Simeonidis, K.; Coles, S.; Zouboulis, A.; Samaras, P.; Mitrakas, M. Occurrence of Cr(VI) in drinking water of Greece and relation to the geological background. J. Hazard. Mater. 2014, 281, 2–11. [Google Scholar] [CrossRef]
- Elango, L.; Kannan, R. Chapter 11: Rock–Water Interaction and Its Control on Chemical Composition of Groundwater; Elsevier: Amsterdam, The Netherlands, 2007; pp. 229–243. [Google Scholar] [CrossRef]
- Sharif, M.; Davis, R.; Steele, K.; Kim, B.; Kresse, T.; Fazio, J. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA). J. Hydrol. 2008, 350, 41–55. [Google Scholar] [CrossRef]
- Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Expounding the origin of chromium in groundwater of the Sarigkiol Basin, Western Macedonia, Greece: A cohesive statistical approach and hydrochemical study. Environ. Monit. Assess. 2019, 191, 509. [Google Scholar] [CrossRef] [PubMed]
- Stamos, A.; Samiotis, G.; Tsioptsias, C.; Amanatidou, E. Natural presence of hexavalent chromium in spring waters of South-West Mountain Vermion, Greece. In Proceedings of the 16th International Conference on Environmental Science and Technology (CEST 2019), Rhodes, Greece, 4–7 September 2019; p. 4. [Google Scholar]
- Institute of Geology and Mineral Exploration of Greece. Geological Maps of Greece, Sheet: Kozani; Scale 1:50.000, Department of Geological Maps; Institute of Geology and Mineral Exploration of Greece: Athens, Greece, 1980. [Google Scholar]
- Perraki, M. Mineralogical, Petrological and Geochemical Study of Heavy Minerals with Emphasis on Chromium in the Geological Formations (Ultrabasic Rocks, Lignite, Clay Formations) and the Coal-Fired Products (Fly Ash) and the Quality of Surficial and Underground Aquifers of the Sarigkiol Basin (NW Greece); Technical Report; National Technical University of Athesn: Athens, Greece, 2016. [Google Scholar]
- Nematollahi, M.J.; Ebrahimi, P.; Razmara, M.; Ghasemi, A. Hydrogeochemical investigations and groundwater quality as-sessment of Torbat-Zaveh plain, Khorasan Razavi, Iran. Environ. Monit. Assess. 2015, 188, 1–21. [Google Scholar] [CrossRef]
- Esmaeili, A.; Moore, F. Hydrogeochemical assessment of groundwater in Isfahan province, Iran. Environ. Earth Sci. 2011, 67, 107–120. [Google Scholar] [CrossRef]
- Spearman, C. The Proof and Measurement of Association between Two Things. Am. J. Psychol. 1904, 15, 72. [Google Scholar] [CrossRef]
- Wuensch, K.L.; Evans, J.D. Straightforward Statistics for the Behavioral Sciences. J. Am. Stat. Assoc. 1996, 91, 1750. [Google Scholar] [CrossRef]
- Gauthier, T. Detecting Trends Using Spearman’s Rank Correlation Coefficient. Environ. Forensics 2001, 2, 359–362. [Google Scholar] [CrossRef]
- Wilk, M.B.; Gnanadesikan, R. Probability plotting methods for the analysis for the analysis of data. Biometrika 1968, 55, 1–17. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; U.S. Geological Survey, Water Resources Investigations Report 99-4259; United States Geological Survey (USGS): Washington, DC, USA, 1999. [Google Scholar]
- Merkel, B.J.; Planer-Friedrich, B.; Nordstrom, D.K. Groundwater Geochemistry: A Practical Guide to Modeling of Natural and Contaminated Aquatic Systems; Springer: Berlin, Germany, 2005. [Google Scholar]
- Zhang, F.; Jin, Z.; Yu, J.; Zhou, Y.; Zhou, L. Hydrogeochemical processes between surface and groundwaters on the north-eastern Chinese Loess Plateau: Implications for water chemistry and environmental evolutions in semi-arid regions. J. Geochem. Explor. 2015, 159, 115–128. [Google Scholar] [CrossRef]
- Christoforidou, P.; Panagopoulos, A.; Voudouris, K. Towards A New Procedure To Set Up Groundwater Threshold Values In Accordance With The Previsions Of The Ec Directive 2006/118: A Case Study From Achaia And Corinthia (Greece). Bull. Geol. Soc. Greece 2017, 43, 1678. [Google Scholar] [CrossRef] [Green Version]
- Molinari, A.; Guadagnini, L.; Marcaccio, M.; Guadagnini, A. Natural background levels and threshold values of chemical species in three large-scale groundwater bodies in Northern Italy. Sci. Total Environ. 2012, 425, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Chidichimo, F.; de Biase, M.; Straface, S. Groundwater pollution assessment in landfill areas: Is it only about the leachate? Waste Manag. 2019, 102, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Parrone, D.; Frollini, E.; Preziosi, E.; Ghergo, S. eNaBLe, an On-Line Tool to Evaluate Natural Background Levels in Groundwater Bodies. Water 2020, 13, 74. [Google Scholar] [CrossRef]
- Masetti, M.; Poli, S.; Sterlacchini, S.; Beretta, G.P.; Facchi, A. Spatial and statistical assessment of factors influencing nitrate contamination in groundwater. J. Environ. Manag. 2008, 86, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Menció, A.; Mas-Pla, J.; Otero, N.; Regàs, O.; Boy-Roura, M.; Puig, R.; Bach, J.; Domènech, C.; Zamorano, M.; Brusi, D.; et al. Nitrate pollution of groundwater; all right, but nothing else? Sci. Total Environ. 2016, 539, 241–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltan, M.E. Evaluation Of Ground Water Quality In Dakhla Oasis (Egyptian Western Desert). Environ. Monit. Assess. 1999, 57, 157–168. [Google Scholar] [CrossRef]
- Singh, U.V.; Abhishek, A.; Singh, K.P.; Dhakate, R.; Singh, N.P. Groundwater quality appraisal and its hydrochemical char-acterization in Ghaziabad (a region of indo-gangetic plain), Uttar Pradesh, India. Appl. Water Sci. 2013, 4, 145–157. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Marghade, D.; Malpe, D.B.; Zade, A.B. Geochemical characterization of groundwater from northeastern part of Nagpur urban, Central India. Environ. Earth Sci. 2010, 62, 1419–1430. [Google Scholar] [CrossRef]
- Lelli, M.; Grassi, S.; Amadori, M.; Franceschini, F. Natural Cr(VI) contamination of groundwater in the Cecina coastal area and its inner sectors (Tuscany, Italy). Environ. Earth Sci. 2013, 71, 3907–3919. [Google Scholar] [CrossRef]
- Barnes, I.; O’neil, J.R. The relationship between fluids in some fresh alpine-type ultramafics and possible modern ser-pen-tinization, Western United States. Bull. Geol. Soc. Am. 1969, 80, 1947–1960. [Google Scholar] [CrossRef]
- Cipolli, F.; Gambardella, B.; Marini, L.; Ottonello, G.; Zuccolini, M.V. Geochemistry of high-pH waters from serpentinites of the Gruppo di Voltri (Genova, Italy) and reaction path modeling of CO2 sequestration in serpentinite aquifers. Appl. Geochem. 2004, 19, 787–802. [Google Scholar] [CrossRef]
- Marques, J.M.; Carreira, P.M.; Carvalho, M.D.R.; Matias, M.J.; Goff, F.E.; Basto, M.J.; Graça, R.C.; Aires-Barros, L.; Rocha, L. Origins of high pH mineral waters from ultramafic rocks, Central Portugal. Appl. Geochem. 2008, 23, 3278–3289. [Google Scholar] [CrossRef]
- Richard, F.C.; Bourg, A.C. Aqueous geochemistry of chromium: A review. Water Res. 1991, 25, 807–816. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, D.; Zhou, P.; Qu, S.; Liao, F.; Guangcai, W. Hydrochemical Characteristics of Groundwater and Dominant Water—Rock Interactions in the Delingha. Water 2020, 12, 836. [Google Scholar] [CrossRef] [Green Version]
- Redwan, M.; Moneim, A.A.A.; Amra, M.A. Effect of water–rock interaction processes on the hydrogeochemistry of ground-water west of Sohag area, Egypt. Arab. J. Geosci. 2016, 9, 111. [Google Scholar] [CrossRef]
- Jalali, M.; Khanlari, Z.V. Cadmium Availability in Calcareous Soils of Agricultural Lands in Hamadan, Western Iran. Soil Sediment. Contam. Int. J. 2008, 17, 256–268. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Marandi, A.; Shand, P. Groundwater chemistry and the Gibbs Diagram. Appl. Geochem. 2018, 97, 209–212. [Google Scholar] [CrossRef]
- McClain, C.; Maher, K. Chromium fluxes and speciation in ultramafic catchments and global rivers. Chem. Geol. 2016, 426, 135–157. [Google Scholar] [CrossRef] [Green Version]
- Giammetta, R.; Telesca, A.; Mongelli, G. Serpentinites-water interaction in the S. Severino area, Lucanian Apennines, Southern Italy. GeoActa 2004, 3, 25–33. [Google Scholar]
- Hanusz, Z.; Tarasińska, J. Normalization of the Kolmogorov–Smirnov and Shapiro–Wilk tests of normality. Biom. Lett. 2015, 52, 85–93. [Google Scholar] [CrossRef] [Green Version]
- EUROPA. European Commission Water Framework Directive 2000/60/EC. Off. J. Eur. Communities 2000, L 327, 1–73. [Google Scholar]
Parameter | Unit | QL | DL | The Agio Pnevma Area | The Agios Panteleimonas Area | “Mouratidis” | The Agios Dimitrios Area | The Vazelona Area | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Median | Max | Min | Median | Max | Min | Median | Max | Min | Median | Max | Min | Median | ||||
pH | - | - | - | 8.4 | 7.6 | 7.9 | 7.94 | 7.37 | 7.38 | 8.4 | 7.8 | 8.1 | 8.5 | 8.1 | 8.3 | 7.7 | 7.7 | 7.7 |
DO | mg/L | - | - | 9.6 | 8.4 | 8.9 | 9.3 | 7.74 | 8.53 | 9.2 | 7.8 | 8.8 | 8.9 | 8.1 | 8.5 | 9.5 | 8.3 | 8.9 |
T | °C | - | - | 16.0 | 10.8 | 14.3 | 18.0 | 13.1 | 13.6 | 25.6 | 9.8 | 13.8 | 24.1 | 8 | 16.1 | 15.8 | 15.0 | 15.4 |
TDS | mg/L | - | - | 561.3 | 150.5 | 226.0 | 397.69 | 361.25 | 377.36 | 398 | 294.4 | 369.8 | 377 | 319.3 | 348.2 | 462.2 | 383.5 | 422.9 |
EC | μS/cm | 10 | - | 593.0 | 293.0 | 460.0 | 505.0 | 448.0 | 494.0 | 520 | 405 | 426.8 | 456 | 446 | 451 | 484.0 | 389.0 | 436.5 |
Eh | mV | - | - | 320.0 | 110.0 | 160.0 | 389.7 | 303.0 | 387.0 | 409 | 303.42 | 346.2 | 377 | 340.7 | 358.9 | 301.0 | 297.0 | 299.0 |
Ca2+ | mg/L | 0.2 | 0.05 | 119.0 | 24.0 | 43.8 | 94.9 | 41.6 | 93.2 | 60.4 | 54.2 | 55.2 | 49.5 | 46.6 | 48.1 | 104.0 | 98.2 | 101.1 |
Mg2+ | mg/L | 1.0 | 0.3 | 24.9 | 3.7 | 8.4 | 38.8 | 3.13 | 11.4 | 34.9 | 21.3 | 21.4 | 31.8 | 30.9 | 31.4 | 13.5 | 3.1 | 8.3 |
Na+ | mg/L | 5.0 | 0.5 | 1.4 | 1.4 | 1.4 | 2.5 | BDL | 1.25 | 1.7 | BDL | 1.4 | 1.2 | BDL | 0.6 | 2.1 | 1.0 | 1.6 |
K+ | mg/L | 0.2 | 0.05 | 33.0 | 0.4 | 0.6 | 1.63 | 0.59 | 1.22 | 1 | 0.3 | 0.3 | 1.8 | 1.5 | 1.7 | 10.8 | 1.4 | 6.1 |
NO3− | mg/L | 5.0 | 1 | BDL | BDL | BDL | BDL | BDL | BDL | 9.1 | 8.3 | 8.7 | BDL | BDL | BDL | 1.0 | BDL | BDL |
Cl− | mg/L | 5.0 | 1 | 31.0 | 2.0 | 7.5 | BDL | BDL | BDL | 5 | BDL | BDL | BDL | BDL | BDL | 12.0 | 1.0 | 6.5 |
SO42− | mg/L | 10.0 | 2 | 31.0 | 10.0 | 20.5 | 19.0 | 12.0 | 19.0 | 20 | 16 | 16 | 22 | BDL | 11 | 21.0 | 13.0 | 17.0 |
HCO3− | mg/L | 10.0 | 2 | 387.0 | 119.0 | 167.0 | 276.0 | 250.0 | 271.0 | 277 | 192 | 258 | 271 | 240 | 255.5 | 304.0 | 259.0 | 281.5 |
Al | μg/L | DL | 1 | 8.0 | 2.0 | 3.0 | 1.0 | 1.0 | 1.0 | 1546 | 2 | 4 | 31 | 3 | 17 | 3.0 | 2.0 | 2.5 |
As | μg/L | DL | 0.5 | 0.7 | 0.6 | 0.7 | 5.4 | 0.6 | 1.5 | 6.1 | 1.4 | 1.7 | 49.1 | 28.8 | 39 | 1.8 | 0.5 | 1.2 |
B | μg/L | DL | 5 | 9.0 | 5.0 | 6.0 | 12.0 | 12.0 | 12.0 | 11 | 7 | 9 | 10 | 10 | 10 | 19.0 | 15.0 | 17.0 |
Ba | μg/L | DL | 0.05 | 11.6 | 1.9 | 2.6 | 8.69 | 5.72 | 5.81 | 13.8 | 6 | 6.9 | 16.1 | 14.4 | 15.2 | 7.0 | 6.4 | 6.7 |
Br | μg/L | DL | 5 | 25.0 | 8.0 | 13.0 | 14.0 | 11.0 | 12.0 | 16 | 13 | 14 | 15 | 9 | 12 | 15.0 | 13.0 | 14.0 |
Cr | μg/L | DL | 0.1 | 47.8 | 0.5 | 3.8 | 18.0 | 1.5 | 1.9 | 38.3 | 10 | 20.4 | 16.6 | 10.9 | 13.8 | 0.8 | 0.5 | 0.7 |
Cr(VI) | μg/L | DL | 0.1 | 36.7 | 0.5 | 1.8 | 7.2 | 1.0 | 1.0 | 33.9 | 7 | 16 | 16.5 | 8.7 | 12.6 | 0.5 | 0.1 | 0.3 |
Cu | μg/L | DL | 0.1 | 2.8 | 0.9 | 1.2 | 1.2 | 0.6 | 0.7 | 2 | 0.7 | 1.4 | 1.3 | 1.1 | 1.2 | 2.8 | 1.1 | 2.0 |
Li | μg/L | DL | 0.1 | 0.7 | 0.3 | 0.6 | 4.3 | 0.1 | 0.2 | 3.4 | 0.5 | 0.6 | 4.7 | 3.6 | 4.2 | 0.2 | 0.1 | 0.2 |
Mn | μg/L | DL | 0.05 | 5.8 | 0.2 | 0.8 | 0.43 | 0.28 | 0.29 | 1.3 | 0.6 | 0.8 | 1.4 | 0.4 | 0.9 | 0.4 | 0.3 | 0.4 |
Ni | μg/L | DL | 0.2 | 1.7 | 1.0 | 1.4 | 1.3 | 0.8 | 1.05 | 7.7 | 0.5 | 4.1 | 5.8 | 3.6 | 4.7 | 1.0 | 0.7 | 0.9 |
P | μg/L | DL | 10 | 117 | 12.0 | 57.0 | 31.0 | 15.0 | 23.0 | 39 | 37 | 39 | 45 | 13 | 29 | 28.0 | 18.0 | 23.0 |
Si | μg/L | DL | 40 | 14,327 | 2231 | 4296 | 24,875 | 3250 | 3441 | 21,350 | 8786 | 10,697 | 19,307 | 17,245 | 18,276 | 3495 | 3467 | 3481 |
Sr | μg/L | DL | 0.01 | 84.0 | 44.5 | 59.8 | 79.03 | 41.76 | 70.15 | 62.9 | 57.5 | 58.4 | 65.2 | 60.7 | 62.9 | 83.2 | 69.7 | 76.5 |
U | μg/L | DL | 0.02 | 0.2 | BDL | 0.1 | 7.2 | 0.4 | 0.7 | 0.3 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 | 0.7 | 0.2 | 0.4 |
V | μg/L | DL | 0.2 | 0.7 | 0.2 | 0.3 | 0.08 | 0.08 | 0.08 | 4.6 | 1.3 | 1.5 | 4.7 | 4.3 | 4.5 | 0.8 | 0.5 | 0.7 |
Zn | μg/L | DL | 0.5 | 12.7 | 7.5 | 10.4 | 4.3 | 3.4 | 3.9 | 14.8 | 9 | 13 | 11.9 | 7.3 | 9.6 | 33.1 | 13.6 | 23.4 |
Parameter | Unit | QL | DL | Potistis | Elafakia | ||||
---|---|---|---|---|---|---|---|---|---|
Max | Min | Median | Max | Min | Median | ||||
pH | - | - | - | 8.3 | 7.3 | 7.9 | 8.3 | 7.3 | 7.7 |
DO | mg/L | - | - | 9.6 | 8.5 | 9.0 | 11.6 | 8.6 | 9.2 |
T | °C | - | - | 15.2 | 6.2 | 12.3 | 20.5 | 5.8 | 12.5 |
TDS | mg/L | - | - | 528.9 | 386.3 | 481.8 | 522.5 | 366.4 | 458.0 |
EC | μS/cm | 10 | - | 620.0 | 374.8 | 574.5 | 718.0 | 357.7 | 546.0 |
Eh | mV | - | - | 359.8 | 90.0 | 325.5 | 377.6 | 194.9 | 309.8 |
Ca2+ | mg/L | 0.2 | 0.05 | 56.1 | 28.6 | 35.6 | 91.4 | 51.7 | 76.9 |
Mg2+ | mg/L | 1.0 | 0.3 | 73.3 | 34.2 | 61.7 | 36.6 | 24.8 | 30.3 |
Na+ | mg/L | 5.0 | 0.5 | 1.2 | 1.2 | 1.2 | 2.5 | BDL | 2.0 |
K+ | mg/L | 0.2 | 0.05 | 0.5 | 0.1 | 0.3 | 3.1 | 0.6 | 0.7 |
NO3− | mg/L | 5.0 | 1 | BDL | BDL | BDL | 1.0 | BDL | BDL |
Cl− | mg/L | 5.0 | 1 | 1.0 | DL | 1.0 | 8.0 | BDL | 2.0 |
SO42− | mg/L | 10.0 | 2 | BDL | BDL | BDL | 128.0 | 16.0 | 23.0 |
HCO3− | mg/L | 10.0 | 2 | 409.0 | 298.0 | 382.0 | 369.0 | 250.0 | 318.0 |
Al | μg/L | DL | 1 | 111.0 | 1.0 | 3.0 | 13.0 | 1.0 | 2.0 |
As | μg/L | DL | 0.5 | BDL | BDL | BDL | 1.7 | 0.9 | 1.5 |
B | μg/L | DL | 5 | 13.0 | 8.0 | 10.5 | 27.0 | 6.0 | 14.0 |
Ba | μg/L | DL | 0.05 | 10.4 | 4.2 | 4.8 | 16.2 | 10.4 | 15.0 |
Br | μg/L | DL | 5 | 18.0 | 10.0 | 14.0 | 28.0 | 18.0 | 21.0 |
Cr | μg/L | DL | 0.1 | 131.5 | 39.0 | 103.9 | 57.4 | 26.0 | 47.5 |
Cr(VI) | μg/L | DL | 0.1 | 100.0 | 39.0 | 90.0 | 51.2 | 18.0 | 41.0 |
Cu | μg/L | DL | 0.1 | 4.0 | 0.3 | 0.5 | 6.4 | 0.6 | 1.3 |
Li | μg/L | DL | 0.1 | 1.0 | 0.7 | 0.8 | 1.2 | 0.9 | 1.1 |
Mn | μg/L | DL | 0.05 | 0.8 | 0.1 | 0.4 | 0.8 | 0.2 | 0.3 |
Ni | μg/L | DL | 0.2 | 38.2 | 2.7 | 5.5 | 314.0 | 5.1 | 7.0 |
P | μg/L | DL | 10 | 78.0 | 13.0 | 38.0 | 147.0 | 18.0 | 32.0 |
Si | μg/L | DL | 40 | 22,394 | 15,120 | 20,663 | 17,717 | 13,248 | 14,685 |
Sr | μg/L | DL | 0.01 | 40.3 | 32.0 | 35.2 | 90.4 | 58.3 | 74.0 |
U | μg/L | DL | 0.02 | 0.1 | BDL | BDL | 1.1 | 0.6 | 0.8 |
V | μg/L | DL | 0.2 | 1.6 | 0.2 | 0.4 | 1.2 | 0.7 | 1.0 |
Zn | μg/L | DL | 0.5 | 37.3 | 4.1 | 5.1 | 74.7 | 4.6 | 8.7 |
Sample ID | Latitude | Longitude | Sampling Point | Cr (μg/L) | Cr(VI) (μg/L) | Sample ID | Latitude | Longitude | Sampling Point | Cr (μg/L) | Cr(VI) (μg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|
W13_06_2018 | 40°27′103″ | 21°57′639″ | Potistis | 41.6 | 39.2 | W14_9a_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 46.0 | 43.0 |
W13_07_2018 | 40°27′103″ | 21°57′639″ | Potistis | 39.0 | 39.0 | W14_9b_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 56.1 | 40.0 |
W13_09_2018a | 40°27′103″ | 21°57′639″ | Potistis | 111.5 | 90.0 | W14_9c_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 56.3 | 40.0 |
W13_09_2018b | 40°27′103″ | 21°57′639″ | Potistis | 109.5 | 90.0 | W14_9d_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 56.0 | 40.0 |
W13_09_2018c | 40°27′103″ | 21°57′639″ | Potistis | 108.7 | 90.0 | W14_9e_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 54.5 | 41.0 |
W13_09_2018d | 40°27′103″ | 21°57′639″ | Potistis | 112.6 | 90.0 | W14_05_2019 | 40°25′854″ | 21°56′878″ | Elafakia | 42.5 | 40.0 |
W13_10_2018a | 40°27′103″ | 21°57′639″ | Potistis | 131.5 | 100.0 | W14_08_2019 | 40°25′854″ | 21°56′878″ | Elafakia | 44.8 | 33.0 |
W13_10_2018b | 40°27′103″ | 21°57′639″ | Potistis | 130.2 | 100.0 | W14_11_2019 | 40°25′854″ | 21°56′878″ | Elafakia | 46.3 | 41.0 |
W13_10_2018c | 40°27′103″ | 21°57′639″ | Potistis | 111.9 | 90.0 | W14_02_2020 | 40°25′854″ | 21°56′878″ | Elafakia | 47.5 | 32.0 |
W13_10_2018d | 40°27′103″ | 21°57′639″ | Potistis | 127.8 | 100.0 | W14_07_2020 | 40°25′854″ | 21°56′878″ | Elafakia | 46.6 | 18.0 |
W13_10_2018e | 40°27′103″ | 21°57′639″ | Potistis | 110.7 | 90.0 | W14_09_2020 | 40°25′854″ | 21°56′878″ | Elafakia | 48.0 | 33.0 |
W13_11_2018 | 40°27′103″ | 21°57′639″ | Potistis | 127.5 | 100.0 | S10_11_2014 | 40°26′854″ | 21°58′711″ | Agio Pnevma | 47.8 | 36.7 |
W13_04_2019 | 40°27′103″ | 21°57′639″ | Potistis | 89.2 | 89.0 | S15_06_2018 | 40°26′689″ | 21°58′801″ | Agio Pnevma | 15.9 | 15.2 |
W13_05_2019 | 40°27′103″ | 21°57′639″ | Potistis | 92.8 | 90.0 | S10_06_2018 | 40°26′854″ | 21°58′711″ | Agio Pnevma | 18.5 | 15.6 |
W13_06_2019 | 40°27′103″ | 21°57′639″ | Potistis | 98.1 | 89.0 | S16_07_2018 | 40°27′338″ | 21°58′750″ | Agio Pnevma | 2.4 | 1.8 |
W13_08_2019 | 40°27′103″ | 21°57′639″ | Potistis | 103.3 | 88.0 | S17_07_2018 | 40°26′856″ | 21°58′757″ | Agio Pnevma | 3.8 | 1.5 |
W13_10_2019 | 40°27′103″ | 21°57′639″ | Potistis | 103.5 | 92.0 | S18_07_2018 | 40°27′871″ | 21°58′475″ | Agio Pnevma | 2.2 | 1.6 |
W13_11_2019 | 40°27′103″ | 21°57′639″ | Potistis | 105.8 | 99.0 | S19_07_2018 | 40°27′095″ | 21°58′711″ | Agio Pnevma | 0.5 | 0.5 |
W13_02_2020 | 40°27′103″ | 21°57′639″ | Potistis | 95.7 | 87.0 | S2_03_2014 | 40°25′789″ | 21°56′216″ | Mouratidis | 38.3 | 33.9 |
W13_06_2020 | 40°27′103″ | 21°57′639″ | Potistis | 99.0 | 97.0 | S2_09_2016 | 40°25′789″ | 21°56′216″ | Mouratidis | 17.0 | 13.0 |
W13_07_2020 | 40°27′103″ | 21°57′639″ | Potistis | 99.6 | 82.0 | S2_02_2017 | 40°25′789″ | 21°56′216″ | Mouratidis | 10.0 | 7.00 |
W13_09_2020 | 40°27′103″ | 21°57′639″ | Potistis | 103.9 | 88.0 | S2_04_2017 | 40°25′789″ | 21°56′216″ | Mouratidis | 15.0 | 12.0 |
W13_10_2020 | 40°27′103″ | 21°57′639″ | Potistis | 103.5 | 92.0 | S2_05_2017 | 40°25′789″ | 21°56′216″ | Mouratidis | 28.0 | 23.0 |
W14_11_2014 | 40°25′854″ | 21°56′878″ | Elafakia | 53.5 | 51.1 | S2_06_2017 | 40°25′789″ | 21°56′216″ | Mouratidis | 25.0 | 22.0 |
W14_07_2014 | 40°25′854″ | 21°56′878″ | Elafakia | 57.4 | 51.2 | S2_07_2017 | 40°25′789″ | 21°56′216″ | Mouratidis | 26.0 | 19.0 |
W14_12_2015 | 40°25′854″ | 21°56′878″ | Elafakia | 52.5 | 49.1 | S2_08_2017a | 40°25′789″ | 21°56′216″ | Mouratidis | 12.0 | 8.00 |
W14_09_2016 | 40°25′854″ | 21°56′878″ | Elafakia | 26.0 | 23.0 | S2_08_2017b | 40°25′789″ | 21°56′216″ | Mouratidis | 23.7 | 21.4 |
W14_04_2017 | 40°25′854″ | 21°56′878″ | Elafakia | 42.0 | 41.0 | S2_09_2017 | 40°25′789″ | 21°56′216″ | Mouratidis | 16.0 | 10.0 |
W14_05_2017 | 40°25′854″ | 21°56′878″ | Elafakia | 47.3 | 47.0 | S1_03_2014 | 40°25′224″ | 21°55′889″ | Agios Dimitrios | 16.6 | 16.5 |
W14_06_2017 | 40°25′854″ | 21°56′878″ | Elafakia | 49.0 | 47.0 | S1_08_2017 | 40°25′224″ | 21°55′889″ | Agios Dimitrios | 10.9 | 8.70 |
W14_08_2017 | 40°25′854″ | 21°56′878″ | Elafakia | 49.2 | 46.8 | S13_06_2017 | 40°25′810″ | 21°56′900″ | Agios Panteleimonas | 1.50 | 1.00 |
W14_10_2017 | 40°25′854″ | 21°56′878″ | Elafakia | 45.4 | 35.2 | S14_06_2017 | 40°25′801″ | 21°57′099″ | Agios Panteleimonas | 1.90 | 1.00 |
W14_07_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 45.0 | 40.0 | W21_08_2019 | 40°25′842″ | 21°56′856″ | Agios Panteleimonas | 18.0 | 7.2 |
W14_08_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 49.2 | 42.0 | S5_07_2014 | 40°25′713″ | 21°56′725″ | Vazelonas | 0.50 | 0.10 |
W14_10_2018 | 40°25′854″ | 21°56′878″ | Elafakia | 45.4 | 41.0 | S6_07_2014 | 40°25′840″ | 21°56′882″ | Vazelonas | 0.80 | 0.50 |
Area/Sampling Site | Sample ID | Cations Order | Anions Order | |
---|---|---|---|---|
1 | Agios Dimitrios area | S1 | Ca2+ > Mg2+ > K+ > Na+ | HCO3− > SO42− > Cl− > NO3− |
2 | Elafakia | W14 | Ca2+ > Mg2+ > Na+ > K+ | HCO3− > SO42− > Cl− > NO3− |
3 | Agios Panteleimonas area | S2, S13, S14 | Ca2+ > Mg2+ > Na+ > K+ | HCO3− > SO42− |
4 | Potistis | W13 | Mg2+ > Ca2+ > K+ | HCO3− > SO42− > Cl− > NO3− |
5 | Agio Pnevma area | S18, S16, S19, S10, S17, S15 | Ca2+ > Mg2+ > K+ > Na+ | HCO3− > SO42− > Cl− |
6 | Mouratidis | S2 | Ca2+ > Mg2+ > Na+ > K+ | HCO3− > SO42− > NO3− > Cl− |
7 | Vazelona area | S5, S6 | Ca2+ > Mg2+ > K+ > Na+ | HCO3− > SO42− > Cl− |
Parameter | pH | DO | EC | Eh | Ca2+ | Mg2+ | Na+ | K+ | NO3− | Cl− | SO42− | HCO3− | Al | As | B | Ba | Br | Cr | Cr(VI) | Li | Mn | Ni | P | Si | Sr | U | V | Zn | Alkalinity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||||||||||||||||
DO | −0.11 | 1 | |||||||||||||||||||||||||||
EC | −0.15 | 0.21 | 1 | ||||||||||||||||||||||||||
Eh | −0.11 | 0.06 | 0.19 | 1 | |||||||||||||||||||||||||
Ca2+ | −0.18 | 0.10 | −0.20 | 0.15 | 1 | ||||||||||||||||||||||||
Mg2+ | 0.06 | 0.05 | 0.68 ** | 0.32 | −0.42 * | 1 | |||||||||||||||||||||||
Na+ | −0.17 | −0.06 | −0.16 | −0.15 | 0.49 ** | −0.18 | 1 | ||||||||||||||||||||||
K+ | 0.12 | −0.27 | −0.28 | −0.06 | 0.51** | −0.511 ** | 0.13 | 1 | |||||||||||||||||||||
NO3− | 0.18 | −0.04 | −0.41 * | 0.13 | 0.31 | −0.18 | 0.47 ** | 0.03 | 1 | ||||||||||||||||||||
Cl− | −0.04 | −0.15 | −0.30 | −0.43 | 0.29 | −0.461 ** | 0.37 * | 0.39 * | 0.19 | 1 | |||||||||||||||||||
SO42− | −0.06 | −0.07 | 0.09 | −0.08 | 0.67 ** | −0.21 | 0.52 ** | 0.49 ** | 0.20 | 0.25 | 1 | ||||||||||||||||||
HCO3− | −0.11 | 0.04 | 0.62 ** | 0.14 | 0.00 | 0.68 ** | −0.15 | −0.31 | −0.22 | −0.14 | 0.01 | 1 | |||||||||||||||||
Al | 0.17 | 0.10 | −0.40 * | −0.24 | −0.07 | −0.08 | 0.09 | −0.03 | 0.18 | 0.28 | −0.14 | −0.19 | 1 | ||||||||||||||||
As | 0.17 | −0.20 | −0.10 | 0.19 | 0.42 * | 0.00 | 0.51** | 0.49 ** | 0.33 | −0.04 | 0.60 ** | −0.25 | 0.09 | 1 | |||||||||||||||
B | −0.11 | 0.31 | 0.39 * | 0.25 | 0.19 | 0.37 * | 0.04 | 0.00 | 0.20 | −0.19 | 0.25 | 0.41 * | −0.14 | 0.18 | 1 | ||||||||||||||
Ba | −0.01 | 0.04 | 0.18 | 0.04 | 0.47 ** | 0.14 | 0.26 | 0.41 * | 0.12 | −0.10 | 0.63 ** | 0.18 | 0.06 | 0.67 ** | 0.45 ** | 1 | |||||||||||||
Br | −0.17 | 0.10 | 0.28 | −0.22 | 0.33 | −0.02 | 0.32 | 0.21 | 0.04 | 0.31 | 0.70 ** | 0.21 | −0.05 | 0.20 | 0.26 | 0.45 ** | 1 | ||||||||||||
Cr | −0.11 | 0.32 | 0.71 ** | 0.19 | −0.30 | 0.76 ** | −0.09 | −0.55 ** | −0.19 | −0.33 | −0.13 | 0.55 ** | −0.12 | −0.16 | 0.38 * | 0.07 | 0.17 | 1 | |||||||||||
Cr(VI) | −0.14 | 0.32 | 0.73 ** | 0.18 | −0.34 | 0.80 ** | −0.10 | −0.6 ** | −0.19 | −0.35 * | −0.17 | 0.59 ** | −0.09 | −0.19 | 0.36 * | 0.06 | 0.17 | 0.98 ** | 1 | ||||||||||
Li | 0.17 | 0.04 | 0.42 * | 0.13 | −0.17 | 0.611 ** | −0.08 | 0.05 | −0.15 | −0.32 | 0.23 | 0.22 | 0.11 | 0.48 ** | 0.39 * | 0.63 ** | 0.29 | 0.47 ** | 0.48 ** | 1 | |||||||||
Mn | 0.17 | −0.26 | −0.30 | −0.44 * | −0.15 | −0.19 | −0.13 | 0.04 | 0.05 | 0.06 | −0.07 | −0.11 | 0.30 | −0.04 | −0.43 | −0.05 | −0.09 | −0.41 * | −0.32 | −0.14 | 1 | ||||||||
Ni | −0.27 | 0.30 | 0.60 ** | 0.07 | −0.13 | 0.60** | −0.10 | −0.25 | −0.25 | −0.30 | 0.01 | 0.51 ** | 0.10 | 0.04 | 0.42 * | 0.45 ** | 0.37* | 0.61 ** | 0.67 ** | 0.64 ** | −0.10 | 1 | |||||||
P | −0.09 | −0.07 | −0.27 | −0.41 * | −0.08 | −0.28 | −0.15 | −0.02 | −0.03 | 0.10 | −0.07 | 0.00 | 0.25 | −0.23 | −0.30 | −0.13 | −0.04 | −0.36 * | −0.26 | −0.24 | 0.75 ** | −0.04 | 1 | ||||||
Si | 0.10 | −0.07 | 0.58 ** | 0.34 | −0.43 * | 0.91 ** | −0.20 | −0.34 | −0.11 | −0.43 * | −0.19 | 0.48 ** | −0.07 | 0.09 | 0.34 | 0.17 | −0.09 | 0.75 ** | 0.76 ** | 0.71 ** | −0.22 | 0.53 ** | −0.33 | 1 | |||||
Sr | −0.13 | 0.01 | −0.26 | −0.18 | 0.827 ** | −0.55 | 0.61 ** | 0.61 ** | 0.21 | 0.38 * | 0.74 ** | −0.23 | 0.06 | 0.53 ** | 0.12 | 0.56 ** | 0.47 ** | −0.37 * | −0.43 | −0.04 | −0.09 | −0.13 | −0.07 | −0.53 | 1 | ||||
U | −0.14 | 0.12 | −0.03 | −0.09 | 0.676 ** | −0.27 | 0.59 ** | 0.462 ** | 0.28 | 0.15 | 0.82 ** | −0.15 | 0.05 | 0.72 ** | 0.33 | 0.78 ** | 0.58 ** | −0.16 | −0.18 | 0.29 | −0.05 | 0.18 | −0.03 | −0.28 | 0.85 ** | 1 | |||
V | 0.10 | 0.02 | −0.08 | 0.08 | 0.15 | 0.16 | 0.30 | 0.16 | 0.33 | −0.11 | 0.41 * | −0.13 | 0.25 | 0.70 ** | 0.21 | 0.69 ** | 0.19 | −0.10 | −0.09 | 0.59 ** | 0.07 | 0.26 | −0.07 | 0.22 | 0.24 | 0.54 ** | 1 | ||
Zn | −0.01 | −0.10 | −0.50 ** | −0.23 | 0.22 | −0.33 | 0.24 | 0.18 | 0.52 ** | 0.38 * | 0.04 | −0.22 | 0.32 | 0.09 | −0.05 | 0.09 | −0.04 | −0.23 | −0.22 | −0.18 | 0.34 | −0.16 | 0.41 * | −0.24 | 0.23 | 0.21 | 0.09 | 1 | |
Alkalinity | −0.11 | 0.04 | 0.62 ** | 0.14 | 0.00 | 0.68 ** | −0.15 | −0.31 | −0.22 | −0.14 | 0.02 | 1 ** | −0.19 | −0.24 | 0.41 * | 0.19 | 0.22 | 0.55 ** | 0.59 ** | 0.23 | −0.11 | 0.50 ** | 0.00 | 0.48 ** | −0.22 | −0.14 | −0.13 | −0.22 | 1 |
Mineral Phase | Oversaturated | Undersaturated |
---|---|---|
SI > 0 (%) | SI < 0 (%) | |
Calcite | 63.8 | 36.2 |
Dolomite | 58.0 | 42.0 |
Magnesite | 29.0 | 71.0 |
Talc | 49.3 | 50.7 |
Chlorite | 30.4 | 69.6 |
Tremolite | 14.5 | 85.5 |
Enstatite | 0.00 | 100 |
Diopside | 0.00 | 100 |
Pyrolusite | 0.00 | 100 |
Chromite | 100 | 0.00 |
Magnetite | 100 | 0.00 |
Chrysotile | 14.5 | 85.5 |
Lizardite | 14.5 | 85.5 |
Olivine (Forsterite) | 0.00 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasileiou, E.; Papazotos, P.; Dimitrakopoulos, D.; Perraki, M. Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece. Water 2021, 13, 2809. https://doi.org/10.3390/w13202809
Vasileiou E, Papazotos P, Dimitrakopoulos D, Perraki M. Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece. Water. 2021; 13(20):2809. https://doi.org/10.3390/w13202809
Chicago/Turabian StyleVasileiou, Eleni, Panagiotis Papazotos, Dimitrios Dimitrakopoulos, and Maria Perraki. 2021. "Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece" Water 13, no. 20: 2809. https://doi.org/10.3390/w13202809
APA StyleVasileiou, E., Papazotos, P., Dimitrakopoulos, D., & Perraki, M. (2021). Hydrogeochemical Processes and Natural Background Levels of Chromium in an Ultramafic Environment. The Case Study of Vermio Mountain, Western Macedonia, Greece. Water, 13(20), 2809. https://doi.org/10.3390/w13202809