The Impact of Rainfall Movement Direction on Urban Runoff Cannot Be Ignored in Urban Hydrologic Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Construction of Rainfall Schemes
2.2.2. Runoff Numerical Simulation
2.2.3. Index of Peak Runoff Deviation
2.2.4. Rainfall Movement Direction and Flow Concentration Direction
2.2.5. Dynamic Clustering of Sections
3. Results and Discussion
3.1. Influence of Variation in RI and RMD Combinations on the Peak Runoff
3.2. Influence of Variation in RMD on the Peak Runoff
3.3. How RMD Affect the Peak Runoff across Rivers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, Y.; Li, J.; Gu, X.; Chen, Y.D.; Kong, D.; Gan, T.Y.; Liu, M.; Li, Q.; Wu, G. Greater flood risks in response to slowdown of tropical cyclones over the coast of China. Proc. Natl. Acad. Sci. USA 2020, 117, 14751–14755. [Google Scholar] [CrossRef] [PubMed]
- DeGaetano, A.T. Time-Dependent Changes in Extreme-Precipitation Return-Period Amounts in the Continental United States. J. Appl. Meteorol. Clim. 2009, 48, 2086–2099. [Google Scholar] [CrossRef] [Green Version]
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes under Global Warming. Water Resour. Res. 2019. [Google Scholar] [CrossRef]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flood risk at the global scale. Clim. Chang. 2016, 134, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Cristiano, E.; Deidda, R.; Viola, F. EHSMu: A New Ecohydrological Streamflow Model to Estimate Runoff in Urban Areas. Water Resour. Manag. 2020, 34, 4865–4879. [Google Scholar] [CrossRef]
- Davenport, F.; Burke, M.; Diffenbaugh, N. Contribution of historical precipitation change to US flood damages. Proc. Natl. Acad. Sci. USA 2021, 118, e2017524118. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, H.; Ren, M.; Cheng, T. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters in China. Shuikexue Jinzhan/Adv. Water Sci. 2020, 31, 713–724. [Google Scholar] [CrossRef]
- Veldhuis MC, T.; Zhou, Z.; Yang, L.; Liu, S.; Smith, J. The role of storm scale, position and movement in controlling urban flood response. Hydrol. Earth Syst. Sci. 2018, 22, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Chan, J.; Zhao, K. Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China. Adv. Atmos. Sci. 2020, 37, 696–706. [Google Scholar] [CrossRef]
- Marelle, L.; Myhre, G.; Steensen, B.; Hodnebrog, Ø.; Alterskjær, K.; Sillmann, J. Urbanization in megacities increases the frequency of extreme precipitation events far more than their intensity. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Cristiano, E.; ten Veldhuis, M.C.; van de Giesen, N. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas—A review. Hydrol. Earth Syst. Sci. 2017, 21, 3859–3878. [Google Scholar] [CrossRef] [Green Version]
- Hailegeorgis, T.T.; Alfredsen, K. Analyses of extreme precipitation and runoff events including uncertainties and reliability in design and management of urban water infrastructure. J. Hydrol. 2017, 544, 290–305. [Google Scholar] [CrossRef]
- Hénonin, J.; Russo, B.; Roqueta, D.S.; Sanchezdiezma, R.; Domingo, N.S.; Domingo, S.; Thomsen, F.; Mark, O. Urban Flood Real-time Forecasting and Modelling: A State-of-the-Art Review; Publishr: Copenhagen, Denmark, 2010. [Google Scholar]
- Xu, H.; Ma, C.; Xu, K.; Lian, J.; Long, Y. Staged optimization of urban drainage systems considering climate change and hydrological model uncertainty. J. Hydrol. 2020, 587, 124959. [Google Scholar] [CrossRef]
- Pang, B.; Shi, S.; Zhao, G.; Shi, R.; Zhu, Z. Uncertainty Assessment of Urban Hydrological Modelling from a Multiple Objective Perspective. Water 2020, 12, 1393. [Google Scholar] [CrossRef]
- Luca, D.L.D.; Versace, P. Diversity of Rainfall Thresholds for early warning of hydro-geological disasters. Adv. Geosci. 2017, 44, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Zommers, Z. Reducing Disaster: Early Warning Systems for Climate Change; Springer: Washington, DC, USA, 2014; pp. 89–108. [Google Scholar] [CrossRef]
- Cristiano, E.; Ten Veldhuis, M.-C.; Wright, D.; Smith, J.; van de Giesen, N. The Influence of Rainfall and Catchment Critical Scales on Urban Hydrological Response Sensitivity. Water Resour. Res. 2019, 55, 3375–3390. [Google Scholar] [CrossRef]
- Rossman, L. Modeling Low Impact Development Alternatives with SWMM. J. Water Manag. Modeling 2010. [Google Scholar] [CrossRef] [Green Version]
- Lyu, H.; Ni, G.; Cao, X.; Ma, Y.; Tian, F. Effect of Temporal Resolution of Rainfall on Simulation of Urban Flood Processes. Water 2018, 10, 880. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.; Pal, S.; Sattar, A.; Singh, S.; Das, B.; Chakrabortty, R.; Mohammad, P. Trend of extreme rainfall events using suitable Global Circulation Model to combat the water logging condition in Kolkata Metropolitan Area. Urban Clim. 2020, 32. [Google Scholar] [CrossRef]
- Mu, D.; Luo, P.; Lyu, J.; Zhou, M.; Huo, A.; Duan, W.; Nover, D.; He, B.; Zhao, X. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. J. Flood Risk Manag. 2020, 14, e12668. [Google Scholar] [CrossRef]
- Zoccatelli, D.; Borga, M.; Viglione, A.; Chirico, G.B.; Blöschl, G. Spatial moments of catchment rainfall: Rainfall spatial organisation, basin morphology, and flood response. Hydrol. Earth Syst. Sci. 2011, 15, 3767–3783. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.A.; Bradley, A.A.; Baeck, M.L. The SpaceTime Structure of Extreme Storm Rainfall in the Southern Plains. J. Appl. Meteorol. 1994, 33, 1402–1417. [Google Scholar] [CrossRef] [Green Version]
- Ogden, F.L.; Richardson, J.R.; Julien, P.Y. Similarity in Catchment Response: 2. Moving Rainstorms. Water Resour. Res. 1995, 31, 1543–1547. [Google Scholar] [CrossRef]
- Singh, V.P. Effect of spatial and temporal variability in rainfall and watershed characteristics on stream flow hydrograph. Hydrol. Process. 1997, 11, 1649–1669. [Google Scholar] [CrossRef]
- Emmanuel, I.; Andrieu, H.; Leblois, E.; Flahaut, B. Temporal and spatial variability of rainfall at the urban hydrological scale. J. Hydrol. 2012, 430–431, 162–172. [Google Scholar] [CrossRef]
- Nikolopoulos, E.I.; Borga, M.; Zoccatelli, D.; Anagnostou, E.N. Catchment-scale storm velocity: Quantification, scale dependence and effect on flood response. Int. Assoc. Sci. Hydrol. Bull. 2014, 59, 1363–1376. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, I.; Andrieu, H.; Leblois, E.; Janey, N.; Payrastre, O. Influence of rainfall spatial variability on rainfall-runoff modelling: Benefit of a simulation approach? J. Hydrol. 2015, 531, 337–348. [Google Scholar] [CrossRef]
- Zoccatelli, D.; Borga, B.; Zanon, F.; Antonescu, B.A.; Stancalie, G. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. J. Hydrol. 2010, 394, 148–161. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Li, L.; Liu, Y.S.; Chan, P.W.; Zhang, W.H. Dynamic spatial-temporal precipitation distribution models for short-duration rainstorms in Shenzhen, China based on machine learning. Atmos. Res. 2020, 237, 104861. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, X.; Ji, Z.; Gao, G. Characteristic analysis of rainstorm-induced catastrophe and the countermeasures of flood hazard mitigation about Shenzhen city. Geomatics 2017, 8, 1886–1897. [Google Scholar] [CrossRef] [Green Version]
- Zang, W.; Shu, L.; Huang, S.; Li, J.; Fu, Y.; Sun, Y.; Zheng, J. Impact of urbanization on hydrological processes under different precipitation scenarios. Nat. Hazards 2019, 99, 1233–1257. [Google Scholar] [CrossRef]
- Haijun, Y.U.; Jianming, M.A. Application of IFMS Urban software in urban flood risk mapping. China Flood Drought Manag. 2018, 28, 13–17. [Google Scholar]
- Kim, I.H.; Feng, C.C.; Wang, Y.C. A simplified linear feature matching method using decision tree analysis, weighted linear directional mean, and topological relationships. Int. J. Geogr. Inf. Sci. 2017, 31, 1042–1060. [Google Scholar] [CrossRef]
- Mitchell, A. The ESRI Guide to GIS Analysis; ESRI Press: Redlands, CA, USA, 1999. [Google Scholar]
- Wheater, H.S.; Chandler, R.E.; Onof, C.J.; Isham, V.S.; Bellone, E.; Yang, C.; Lekkas, D.; Lourmas, G.; Segond, M.L. Spatial-temporal rainfall modelling for flood risk estimation. Stoch. Environ. Res. Risk Assess. 2005, 19, 403–416. [Google Scholar] [CrossRef]
- Aronica, G.; Cannarozzo, M. Studying the hydrological response of urban catchments using a semi-distributed linear non-linear model. J. Hydrol. 2000, 238, 35–43. [Google Scholar] [CrossRef]
RI Scheme | Total Rainfall | Rainfall of 5 min Intervals | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||
RI1: | 10 | 0.4 | 0.6 | 0.8 | 1.4 | 2.0 | 1.2 | 0.9 | 0.7 | 0.6 | 0.5 | 0.5 | 0.4 |
RI2: | 20 | 0.9 | 1.1 | 1.6 | 2.8 | 4.0 | 2.4 | 1.8 | 1.4 | 1.2 | 1.0 | 0.9 | 0.8 |
RI3: | 30 | 1.3 | 1.7 | 2.4 | 4.3 | 5.9 | 3.7 | 2.7 | 2.1 | 1.8 | 1.6 | 1.4 | 1.2 |
RI4: | 40 | 1.8 | 2.3 | 3.2 | 5.7 | 7.9 | 4.9 | 3.6 | 2.9 | 2.4 | 2.1 | 1.8 | 1.7 |
RI5: | 50 | 2.2 | 2.8 | 4.0 | 7.1 | 9.9 | 6.1 | 4.5 | 3.6 | 3.0 | 2.6 | 2.3 | 2.1 |
RI6: | 60 | 2.7 | 3.4 | 4.7 | 8.5 | 11.9 | 7.3 | 5.4 | 4.3 | 3.6 | 3.1 | 2.8 | 2.5 |
RI7: | 70 | 3.2 | 4.0 | 5.5 | 9.6 | 13.2 | 9.3 | 6.2 | 5 | 4.2 | 3.7 | 3.3 | 3.0 |
RI8: | 80 | 3.9 | 4.7 | 6.3 | 10.7 | 14.6 | 10.3 | 7.1 | 5.8 | 5.0 | 4.4 | 4.0 | 3.6 |
RI9: | 90 | 4.5 | 5.4 | 7.1 | 11.8 | 16.1 | 11.3 | 7.9 | 6.5 | 5.7 | 5.1 | 4.6 | 4.3 |
RI10: | 100 | 5.1 | 6.1 | 7.9 | 12.9 | 17.6 | 12.3 | 8.7 | 7.3 | 6.4 | 5.7 | 5.2 | 4.8 |
RI11: | 110 | 5.8 | 6.7 | 8.6 | 13.9 | 18.8 | 14.1 | 9.5 | 8.0 | 7.0 | 6.3 | 5.9 | 5.5 |
RI12: | 120 | 6.3 | 7.4 | 9.4 | 15.2 | 20.7 | 15.3 | 10.3 | 8.7 | 7.6 | 7.0 | 6.4 | 6.0 |
RI13: | 130 | 6.8 | 8.0 | 10.2 | 16.4 | 22.4 | 16.4 | 11.2 | 9.4 | 8.4 | 7.6 | 6.9 | 6.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Huang, Y.; Liu, Y.; Li, K.; Li, M. The Impact of Rainfall Movement Direction on Urban Runoff Cannot Be Ignored in Urban Hydrologic Management. Water 2021, 13, 2923. https://doi.org/10.3390/w13202923
Liu Y, Huang Y, Liu Y, Li K, Li M. The Impact of Rainfall Movement Direction on Urban Runoff Cannot Be Ignored in Urban Hydrologic Management. Water. 2021; 13(20):2923. https://doi.org/10.3390/w13202923
Chicago/Turabian StyleLiu, Yesen, Yaohuan Huang, Yuanyuan Liu, Kuang Li, and Min Li. 2021. "The Impact of Rainfall Movement Direction on Urban Runoff Cannot Be Ignored in Urban Hydrologic Management" Water 13, no. 20: 2923. https://doi.org/10.3390/w13202923
APA StyleLiu, Y., Huang, Y., Liu, Y., Li, K., & Li, M. (2021). The Impact of Rainfall Movement Direction on Urban Runoff Cannot Be Ignored in Urban Hydrologic Management. Water, 13(20), 2923. https://doi.org/10.3390/w13202923