Wastewater-Based Epidemiology for Cost-Effective Mass Surveillance of COVID-19 in Low- and Middle-Income Countries: Challenges and Opportunities
Abstract
:1. Background
2. Potential of WBE for COVID-19 Mass Surveillance in LMICs
3. Challenges in Mobilizing WBE for COVID-19 Mass Surveillance in LMICs
4. Mobilizing the WBE Approach for COVID-19 Mass Surveillance in LMICs
5. Policy and Practice Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sims, N.; Kasprzyk-Hordern, B. Future Perspectives of Wastewater-Based Epidemiology: Monitoring Infectious Disease Spread and Resistance to the Community Level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef]
- Daughton, C.G.; Jones-Lepp, T.L. (Eds.) Pharmaceuticals and Care Products in the Environment: Scientific and Regulatory Issues; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2001; Volume 791, ISBN 978-0-8412-3739-1. [Google Scholar]
- Zuccato, E.; Chiabrando, C.; Castiglioni, S.; Calamari, D.; Bagnati, R.; Schiarea, S.; Fanelli, R. Cocaine in Surface Waters: A New Evidence-Based Tool to Monitor Community Drug Abuse. Environ. Health 2005, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Zuccato, E.; Chiabrando, C.; Castiglioni, S.; Bagnati, R.; Fanelli, R. Estimating Community Drug Abuse by Wastewater Analysis. Environ. Health Perspect. 2008, 116, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Andrés-Costa, M.J.; Rubio-López, N.; Morales Suárez-Varela, M.; Pico, Y. Occurrence and Removal of Drugs of Abuse in Wastewater Treatment Plants of Valencia (Spain). Environ. Pollut. 2014, 194, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Daglioglu, N.; Guzel, E.Y.; Kilercioglu, S. Assessment of Illicit Drugs in Wastewater and Estimation of Drugs of Abuse in Adana Province, Turkey. Forensic Sci. Int. 2019, 294, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, L.; Botero-Coy, A.M.; Rincón, R.J.; Peñuela, G.A.; Hernández, F. Estimation of Illicit Drug Use in the Main Cities of Colombia by Means of Urban Wastewater Analysis. Sci. Total Environ. 2016, 565, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archer, E.; Castrignanò, E.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. Wastewater-Based Epidemiology and Enantiomeric Profiling for Drugs of Abuse in South African Wastewaters. Sci. Total Environ. 2018, 625, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Foppe, K.S.; Hammond-Weinberger, D.R.; Subedi, B. Estimation of the Consumption of Illicit Drugs during Special Events in Two Communities in Western Kentucky, USA Using Sewage Epidemiology. Sci. Total Environ. 2018, 633, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.Y.; O’Brien, J.; Bruno, R.; Hall, W.; Prichard, J.; Kirkbride, P.; Gartner, C.; Thai, P.; Carter, S.; Lloyd, B.; et al. Spatial Variations in the Consumption of Illicit Stimulant Drugs across Australia: A Nationwide Application of Wastewater-Based Epidemiology. Sci. Total Environ. 2016, 568, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Heijnen, L.; Medema, G. Surveillance of Influenza A and the Pandemic Influenza A (H1N1) 2009 in Sewage and Surface Water in the Netherlands. J. Water Health 2011, 9, 434–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmér, M.; Paxéus, N.; Magnius, L.; Enache, L.; Arnholm, B.; Johansson, A.; Bergström, T.; Norder, H. Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks. Appl. Environ. Microbiol. 2014, 80, 6771–6781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, D.; Fukushi, K.; Yoshida, Y.; Omura, T. Detection of Enteric Viruses in Municipal Sewage Sludge by a Combination of the Enzymatic Virus Elution Metho Dan d RT-PCR. Water Res. 2003, 37, 3490–3498. [Google Scholar] [CrossRef]
- Sano, D.; Watanabe, T.; Matsuo, T.; Omura, T. Detection of Infectious Pathogenic Viruses in Water and Wastewater Samples from Urbanised Areas. Water Sci. Technol. 2004, 50, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Asghar, H.; Diop, O.M.; Weldegebriel, G.; Malik, F.; Shetty, S.; El Bassioni, L.; Akande, A.O.; Al Maamoun, E.; Zaidi, S.; Adeniji, A.J.; et al. Environmental Surveillance for Polioviruses in the Global Polio Eradication Initiative. J. Infect. Dis. 2014, 210, S294–S303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, W.; Angel, N.; Edson, J.; Bibby, K.; Bivins, A.; O’Brien, J.W.; Choi, P.M.; Kitajima, M.; Simpson, S.L.; Li, J.; et al. First Confirmed Detection of SARS-CoV-2 in Untreated Wastewater in Australia: A Proof of Concept for the Wastewater Surveillance of COVID-19 in the Community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First Environmental Surveillance for the Presence of SARS-CoV-2 RNA in Wastewater and River Water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Bonanno Ferraro, G.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First Detection of SARS-CoV-2 in Untreated Wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef] [PubMed]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Bar-Or, I.; Yaniv, K.; Shagan, M.; Ozer, E.; Erster, O.; Mendelson, E.; Mannasse, B.; Shirazi, R.; Kramarsky-Winter, E.; Nir, O.; et al. Regressing SARS-CoV-2 Sewage Measurements onto COVID-19 Burden in the Population: A Proof-of-Concept for Quantitative Environmental Surveillance. medRxiv 2020. [Google Scholar] [CrossRef]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. SARS-CoV-2 RNA Concentrations in Primary Municipal Sewage Sludge as a Leading Indicator of COVID-19 Outbreak Dynamics. medRxiv 2020. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, J.; Xiao, A.; Gu, X.; Lee, W.L.; Armas, F.; Kauffman, K.; Hanage, W.; Matus, M.; Ghaeli, N.; et al. SARS-CoV-2 Titers in Wastewater Are Higher than Expected from Clinically Confirmed Cases. mySystems 2020, 5, e00614-20. [Google Scholar] [CrossRef] [PubMed]
- Weidhaas, J.; Aanderud, Z.; Roper, D.; Van Derslice, J.; Gaddis, E.; Ostermiller, J.; Hoffman, K.; Jamal, R.; Heck, P.; Zhang, Y.; et al. Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Sci. Total Environ. 2021, 775, 145790. [Google Scholar] [CrossRef] [PubMed]
- Hemalatha, M.; Kiran, U.; Kumar, K.S.; Kopperi, H.; Gokulan, C.G.; Mohan, S.V.; Mishra, R.K. Comprehensive surveil- lance of SARS-CoV-2 spread using wastewater-based epidemiology studies. medRxiv 2020. [Google Scholar] [CrossRef]
- Saththasivam, J.; El-Malah, S.S.; Gomez, T.A.; Jabbar, K.A.; Remanan, R.; Krishnankutty, A.K.; Ogunbiyi, O.; Rasool, K.; Ashhab, S.; Rashkeev, S.; et al. COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar. Sci. Total Environ. 2021, 774, 145608. [Google Scholar] [CrossRef] [PubMed]
- Medema, G.; Been, F.; Heijnen, L.; Petterson, S. Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Curr. Opin. Environ. Sci. Health 2020, 17, 49–71. [Google Scholar] [CrossRef]
- World’s Most Vulnerable Countries Lack the Capacity to Respond to a Global Pandemic. Available online: https://www.un.org/ohrlls/news/world’s-most-vulnerable-countries-lack-capacity-respond-global-pandemic-credit-mfdelyas-alwazir. (accessed on 18 April 2021).
- Josephson, A.; Kilic, T.; Michler, J.D. Socioeconomic Impacts of COVID-19 in Low-Income Countries. Nat. Hum. Behav. 2021, 5, 557–565. [Google Scholar] [CrossRef]
- Tracking Covid-19 Vaccinations Worldwide. Available online: https://edition.cnn.com/interactive/2021/health/global-covid-vaccinations/ (accessed on 16 August 2021).
- Global Lineage Reports. Available online: https://cov-lineages.org/index.html#global_reports (accessed on 16 August 2021).
- Gómez, C.E.; Perdiguero, B.; Esteban, M. Emerging SARS-CoV-2 Variants and Impact in Global Vaccination Programs against SARS-CoV-2/COVID-19. Vaccines 2021, 9, 243. [Google Scholar] [CrossRef]
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; COVID-19 Genomics UK (COG-UK) Consortium; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Recommendation on a Common Approach to Establish a Systematic Surveillance of SARS-CoV-2 and Its Variants in Wastewaters in the EU. European Commission. 2021. Available online: https://ec.europa.eu/environment/pdf/water/recommendation_covid19_monitoring_wastewaters.pdf (accessed on 20 March 2020).
- Dharmadhikari, T.; Yadav, R.; Dastager, S.; Dharne, M. Translating SARS-CoV-2 Wastewater-Based Epidemiology for Prioritizing Mass Vaccination: A Strategic Overview. Environ. Sci. Pollut. Res. 2021, 28, 42975–42980. [Google Scholar] [CrossRef]
- Larsen, D.A.; Wigginton, K.R. Tracking COVID-19 with Wastewater. Nat. Biotechnol. 2020, 38, 1151–1153. [Google Scholar] [CrossRef] [PubMed]
- Wurtzer, S.; Marechal, V.; Mouchel, J.M.; Maday, Y.; Teyssou, R.; Richard, E.; Almayrac, J.L.; Moulin, L. Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in wastewater, Greater Paris, France, 5 March to 23 April 2020. Euro Surveill. 2020, 25, 50. [Google Scholar] [CrossRef]
- World Health Organization. Critical Preparedness, Readiness and Response Actions for COVID-19: Interim Guidance; World Health Organization: Geneva, Switzerland, 2021; WHO reference number: WHO/2019-nCoV/Community_Actions/2021.1. [Google Scholar]
- World Health Organization. Laboratory Biosafety Guidance Related to Coronavirus Disease (COVID-19): Interim Guidance; World Health Organization: Geneva, Switzerland, 2021; WHO reference number: WHO/WPE/GIH/2020.3. [Google Scholar]
- World Health Organization. Laboratory Testing for Coronavirus Disease 2019 (COVID-19) in Suspected Human Cases; World Health Organization: Geneva, Switzerland, 2020; WHO reference number: WHO/COVID-19/laboratory/2020.4. [Google Scholar]
- World Health Organization. Regional Office for South-East Asia Guidelines on Establishment of Virology Laboratory in Developing Countries; World Health Organization, Regional Office for South-East Asia: New Delhi, India, 2008; ISBN 978-92-9022-335-1. [Google Scholar]
- Giri, A.K.; Rana, D.R. Charting the Challenges behind the Testing of COVID-19 in Developing Countries: Nepal as a Case Study. Biosaf. Health 2020, 2, 53–56. [Google Scholar] [CrossRef]
- Center of Disease Control and Prevention. Developing A Wastewater Surveillance Sampling Strategy. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/wastewater-surveillance/developing-a-wastewater-surveillance-sampling-strategy.html (accessed on 20 March 2020).
- Hart, O.E.; Halden, R.U. Computational Analysis of SARS-CoV-2/COVID-19 Surveillance by Wastewater-Based Epidemiology Locally and Globally: Feasibility, Economy, Opportunities and Challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef] [PubMed]
- Napit, R.; Manandhar, P.; Chaudhary, A.; Shrestha, B.; Poudel, A.; Raut, R.; Pradhan, S.; Raut, S.; Mathema, S.; Rajbhandari, R.; et al. Rapid Genomic Surveillance of SARS-CoV-2 in a Dense Urban Community Using Environmental (Sewage) Samples. medRxiv 2021. [Google Scholar] [CrossRef]
- Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-Generation Sequencing of Infectious Pathogens. JAMA 2019, 321, 893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UNICEF/WHO/IFRC. Social Stigma Associated with COVID-19-A Guide to Preventing and Addressing Social Stigma. 2020. Available online: https://www.who.int/publications/m/item/a-guide-to-preventing-and-addressing-social-stigma-associated-with-covid-19 (accessed on 10 April 2020).
- Bagcchi, S. Stigma during the COVID-19 Pandemic. Lancet Infect. Dis. 2020, 20, 782. [Google Scholar] [CrossRef]
- Taylor, L. Covid-19 Misinformation Sparks Threats and Violence against Doctors in Latin America. BMJ 2020, 370, m3088. [Google Scholar] [CrossRef]
- UN. COVID-19 and Human Rights We Are All in This Together. 2020. Available online: https://data2.unhcr.org/en/documents/details/75828 (accessed on 10 April 2020).
- Roelen, K.; Ackley, C.; Boyce, P.; Farina, N.; Ripoll, S. COVID-19 in LMICs: The Need to Place Stigma Front and Centre to Its Response. Eur. J. Dev. Res. 2020, 32, 1592–1612. [Google Scholar] [CrossRef] [PubMed]
- Rohwerder, B. Disability Stigma in Developing Countries; K4D Helpdesk Report; Institute of Development Studies: Brighton, UK, 2018; Volume 26. [Google Scholar]
- Stangl, A.L.; Earnshaw, V.A.; Logie, C.H.; van Brakel, W.; Simbayi, L.C.; Barré, I.; Dovidio, J.F. The Health Stigma and Discrimination Framework: A Global, Crosscutting Framework to Inform Research, Intervention Development, and Policy on Health-Related Stigmas. BMC Med. 2019, 17, 31. [Google Scholar] [CrossRef]
- Roelen, K. Receiving Social Assistance in Low- and Middle-Income Countries: Negating Shame or Producing Stigma? J. Soc. Policy 2019, 49, 705–723. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, K.; Kagaya, K.; Zarebski, A.; Chowell, G. Estimating the Asymptomatic Proportion of Coronavirus Disease 2019 (COVID-19) Cases on Board the Diamond Princess Cruise Ship, Yokohama, Japan, 2020. Euro. Surveill. 2020, 25, 2000180. [Google Scholar] [CrossRef] [Green Version]
- Nishiura, H.; Kobayashi, T.; Miyama, T.; Suzuki, A.; Jung, S.; Hayashi, K.; Kinoshita, R.; Yang, Y.; Yuan, B.; Akhmetzhanov, A.R.; et al. Estimation of the Asymptomatic Ratio of Novel Coronavirus Infections (COVID-19). Int. J. Infect. Dis. 2020, 94, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Treibel, T.A.; Manisty, C.; Burton, M.; McKnight, Á.; Lambourne, J.; Augusto, J.B.; Couto-Parada, X.; Cutino-Moguel, T.; Noursadeghi, M.; Moon, J.C. COVID-19: PCR screening of asymptomatic health-care workers at London hospital. Lancet 2020, 395, 1608–1610. [Google Scholar] [CrossRef]
- Schmitz, B.W.; Innes, G.K.; Prasek, S.M.; Betancourt, W.Q.; Stark, E.R.; Foster, A.R.; Abraham, A.G.; Gerba, C.P.; Pepper, I.L. Enumerating Asymptomatic COVID-19 Cases and Estimating SARS-CoV-2 Fecal Shedding Rates via Wastewater-Based Epidemiology. Sci. Total Environ. 2021, 801, 149794. [Google Scholar] [CrossRef] [PubMed]
- Devault, D.A.; Maguet, H.; Merle, S.; Péné-Annette, A.; Lévi, Y. Wastewater-Based Epidemiology in Low Human Development Index States: Bias in Consumption Monitoring of Illicit Drugs. Environ. Sci. Pollut. Res. 2018, 25, 27819–27838. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. UNICEF Progress on Sanitation and Drinking-Water: 2015 Update and MDG Assessment; World Health Organization: Geneva, Switzerland; UNICEF: New York, NY, USA, 2015; ISBN 978-92-4-150914-5. [Google Scholar]
- UNESCO. Wastewater: The Untapped Resource; The United Nations World Water Development Report; UNESCO: Paris, France, 2017; ISBN 978-92-3-100201-4. [Google Scholar]
- Shrestha, S.; Shrestha, S.; Shindo, J.; Sherchand, J.B.; Haramoto, E. Virological Quality of Irrigation Water Sources and Pepper Mild Mottle Virus and Tobacco Mosaic Virus as Index of Pathogenic Virus Contamination Level. Food Environ. Virol. 2018, 10, 107–120. [Google Scholar] [CrossRef] [PubMed]
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene-2017 Update and SDG Baseline; World Health Organization (WHO); United Nations Children’s Fund (UNICEF): Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/bitstream/handle/10665/258617/9789241512893-eng.pdf?sequence=1 (accessed on 23 March 2020).
- Eales, K.; Blackett, I.; Siregar, R.; Febriani, E. Review of Community-Managed Decentralized Wastewater Treatment Systems in Indonesia; World Bank: Washington, DC, USA, 2013; Available online: http://hdl.handle.net/10986/17751 (accessed on 16 August 2021).
- WHO; UNICEF JMP. Estimates on the Use of Water, Sanitation, and Hygiene. 2019. Available online: https://data.unicef.org/topic/water-and-sanitation/covid-19/ (accessed on 25 March 2020).
- Massoud, M.A.; Tarhini, A.; Nasr, J.A. Decentralized Approaches to Wastewater Treatment and Management: Applicability in Developing Countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef]
- Mara, D.D.; Evans, B.E. Sanitation and Water Supply in Low- Income Countries; Ventus Publishing: Erie, CO, USA, 2011; p. 149. [Google Scholar]
- Kennedy-Walker, R.; Mehta, N.; Thomas, S.; Gambrill, M. Connecting the Unconnected: Approaches for Getting Households to Connect to Sewerage Networks; World Bank Group: Washington, DC, USA, 2011; Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/34791/154444.pdf?sequence=7&isAllowed=y (accessed on 23 March 2020).
- Hyun, C.; Burt, Z.; Crider, Y.; Nelson, K.L.; Prasad, C.S.S.; Rayasam, S.D.G.; Tarpeh, W.; Ray, I. Sanitation for Low-Income Regions: A Cross-Disciplinary Review. Annu. Rev. Environ. Resour. 2019, 44, 287–318. [Google Scholar] [CrossRef] [Green Version]
- Calabria de Araujo, J.; Gavazza, S.; Leao, T.L.; Florencio, L.; da Silva, H.P.; Albuquerque, J.D.O.; de Lira Borges, M.A.; de Oliveira Alves, R.B.; Rodrigues, R.H.A.; dos Santos, E.B. SARS-CoV-2 Sewage Surveillance in Low-Income Countries: Potential and Challenges. J. Water Health 2021, 19, 1–19. [Google Scholar] [CrossRef]
- Pandey, D.; Verma, S.; Verma, P.; Mahanty, B.; Dutta, K.; Daverey, A.; Arunachalam, K. SARS-CoV-2 in Wastewater: Challenges for Developing Countries. Int. J. Hyg. Environ. Health 2021, 231, 113634. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, A.K.; Shah, A.V.; Raval, J.; Rajpara, N.; Joshi, M.; Joshi, C.G. First Proof of the Capability of Wastewater Surveillance for COVID-19 in India through Detection of Genetic Material of SARS-CoV-2. Sci. Total Environ. 2020, 746, 141326. [Google Scholar] [CrossRef]
- Daughton, C.G. Real-Time Estimation of Small-Area Populations with Human Biomarkers in Sewage. Sci. Total Environ. 2012, 414, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Xagoraraki, I.; O’Brien, E. Wastewater-Based Epidemiology for Early Detection of Viral Outbreaks. In Women in Water Quality; O’Bannon, D.J., Ed.; Springer International Publishing: New York, NY, USA, 2020; pp. 75–97. [Google Scholar]
- Chiaia, A.C.; Banta-Green, C.; Field, J. Eliminating Solid Phase Extraction with Large-Volume Injection LC/MS/MS: Analysis of Illicit and Legal Drugs and Human Urine Indicators in US Wastewaters. Environ. Sci. Technol. 2008, 42, 8841–8848. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.R.; Kasprzyk-Hordern, B. Multi-Residue Analysis of Drugs of Abuse in Wastewater and Surface Water by Solid-Phase Extraction and Liquid Chromatography–Positive Electrospray Ionisation Tandem Mass Spectrometry. J. Chromatogr. A 2011, 1218, 1620–1631. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Kostakis, C.; Gerber, J.P.; Tscharke, B.J.; Irvine, R.J.; White, J.M. Towards Finding a Population Biomarker for Wastewater Epidemiology Studies. Sci. Total Environ. 2014, 487, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Bright-Davies, L.; Lüthi, C.; Jachnow, A. DEWATS for Urban Nepal: A Comparative Assessment for Community Wastewater Management. Waterlines 2015, 34, 119–138. [Google Scholar] [CrossRef]
- Singh, A.; Sawant, M.; Kamble, S.J.; Herlekar, M.; Starkl, M.; Aymerich, E.; Kazmi, A. Performance evaluation of a decentralized wastewater treatment system in India. Environ. Sci. Pollut. Res. 2019, 26, 21172–21188. [Google Scholar] [CrossRef] [PubMed]
- Shuma, R.S.; Alamgir, M. Wastewater Quality at Different Stages of Decentralised Wastewater Treatment Process in the Peoples Panchtala Colony at Kalishpur, Khulna. International Conference on Mechanical, Industrial and Materials Engineering 2013 (ICMIME2013), Rajshahi, Bangladesh, 1–3 September 2013; RUET, 814 Paper ID: RT-10. Available online: http://icmime-ruet.ac.bd/2013/Contents/Technical%20Papers/Related%20Technology/RT-10.pdf (accessed on 17 September 2021).
- Water Information Network–South Africa. Dewats Processor for Decentralized Wastewater Treatment–Technical Lessons from eThekwini Municipality. 2014. Available online: https://www.susana.org/_resources/documents/default/2-2039-dewats-process-for-decentralised-wastewater-treatmentlessonv9.pdf (accessed on 17 September 2021).
- Rice, E.W.; Baird, R.B.; Eaton, A.D. (Eds.) Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2017; ISBN 9780875532875. [Google Scholar]
- Koottatep, T.; Ferre, A.; Chapagain, S.; Fakkaew, K.; Strande, L. Methods for Faecal Sludge Analysis; Velkushanova, K., Strande, L., Ronteltap, M., Koottatep, T., Brdjanovic, D., Buckley, C., Eds.; IWA Publishing: London, UK, 2021; pp. 55–84. [Google Scholar]
- Larsen, T.A.; Hoffman, S.; Luthi, C.; Truffer, B.; Maurer, M. Emerging Solutions to the Water Challenges of an Urbanizing World. Science 2016, 352. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jackson, S.; Derakhshan, S.; Lee, L.; Pham, E.; Jackson, A.; Cutter, S.L. Urban-rural differences in COVID-19 exposures and outcomes in the South: A preliminary analysis of South Carolina. PLoS ONE 2021, 16, e0246548. [Google Scholar]
- Global Partnership to Make Available 120 Million Affordable, Quality COVID-19 Rapid Tests for Low- and Middle-Income Countries. Available online: https://www.who.int/news/item/28-09-2020-global-partnership-to-make-available-120-million-affordable-quality-covid-19-rapid-tests-for-low--and-middle-income-countries (accessed on 13 September 2021).
- Takeda, T.; Kitajima, M.; Abeynayaka, A.; Huong, N.T.T.; Dinh, N.Q.; Sirikanchana, K.; Navia, M.; Sam, A.A.; Tsudaka, M.; Setiadi, T.; et al. Chapter 11. Governance of wastewater surveillance systems to minimize the impact of COVID-19 and future epidemics: Cases across Asia-Pacific. In Environmental Resilience and Transformation in Times of COVID-19: Climate Change Effects on Environmental Functionality; Ramanathan, A., Chidambaram, S., Jonathan, M.P., Prasanna, M.V., Kumar, P., Arriola, F.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 115–125. [Google Scholar]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in Wastewater: State of the Knowledge and Research Needs. Sci. Total Environ. 2020, 739, 139076. [Google Scholar] [CrossRef]
- Bivins, A.; North, D.; Ahmad, A.; Ahmed, W.; Alm, E.; Been, F.; Bhattacharya, P.; Bijlsma, L.; Boehm, A.B.; Brown, J.; et al. Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight Against COVID-19. Environ. Sci. Technol. 2020, 54, 7754–7757. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shrestha, S.; Yoshinaga, E.; Chapagain, S.K.; Mohan, G.; Gasparatos, A.; Fukushi, K. Wastewater-Based Epidemiology for Cost-Effective Mass Surveillance of COVID-19 in Low- and Middle-Income Countries: Challenges and Opportunities. Water 2021, 13, 2897. https://doi.org/10.3390/w13202897
Shrestha S, Yoshinaga E, Chapagain SK, Mohan G, Gasparatos A, Fukushi K. Wastewater-Based Epidemiology for Cost-Effective Mass Surveillance of COVID-19 in Low- and Middle-Income Countries: Challenges and Opportunities. Water. 2021; 13(20):2897. https://doi.org/10.3390/w13202897
Chicago/Turabian StyleShrestha, Sadhana, Emi Yoshinaga, Saroj K. Chapagain, Geetha Mohan, Alexandros Gasparatos, and Kensuke Fukushi. 2021. "Wastewater-Based Epidemiology for Cost-Effective Mass Surveillance of COVID-19 in Low- and Middle-Income Countries: Challenges and Opportunities" Water 13, no. 20: 2897. https://doi.org/10.3390/w13202897
APA StyleShrestha, S., Yoshinaga, E., Chapagain, S. K., Mohan, G., Gasparatos, A., & Fukushi, K. (2021). Wastewater-Based Epidemiology for Cost-Effective Mass Surveillance of COVID-19 in Low- and Middle-Income Countries: Challenges and Opportunities. Water, 13(20), 2897. https://doi.org/10.3390/w13202897