Removal Performance of Faecal Indicators by Natural and Silver-Modified Zeolites of Various Particle Sizes under Dynamic Batch Experiments: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Zeolite
2.2. Modification of Natural Zeolite with Silver
2.3. Natural and Silver-Modified Zeolite Characterization
2.4. Bacterial Suspensions Preparation and Enumeration
2.5. Batch Inactivation Experiments
2.6. Theoretical Considerations
3. Results and Discussion
3.1. Bacterial Inactivation in the Presence of NZs
3.2. Bacterial Inactivation in the Presence of Ag-MNZs
3.3. Bacteria Log Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brombach, H.; Weiss, G.; Fuchs, S. A new database on urban runoff pollution: Comparison of separate and combined sewer systems. Water Sci. Technol. 2005, 51, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Silva, J.L.; Weng, W.L.; Chen, W.W.; Corbitt, M.; Jung, Y.S.; Chen, Y.S. Inactivation of Enterobacter sakazakii by water-soluble muscadine seed extracts. Int. J. Food Microbiol. 2008, 129, 295–299. [Google Scholar] [CrossRef] [PubMed]
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: Update and Sustainable Development Goal Baselines; License: CC BY-NC-SA 3.0 IGO, Launch Version July 12 Main Report; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Zazouli, M.A.; Kalankesh, L.R. Indicators and Causes of Environmental Health Inequalities. J. Maz. Univ. Med. Sci. 2018, 27, 218–229. [Google Scholar]
- Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11–24. [Google Scholar] [CrossRef]
- Zhao, Y. Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environ. Eng. Sci. 2016, 33, 443–454. [Google Scholar] [CrossRef]
- Galletti, C.; Dosa, M.; Russo, N.; Fino, D. Zn2+ and Cd2+ removal from wastewater using clinoptilolite as adsorbent. Environ. Sci. Pollut. Res. Int. 2021, 28, 24355–24361. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Carrión-Mero, P.; Jácome-Francis, K. Worldwide Research Analysis on Natural Zeolites as Environmental Remediation Materials. Sustainability 2021, 13, 6378. [Google Scholar] [CrossRef]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Baker, C.; Pradhan, A.; Pakstis, L.; Pochan, D.J.; Shah, S.I. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 2005, 5, 244–249. [Google Scholar] [CrossRef]
- Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007, 33, 139–148. [Google Scholar] [CrossRef]
- Birla, S.S.; Tiwari, V.V.; Gade, A.K.; Ingle, A.P.; Yadav, A.P.; Rai, M.K. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 2009, 48, 173–179. [Google Scholar] [CrossRef]
- Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 2015, 10, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver nanoparticles as an effective disinfectant: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 954–965. [Google Scholar] [CrossRef]
- Galeano, B.; Korff, E.; Nicholson, W.L. Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Appl. Environ. Microbiol. 2003, 69, 4329–4331. [Google Scholar] [CrossRef] [Green Version]
- Kawahara, K.; Tsuruda, K.; Morishita, M.; Uchida, M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent. Mater. 2000, 16, 452–455. [Google Scholar] [CrossRef]
- Matsumura, Y.; Yoshikata, K.; Kunisaki, S.; Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003, 69, 4278–4281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhong, S.; Zhang, M.; Lin, Y. Antibacterial activity of silver-loaded zeolite A prepared by a fast microwave-loading method. J. Mater. Sci. 2009, 44, 457–462. [Google Scholar] [CrossRef]
- Hagiwara, Z.; Hoshino, S.; Ishino, H.; Nohara, S.; Tagawa, K.; Yamanaka, K. Zeolite Particles Retaining Silver Ions Having Antibacterial Properties. US Patent 4,911,898, 27 March 1990. [Google Scholar]
- Kwakye-Awuah, B.; Williams, C.; Kenward, M.A.; Radecka, I. Antimicrobial action and efficiency of silver-loaded zeolite X. J. Appl. Microbiol. 2008, 104, 1516–1524. [Google Scholar] [CrossRef]
- Lv, L.; Luo, Y.; Ng, W.J.; Zhao, X.S. Bactericidal activity of silver nanoparticles supported on microporous titanosilicate ETS-10. Microporous Mesoporous Mater. 2009, 120, 304–309. [Google Scholar] [CrossRef]
- Guerra, R.; Lima, E.; Viniegra, M.; Guzmán, A.; Lara, V. Growth of Escherichia coli and Salmonella typhi inhibited by fractal silver nanoparticles supported on zeolites. Microporous Mesoporous Mater. 2012, 147, 267–273. [Google Scholar] [CrossRef]
- Krishnani, K.K.; Zhang, Y.; Xiong, L.; Yan, Y.; Boopathy, R.; Mulchandani, A. Bactericidal and ammonia removal activity of silver ion-exchanged zeolite. Bioresour. Technol. 2012, 117, 86–91. [Google Scholar] [CrossRef]
- Demirci, S.; Ustaoğlu, Z.; Yılmazer, G.A.; Sahin, F.; Baç, N. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 2014, 172, 1652–1662. [Google Scholar] [CrossRef]
- Youssef, H.F.; Abdel-Aziz, M.S.; Fouda, F.K. Evaluation of antimicrobial activity of different silver-exchanged nano and micronized zeolites prepared by microwave technique. J. Porous Mater. 2017, 24, 947–957. [Google Scholar] [CrossRef]
- Dutta, P.; Wang, B. Zeolite-supported silver as antimicrobial agents. Coord. Chem. Rev. 2019, 383, 1–29. [Google Scholar] [CrossRef]
- Akhigbe, L.; Ouki, S.; Saroj, D.; Lim, X.M. Silver-modified clinoptilolite for the removal of Escherichia coli and heavy metals from aqueous solutions. Environ. Sci. Pollut. Res. Int. 2014, 21, 10940–10948. [Google Scholar] [CrossRef]
- Top, A.; Ülkü, S. Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. Appl. Clay Sci. 2004, 27, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Garza, M.; Olguín, M.T.; García-Sosa, I.; Alcántara, D.; Rodríguez-Fuentes, G. Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater. 2000, 39, 431–444. [Google Scholar] [CrossRef]
- Rossainz-Castro, L.G.; De-La-Rosa-Gómez, I.; Olguín, M.T.; Alcántara-Díaz, D. Comparison between silver- and copper-modified zeolite-rich tuffs as microbicide agents for Escherichia coli and Candida albicans. J. Environ. Manag. 2016, 183, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Milenkovic, J.; Hrenovic, J.; Matijasevic, D.; Niksic, M.; Rajic, N. Bactericidal activity of Cu-, Zn-, and Ag-containing zeolites toward Escherichia coli isolates. Environ. Sci. Pollut. Res. Int. 2017, 24, 20273–20281. [Google Scholar] [CrossRef] [PubMed]
- De La Rosa-Gómez, I.; Olguín, M.T.; Alcántara, D. Silver-modified Mexican clinoptilolite-rich tuffs with various particle sizes as antimicrobial agents against Escherichia coli. J. Mex. Chem. Soc. 2010, 54, 139–142. [Google Scholar] [CrossRef]
- Copcia, V.E.; Luchian, C.; Dunca, S.; Bilba, N.; Hristodor, C.M. Antibacterial activity of silver-modified natural clinoptilolite. J. Mater. Sci. 2011, 46, 7121–7128. [Google Scholar] [CrossRef]
- Chernousova, S.; Epple, M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew. Chem. Int. Ed. Engl. 2013, 52, 1636–1653. [Google Scholar] [CrossRef]
- Cerrillo, J.L.; Palomares, A.E.; Rey, F.; Valencia, S.; Palou, L.; Pérez-Gago, M.B. Ag-zeolites as fungicidal material: Control of citrus green mold caused by Penicillium digitatum. Microporous Mesoporous Mater. 2017, 254, 69–76. [Google Scholar] [CrossRef]
- Ferreira, L.; Fonseca, A.M.; Botelho, G.; Aguiar, C.A.; Neves, I.C. Antimicrobial activity of faujasite zeolites doped with silver. Microporous Mesoporous Mater. 2012, 160, 126–132. [Google Scholar] [CrossRef]
- Koyama, K.; Takeuchi, Y. Clinoptilolite: The distribution of potassium atoms and its role in thermal stability. Z. Für Krist. -Cryst. Mater. 1977, 145, 216–239. [Google Scholar] [CrossRef]
- Arcoya, A.; González, J.A.; Llabre, G.; Seoane, X.L.; Travieso, N. Role of the countercations on the molecular sieve properties of a clinoptilolite. Microporous Mater. 1996, 7, 1–13. [Google Scholar] [CrossRef]
- Colella, C. Ion exchange equilibria in zeolite minerals. Miner. Depos. 1996, 31, 554–562. [Google Scholar] [CrossRef]
- Lúcia Boschetto, D.; Lerin, L.; Cansian, R.; Castellã Pergher, B.; Di Luccio, M. Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem. Eng. J. 2012, 204–206, 210–216. [Google Scholar] [CrossRef]
- Akhigbe, L.; Ouki, S.; Saroj, D. Disinfection and removal performance for Escherichia coli and heavy metals by silver-modified zeolite in a fixed bed column. Chem. Eng. J. 2016, 295, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Sherry, H.S. The Ion-Exchange Properties of Zeolites. I. Univalent Ion Exchange in Synthetic Faujasite. J. Phys. Chem. 1966, 70, 1158–1168. [Google Scholar] [CrossRef]
- Georgopoulou, M.P.; Syngouna, V.I.; Chrysikopoulos, C.V. Influence of graphene oxide nanoparticles on the transport and cotransport of biocolloids in saturated porous media. Colloids Surf. B Biointerfaces 2020, 189, 110841. [Google Scholar] [CrossRef]
- Bellou, M.I.; Syngouna, V.I.; Tselepi, M.A.; Kokkinos, P.A.; Paparrodopoulos, S.C.; Vantarakis, A.; Chrysikopoulos, C.V. Interaction of human adenoviruses and coliphages with kaolinite and bentonite. Sci. Total Environ. 2015, 517, 86–95. [Google Scholar] [CrossRef]
- Anders, R.; Chrysikopoulos, C. V Evaluation of the factors controlling the time-dependent inactivation rate coefficients of bacteriophage MS2 and PRD1. Environ. Sci. Technol. 2006, 40, 3237–3242. [Google Scholar] [CrossRef]
- Chrysikopoulos, C.V.; Aravantinou, A.F. Virus inactivation in the presence of quartz sand under static and dynamic batch conditions at different temperatures. J. Hazard. Mater. 2012, 233–234, 148–157. [Google Scholar] [CrossRef]
- Syngouna, V.I.; Chrysikopoulos, C.V. Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light. J. Colloid Interface Sci. 2017, 497, 117–125. [Google Scholar] [CrossRef]
- Katzourakis, V.E.; Chrysikopoulos, C.V. Fitting the Transport and Attachment of Dense Biocolloids in One-Dimensional Porous Media: ColloidFit. Groundwater 2017, 55, 156–159. [Google Scholar] [CrossRef]
- Furukawa, S.; Noma, S.; Shimoda, M.; Hayakawa, I. Effect of initial concentration of bacterial suspensions on their inactivation by high hydrostatic pressure. Int. J. Food Sci. Technol. 2002, 37, 573–577. [Google Scholar] [CrossRef]
- An, S.W.; Jeong, Y.C.; Cho, H.H.; Park, J.W. Adsorption of NH4+-N and E. coli onto Mg2+-modified zeolites. Environ. Earth Sci. 2016, 75, 437. [Google Scholar] [CrossRef]
- Im, K.C.; Takasaki, Y.; Endo, A.; Kuriyama, M. Antibacterial Activity of A-Type Zeolite Supporting Silver Ions in Deionized Distilled Water. J. Antibact. Antifung. Agents 1996, 24, 269–274. [Google Scholar]
Bacteria | Experimental Case | ||||
---|---|---|---|---|---|
Absence/Presence of NZ or Ag-MNZ | Bacteria Initial Concentration | λ (min−1) | λ0 (min−1) | α (min−1) | |
E. coli | Fine (0–1 mm) NZ | ||||
Controls | 106 cfu/mL | 0.38 × 10−2 ± 0.003 | 7.28 × 10−2 ± 0.034 | 0.111 ± 0.002 | |
105 cfu/mL | 5.19 × 10−2 ± 0.011 | 9.47 × 10−2 ± 0.031 | 0.129 ± 0.016 | ||
Reactors | 106 cfu/mL | 4.92 × 10−2 ± 0.011 | 1.12 × 10−2 ± 0.007 | 0.026 ± 0.141 | |
105 cfu/mL | 1.19 × 10−2 ± 0.008 | 2.09 × 10−2± 0.066 | 0.081 ± 0.436 | ||
Coarse (1–3 mm) NZ | |||||
Controls | 106 cfu/mL | 7.22 × 10−2± 0.006 | 8.81 × 10−2± 0.020 | 0.564 ± 1.230 | |
105 cfu/mL | 1.20 × 10−2 ± 0.008 | 7.71 × 10−2 ± 0.011 | 0.148 ± 1.150 | ||
Reactors | 106 cfu/mL | 7.47 × 10−2 ± 0.008 | 6.95 × 10−2± 0.072 | 37.763 ± 83 | |
105 cfu/mL | 2.6 × 10−2 ± 0.012 | 2.49 × 10−2 ± 0.0107 | 0.047 ± 0.084 | ||
E. faecalis | Fine (0–1 mm) NZ | ||||
Controls | 106 cfu/mL | 3.07 × 10−2± 0.017 | 18.3 × 10−2± 0.194 | 0.015± 0.171 | |
105 cfu/mL | 1.8 × 10−2 ± 0.007 | 4.18 × 10−2 ± 0.007 | 0.518± 0.153 | ||
Reactors | 106 cfu/mL | 4.57 × 10−2 ± 0.022 | 30.9 × 10−2 ± 0.049 | 0.916 ± 0.311 | |
105 cfu/mL | 1.70 × 10−2 ± 0.009 | 20.56 × 10−2 ± 0.102 | 0.078 ± 0.117 | ||
Coarse (1–3 mm) NZ | |||||
Controls | 106 cfu/mL | 2.28 × 10−2 ± 0.016 | 35.59 × 10−2± 0.011 | 0.988 ± 0.066 | |
105 cfu/mL | 1.81 × 10−2 ± 0.009 | 10.91 × 10−2 ± 0.021 | 1.142 ± 0.511 | ||
Reactors | 106 cfu/mL | 2.82 × 10−2 ± 0.014 | 27.01 × 10−2 ± 0.024 | 1.021 ± 0.202 | |
105 cfu/mL | 3.62 × 10−2 ± 0.008 | 13.84 × 10−2 ± 0.288 | 1.475 ± 8.4 | ||
E. coli | Fine (0–1 mm) 0.25% Ag-MNZ | ||||
Controls | 106 cfu/mL | 4.75 × 10−2 ± 0.011 | 3.55 × 10−2 ± 0.017 | 0.130 ± 0.138 | |
105 cfu/mL | 5.77 × 10−2 ± 0.027 | 81.96 × 10−2 ± 0.058 | 0.338± 0.419 | ||
Reactors | 106 cfu/mL | 43.97 × 10−2 ± 0.076 | 70.43 × 10−2 ± 0.090 | 0.191 ± 0.045 | |
105 cfu/mL | 73.38 × 10−2 ± 0.157 | 220.49 × 10−2 ± 0.079 | 0.608 ± 0.041 | ||
Coarse (1–3 mm) 0.25% Ag-MNZ | |||||
Controls | 106 cfu/mL | 7.91 × 10−2 ± 0.009 | 11.16 × 10−2 ± 0.008 | 0.292 ± 0.038 | |
105 cfu/mL | 4.09 × 10−2 ± 0.013 | 16.07 × 10−2 ± 0.012 | 0.471 ± 0.059 | ||
Reactors | 106 cfu/mL | 53.39 × 10−2± 0.091 | 49.25 × 10−2 ± 0.068 | 0.344± 0.081 | |
105 cfu/mL | 16.34 × 10−2 ± 0.013 | 43.25 × 10−2 ± 0.023 | 0.142± 0.016 | ||
E. faecalis | Fine (0–1 mm) 0.25% Ag-MNZ | ||||
Controls | 106 cfu/mL | 1.42 × 10−2 ± 0.008 | 12.91 × 10−2 ± 0.014 | 1.326 ± 0.357 | |
105 cfu/mL | 1.95 × 10−2± 0.004 | 4.70 × 10−2 ± 0.009 | 0.629± 0.219 | ||
Reactors | 106 cfu/mL | 15.82 × 10−2 ± 0.071 | 75.14 × 10−2 ± 0.276 | 0.035 ± 0.076 | |
105 cfu/mL | 100.92 × 10−2 ± 0.142 | 327.82 × 10−2 ± 0.256 | 0.527 ± 0.074 | ||
Coarse (1–3 mm) 0.25% Ag-MNZ | |||||
Controls | 106 cfu/mL | 6.45 × 10−2 ± 0.017 | 25.8 × 10−2± 0.040 | 15.269 ± 6.665 | |
105 cfu/mL | 6.40 × 10−2 ± 0.014 | 8.01 × 10−2 ± 0.029 | 0.136 ± 0.106 | ||
Reactors | 106 cfu/mL | 26.03 × 10−2 ± 0.036 | 36.0 × 10−2 ± 0.040 | 0.447 ± 0.087 | |
105 cfu/mL | 28.35 × 10−2 ± 0.026 | 16.44 × 10−2 ± 0.036 | 0.083 ± 0.053 |
Experimental Conditions | E. coli | E. faecalis | ||||||
---|---|---|---|---|---|---|---|---|
Duration: 1 h | Controls | Reactors | Controls | Reactors | ||||
Initial Bacterial Concentrations: | log(Reduction) | P (%) | log(Reduction) | P (%) | log(Reduction) | P (%) | log(Reduction) | P (%) |
Fine (0–1 mm) NZ | ||||||||
106 cfu/mL | 0.12 ± 0.04 | 24.14 ± 10.49 | 0.15 ± 0.08 | 29.21 ± 6.86 | 0.09 ± 0.07 | 19.24 ± 8.40 | 0.12 ± 0.08 | 23.58 ± 17.46 |
105 cfu/mL | 0.17 ± 0.04 | 32.39 ± 11.73 | 0.11 ± 0.14 | 22.52 ± 13.38 | 0.07 ± 0.07 | 14.89 ± 7.46 | 0.09 ± 0.02 | 18.72 ± 3.42 |
Coarse (1–3 mm) NZ | ||||||||
106 cfu/mL | 0.24 ± 0.07 | 42.46 ± 6.18 | 0.26 ± 0.05 | 44.87 ± 5.83 | 0.08 ± 0.06 | 16.82 ± 7.89 | 0.10 ± 0.05 | 21.04 ± 10.21 |
105 cfu/mL | 0.12 ± 0.04 | 23.30 ± 7.93 | 0.15 ± 0.11 | 28.98 ± 18.92 | 0.05 ± 0.05 | 10.87 ± 2.90 | 0.09 ± 0.07 | 19.49 ± 10.6 |
Fine (0–1 mm) 0.25% Ag-MNZ | ||||||||
106 cfu/mL | 0.22 ± 0.12 | 39.74 ± 15.01 | 1.53 ± 0.07 | 97.07 ± 0.49 | 0.06 ± 0.04 | 12.37 ± 8.80 | 1.50 ± 0.56 | 96.81 ± 1.55 |
105 cfu/mL | 0.16 ± 0.04 | 30.82 ± 6.23 | 1.97 ± 0.63 | 98.93 ± 2.35 | 0.03 ± 0.02 | 6.67 ± 6.86 | 2.96 ± 0.24 | 99.89 ± 0.09 |
Coarse (1–3 mm) 0.25% Ag-MNZ | ||||||||
106 cfu/mL | 0.3 ± 0.07 | 49.88 ± 17.05 | 1.97 ± 1.01 | 98.93 ± 3.91 | 0.19 ± 0.06 | 35.43 ± 6.03 | 1.56 ± 0.11 | 97.27 ± 0.84 |
105 cfu/mL | 0.22 ± 0.05 | 39.74 ± 7.20 | 2.35 ± 0.84 | 99.55 ± 1.17 | 0.16 ± 0.09 | 30.82 ± 11.98 | 1.79 ± 0.14 | 98.28 ± 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syngouna, V.I.; Vantarakis, A. Removal Performance of Faecal Indicators by Natural and Silver-Modified Zeolites of Various Particle Sizes under Dynamic Batch Experiments: Preliminary Results. Water 2021, 13, 2938. https://doi.org/10.3390/w13202938
Syngouna VI, Vantarakis A. Removal Performance of Faecal Indicators by Natural and Silver-Modified Zeolites of Various Particle Sizes under Dynamic Batch Experiments: Preliminary Results. Water. 2021; 13(20):2938. https://doi.org/10.3390/w13202938
Chicago/Turabian StyleSyngouna, Vasiliki I., and Apostolos Vantarakis. 2021. "Removal Performance of Faecal Indicators by Natural and Silver-Modified Zeolites of Various Particle Sizes under Dynamic Batch Experiments: Preliminary Results" Water 13, no. 20: 2938. https://doi.org/10.3390/w13202938
APA StyleSyngouna, V. I., & Vantarakis, A. (2021). Removal Performance of Faecal Indicators by Natural and Silver-Modified Zeolites of Various Particle Sizes under Dynamic Batch Experiments: Preliminary Results. Water, 13(20), 2938. https://doi.org/10.3390/w13202938