Assessment of the Continuous Extreme Drought Events in Namibia during the Last Decade
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Mann–Kendall Trend Test
2.3.2. Calculation of SPI
2.3.3. Calculation of SVI
3. Results
3.1. Climate and Ecological Conditions in Namibia
3.1.1. Inter-Annual Variations of Precipitation and NDVI from 2001 to 2020
3.1.2. Correlation Analysis of Precipitation and NDVI in Namibia
3.2. Spatiotemporal Evolution of Continuous Drought in Namibia
3.3. The Rainfall–Vegetation Interaction during Extreme Drought Events across Landscapes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions; Routledge: London, UK, 2000; pp. 3–18. [Google Scholar]
- Vogel, C.; Laing, M.; Monnik, K. Drought in South Africa, with Special Reference to the 1980–94 Period. In Drought: A Global Assessment; Routledge: London, UK, 2000; pp. 348–366. [Google Scholar]
- Riebsame, W.E. Drought and Natural Resources Management in The United States: Impacts and Implications of the 1987–89 Drought; Rutledge: London, UK, 2019; ISBN 978-0-429-71455-9. [Google Scholar]
- Byers, B.A. Environmental Threats and Opportunities in Namibia: A Comprehensive Assessment; Directorate of Environmental Affairs, Ministry of Environment and Tourism: Windhoek, Namibia, 1997.
- Klugman, J. Human Development Report 2011. Sustainability and Equity: A Better Future for All; Social Science Electronic Publishing: Rochester, NY, USA, 2011; pp. 732–743. [Google Scholar]
- Næraa, T. Coping with Drought in Namibia: Informal Social Security Systems in Caprivi and Erongo, 1992; NISER, Multi-Disciplinary Research Centre, University of Namibia: Windhoek, Namibia, 1993. [Google Scholar]
- Devereux, S.; Næraa, T. Drought and Survival in Rural Namibia. J. South. Afr. Stud. 1996, 22, 421–440. [Google Scholar] [CrossRef]
- Ashipala, S.N. Effect of Climate Variability on Pearl Millet (Penn/Setum Glaucum) Productivity and the Applicability of Combined Drought Index for Monitoring Drought in Namibia. Master’s Thesis, University of Nairobi, Nairobi, Kenya, 2013. [Google Scholar]
- Luetkemeier, R.; Liehr, S. Integrated Responses to Drought Risk in Namibia and Angola. Water Solut. 2019, 3, 56–61. [Google Scholar]
- President Declares Drought Emergency—Namibia. Available online: https://reliefweb.int/report/namibia/president-declares-drought-emergency (accessed on 4 March 2021).
- Namibia’s Devastating Drought: Our Strategy so Far—Namibia. Available online: https://reliefweb.int/report/namibia/namibia-s-devastating-drought-our-strategy-so-far (accessed on 4 March 2021).
- Fara, K. How Natural Are ‘Natural Disasters’? Vulnerability to Drought of Communal Farmers in Southern Namibia. Risk Manag. 2001, 3, 47–63. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A Review of Droughts on the African Continent: A Geospatial and Long-Term Perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef] [Green Version]
- Onywere, S.; Shisanya, C.; Obando, J.; Masiga, D.; Irura, Z.; Mang, S. Geospatial Extent of 2011–2013 Flooding from the Eastern African Rift Valley Lakes in Kenya and Its Implication on the Ecosystems. The Soda Lakes of Kenya: Their Current Conservation Status and Management, Conference Report Held at Kenya Wildlife Service Training Institute–Naivasha, Kenya on. 2013. Available online: http://ku.ac.ke/schools/environmental/images/stories/research/Geospatial_Extent_20011-2013.pdf (accessed on 19 October 2021).
- Monyela, B.M. A Two-Year Long Drought in Summer 2014/2015 and 2015/2016 over South Africa; University of Cape Town: Cape Town, South Africa, 2017. [Google Scholar]
- Meque, A.; Abiodun, B.J. Simulating the Link between ENSO and Summer Drought in Southern Africa Using Regional Climate Models. Clim. Dyn. 2015, 44, 1881–1900. [Google Scholar] [CrossRef]
- Van Rensburg, P.; Tortajada, C. An Assessment of the 2015–2017 Drought in Windhoek. Front. Clim. 2021, 3. [Google Scholar] [CrossRef]
- Shikangalah, R.N. The 2019 Drought in Namibia: An Overview. J. Namib. Stud. Hist. Politics Cult. 2020, 27, 37–58. [Google Scholar]
- As Climate Shocks Intensify, UN Food Agencies Urge More Support for Southern Africa’s Hungry People|World Food Programme. Available online: https://www.wfp.org/news/climate-shocks-intensify-un-food-agencies-urge-more-support-southern-africas-hungry-people (accessed on 4 October 2021).
- Dai, A. Drought under Global Warming: A Review. WIREs Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Trenberth, K.E.; Qian, T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Okin, G.S.; Duniway, M.C.; Archer, S.R.; Sayre, N.F.; Williamson, J.C.; Herrick, J.E. Desertification, Land Use, and the Transformation of Global Drylands. Front. Ecol. Environ. 2015, 13, 28–36. [Google Scholar] [CrossRef] [Green Version]
- van der Molen, M.K.; Dolman, A.J.; Ciais, P.; Eglin, T.; Gobron, N.; Law, B.E.; Meir, P.; Peters, W.; Phillips, O.L.; Reichstein, M.; et al. Drought and Ecosystem Carbon Cycling. Agric. For. Meteorol. 2011, 151, 765–773. [Google Scholar] [CrossRef]
- Henckel, P.A. Physiology of Plants Under Drought. Annu. Rev. Plant Physiol. 1964, 15, 363–386. [Google Scholar] [CrossRef]
- Panagoulia, D.; Dimou, G. Sensitivity of Flood Events to Global Climate Change. J. Hydrol. 1997, 191, 208–222. [Google Scholar] [CrossRef]
- Panagoulia, D. From Low-Flows to Floods under Global Warming. EGU Gen. Assem. Conf. Abstr. 2009, 11, 4511. [Google Scholar]
- Mortimore, M. Adapting to Drought in the Sahel: Lessons for Climate Change. WIREs Clim. Chang. 2010, 1, 134–143. [Google Scholar] [CrossRef]
- Heumann, B.W.; Seaquist, J.W.; Eklundh, L.; Jönsson, P. AVHRR Derived Phenological Change in the Sahel and Soudan, Africa, 1982–2005. Remote Sens. Environ. 2007, 108, 385–392. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Drought; U.S. Department of Commerce, Weather Bureau: Washington, DC, USA, 1965.
- McKee, T.; Doesken, N.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Mckee, T. Drought Monitoring with Multiple Time Scales. In Proceedings of the 9th Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995. [Google Scholar]
- Vicente-Serrano, S.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote Sensing of Dryland Ecosystem Structure and Function: Progress, Challenges, and Opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Kim, Y. Drought and Elevation Effects on MODIS Vegetation Indices in Northern Arizona Ecosystems. Int. J. Remote Sens. 2013, 34, 4889–4899. [Google Scholar] [CrossRef]
- Reddy, G.P.O.; Kumar, N.; Sahu, N.; Srivastava, R.; Singh, S.K.; Naidu, L.G.K.; Chary, G.R.; Biradar, C.M.; Gumma, M.K.; Reddy, B.S.; et al. Assessment of Spatio-Temporal Vegetation Dynamics in Tropical Arid Ecosystem of India Using MODIS Time-Series Vegetation Indices. Arab. J. Geosci. 2020, 13, 704. [Google Scholar] [CrossRef]
- Scott, R.L.; Huxman, T.E.; Barron-Gafford, G.A.; Jenerette, G.D.; Young, J.M.; Hamerlynck, E.P. When Vegetation Change Alters Ecosystem Water Availability. Glob. Chang. Biol. 2014, 20, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global Semi-Arid Climate Change over Last 60 Years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, M.C. Annual Plant Production-Precipitation Relations in Arid and Semi-Arid Regions. S. Afr. J. Sci. 1965, 61, 53–56. [Google Scholar]
- Wang, L.; D’Odorico, P. The Limits of Water Pumps. Science 2008, 321, 36–37. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated Dryland Expansion under Climate Change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Sun, Y.; Solomon, S.; Dai, A.; Portmann, R.W. How Often Does It Rain? J. Clim. 2006, 19, 916–934. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring. US Geol. Surv. Data Ser. 2014, 832, 4. [Google Scholar]
- Toté, C.; Patricio, D.; Boogaard, H.; Van der Wijngaart, R.; Tarnavsky, E.; Funk, C. Evaluation of Satellite Rainfall Estimates for Drought and Flood Monitoring in Mozambique. Remote Sens. 2015, 7, 1758–1776. [Google Scholar] [CrossRef] [Green Version]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS Satellite Rainfall Estimates over Eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Muthoni, F.K.; Odongo, V.O.; Ochieng, J.; Mugalavai, E.M.; Mourice, S.K.; Hoesche-Zeledon, I.; Mwila, M.; Bekunda, M. Long-Term Spatial-Temporal Trends and Variability of Rainfall over Eastern and Southern Africa. Theor. Appl. Climatol. 2019, 137, 1869–1882. [Google Scholar] [CrossRef] [Green Version]
- Obahoundje, S.; Bi, V.H.N.; Kouassi, K.L.; Ta, M.Y.; Amoussou, E.; Diedhiou, A. Validation of Three Satellite Precipitation Products in Two South-Western African Watersheds: Bandama (Ivory Coast) and Mono (Togo). Atmos. Clim. Sci. 2020, 10, 597–613. [Google Scholar] [CrossRef]
- LP DAAC—MOD13A2. Available online: https://lpdaac.usgs.gov/products/mod13a2v006/ (accessed on 4 March 2021).
- Olson, D.; Dinerstein, E.; Wikramanayake, E.; Burgess, N.; Powell, G.; Underwood, E.; D’amico, J.; Itoua, I.; Strand, H.; Morrison, J.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1975. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Cheval, S. The Standardized Precipitation Index—An Overview. Rom. J. Meteorol. 2015, 12, 17–64. [Google Scholar]
- Guo, T.; Tan, Q.; Xiong, J. Analysis of Spatial Patterns in a Vegetation Model. Appl. Math. Comput. 2011, 217, 8303–8310. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; Zhou, L.; He, J.; Wei, F.; Myneni, R.B.; Tucker, C.J.; Tan, K. Precipitation Patterns Alter Growth of Temperate Vegetation. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Nakanyete, N.; Shikangalah, R.N.; Vatuva, A. Drought as a Disaster in the Namibian Context. Int. J. Sci. Res. 2020, 9, 377–386. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, L.; Menenti, M.; van Hoek, M.; Lu, J.; Zheng, C.; Wu, H.; Yuan, X. Characterizing Vegetation Response to Rainfall at Multiple Temporal Scales in the Sahel-Sudano-Guinean Region Using Transfer Function Analysis. Remote Sens. Environ. 2021, 252, 112108. [Google Scholar] [CrossRef]
- He, X.; Sheffield, J. Lagged Compound Occurrence of Droughts and Pluvials Globally Over the Past Seven Decades. Geophys. Res. Lett. 2020, 47, e2020GL087924. [Google Scholar] [CrossRef]
- de Brito, M.M. Compound and Cascading Drought Impacts Do Not Happen by Chance: A Proposal to Quantify Their Relationships. Sci. Total Environ. 2021, 778, 146236. [Google Scholar] [CrossRef] [PubMed]
- Zeng, N. Drought in the Sahel. Science 2003, 302, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- Kusserow, H. Desertification, Resilience, and Re-Greening in the African Sahel – A Matter of the Observation Period? Earth Syst. Dyn. 2017, 8, 1141–1170. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Chiang, J.C.H.; Lan, C.-W.; Chung, C.-H.; Liao, Y.-C.; Lee, C.-J. Increase in the Range between Wet and Dry Season Precipitation. Nat. Geosci. 2013, 6, 263–267. [Google Scholar] [CrossRef]
SPI/SVI | Drought Grades |
---|---|
>−0.49 | No drought |
−0.5–−0.99 | Mild drought |
−1.0–−1.49 | Moderate drought |
−1.5–−1.99 | Severe drought |
<−2.0 | Extreme drought |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhou, J. Assessment of the Continuous Extreme Drought Events in Namibia during the Last Decade. Water 2021, 13, 2942. https://doi.org/10.3390/w13202942
Liu X, Zhou J. Assessment of the Continuous Extreme Drought Events in Namibia during the Last Decade. Water. 2021; 13(20):2942. https://doi.org/10.3390/w13202942
Chicago/Turabian StyleLiu, Xuan, and Jie Zhou. 2021. "Assessment of the Continuous Extreme Drought Events in Namibia during the Last Decade" Water 13, no. 20: 2942. https://doi.org/10.3390/w13202942
APA StyleLiu, X., & Zhou, J. (2021). Assessment of the Continuous Extreme Drought Events in Namibia during the Last Decade. Water, 13(20), 2942. https://doi.org/10.3390/w13202942