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Abstract: While automatic calibration programs exist for many hydraulic models, no user-friendly
and broadly reusable automatic calibration system currently exists for steady-state HEC-RAS models.
This study highlights development of Raspy-Cal, an automatic HEC-RAS calibration program based
on a genetic algorithm and implemented in Python. It includes a graphical user interface and an
interactive command-line interface, as well as libraries readily usable by other programs. As a
case study, Raspy-Cal was used to calibrate a model of the Los Angeles River in California and its
two major tributaries. We found that Raspy-Cal matched the accuracy of manual calibrations in
much less time and without manual intervention, producing a Nash–Sutcliffe Efficiency of 0.89 or
greater within several hours when run for 100 iterations. Our analysis showed that the open-source
freeware facilitates fast and precise calibration of HEC-RAS models and could serve as a basis for
future software development. Raspy-Cal is available online in source and executable form as well as
through the Python Package Index.

Keywords: hydraulic modeling; autocalibration; genetic algorithm; optimization; HEC-RAS

1. Introduction

Hydraulic modeling is used to observe and predict the behavior of surface waters
under specified flow conditions. Hydraulic models can in turn be used to plan for flood
management scenarios or to support environmental analyses, such as evaluating the effects
of flow scenarios on habitat suitability and ecological responses [1–3]. One commonly-used
model is the Hydraulic Engineering Center’s River Analysis System (HEC-RAS), which
is developed and supported by the U.S. Army Corps of Engineers [4]. HEC-RAS steady-
state simulations use Manning’s equation, expansion and contraction coefficients, and the
momentum equation to simulate a variety of hydraulic variables such as depth, velocity,
and shear stress [5]. It is best practice to calibrate hydraulic models to observed data,
such as stage and discharge, to produce accurate results. In the case of a one-dimensional
HEC-RAS model, a typical calibration parameter is Manning’s roughness coefficient, n
(e.g., [6–8]), which, as a coefficient in the calculation of the flow rate, has a significant effect
on predicted hydraulic behavior. In cases of large spatial domains, manual calibration
of HEC-RAS models can be computationally expensive and time-consuming. This work
introduces an efficient, user-friendly, and open-source automatic calibration tool capable of
fully calibrating the roughness coefficient without user intervention.

Optimization algorithms for automatic calibration of the roughness coefficient in
hydraulic models have been widely studied [9–12]. Heuristic algorithms, such as ge-
netic algorithms, are commonly used for calibration of hydrologic models (e.g., [9–11,13]),
and have also been demonstrated to be effective for hydraulic models. For example,
Lin et al. [12] used the heuristic algorithm Dynamically-Dimensioned Search (DDS) to
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calibrate an unsteady flow hydraulic model, Complex-Compound Channel Flow Model-
ing by the Multimode Method of Characteristics (CCCMMOC), for Manning’s roughness
coefficient. They concluded that the approach taken was both effective and efficient for
determining optimal roughness coefficients. However, this approach is not easily repro-
ducible or integrated into HEC-RAS.

HEC-RAS can be controlled by other Windows programs using its Component Object
Module (COM) interface, called HECRASController [4]; the direct use of the controller,
such as through Excel or MATLAB, is well-documented [14,15], but it does not provide an
integrated calibration utility. A proof-of-concept of automatic HEC-RAS calibration with a
Python script connecting to HECRASController was provided by Dysarz [16]. The code
presented therein [16] is provided in the form of a collection of short, one-off scripts, which
provide a useful example of how to implement HEC-RAS automatic calibration, but are
not reusable for general calibration purposes and do not provide a user interface.

Dysarz [16] and numerous studies involving the calibration of HEC-RAS models
(e.g., [7,8,15,17]) provide examples for, and demonstrate interest in, a reusable HEC-RAS
automatic calibration framework. In addition, development of a HEC-RAS automation
library in Python, PyRas, was started by Peña-Castellanos [18]. However, the code devel-
oped by Dysarz [16] is, in accordance with the paper’s stated purpose of demonstrating
techniques, not particularly reusable or generic, while PyRas [18] seems to be incomplete
and has apparently not been maintained since 2015, making it a risky foundation for
new development.

HEC-RAS itself provides an automatic calibration system [19], but the built-in tool
only works in unsteady state, which tends to be unstable for large model domains. An
automatic calibration system that runs in steady state permits the efficient calibration of
much larger models than are feasible with unsteady state simulation. In addition, the
built-in automatic calibrator only supports calibration by average error and Root Mean
Square Error (RMSE), with no options for trend-based metrics, multi-objective optimization,
or interactive calibration.

The purpose of this paper is to present the development procedure of, and a case study
with, a free and open-source HEC-RAS automatic calibration tool (Raspy-Cal) along with
its default automation module (Raspy), which is also available as a standalone library. Each
of these independently has further utility, for calibration of other models and for additional
HEC-RAS automation tasks, respectively. Raspy-Cal supports both interactive and fully
automatic calibration using a variety of goodness of fit metrics. In the interactive mode, the
user runs a set of solutions and is presented with a selection of the best ones, which they
evaluate to specify a new range of solutions until the result is satisfactory. In automatic
mode, the tool adopts the approach used by others ([9,10]) of using the Nondominated
Sorting Genetic Algorithm II (NSGA-II [20]) to find solutions that are non-dominated in
terms of selected goodness of fit metrics. The tool provides a range of goodness of fit
metrics and is designed to allow easy addition of others.

Both Raspy-Cal and its default automation module Raspy are available for use un-
der an open-source license, which encourages development contributions from other
researchers and engineers and allows the tools to continue improving with new devel-
opments in calibration techniques and future versions of HEC-RAS. The GNU General
Public License v3.0 used for both Raspy-Cal and Raspy allows use, modification, and
redistribution as long as any derivatives are released under the same license. Raspy-Cal
is available for download at raspy-cal.dphilippus.com (accessed on 26 September 2021),
which also provides a link to Raspy as a standalone module, and can be installed from the
Python Package Index as raspy-cal.

As a case study, we used our tool to calibrate a one-dimensional hydraulic model of
the Los Angeles River and two tributaries that were previously manually calibrated. A
variety of individual fit metrics and combinations thereof were compared with automatic
calibration. We found Raspy-Cal, run with Nash–Sutcliffe Efficiency and Root Mean Square
Error as the error metrics, to be faster and at least as accurate as manual calibration.
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2. Materials and Methods
2.1. General Automation (Raspy)

To support automatic calibration, it is necessary to be able to run the model, retrieve
results, and modify parameters automatically; for example, a similar, though more exten-
sive, automation system for the watershed model Hydrological Simulation Program in
FORTRAN (HSPF), also implemented in Python, is described in Lampert and Wu [21].
The Raspy-Cal software was developed modularly such that the relevant capabilities were
developed separately from the calibration algorithm. This has the advantage of allowing
independent use of the automation framework for tasks other than calibration. We built
the automation functionality around the HEC-RAS COM interface, HECRASController,
which allows other Windows programs to use HEC-RAS functions such as retrieving flow
data for a node, setting the roughness coefficient, or running simulations. To readily use
the COM interface from Python, we developed a Python wrapper around the interface
as the lowest-level module of Raspy. The wrapper provides documentation and clarifies
arguments and return values.

The Python wrapper is the foundation for a more abstract layer, which interfaces
with HEC-RAS but hides the internal details to provide model-agnostic functionality.
This interface in turn can be easily used by programs such as the calibration tool, with
the abstraction meaning that front-end users do not need to know the implementation
details. In the wrapper module, we use PyRASFile (https://github.com/larflows/pyrasfile,
accessed on 26 September 2021) HEC-RAS file writing and parsing functions for setting the
range of discharges to be modeled (flow profiles) where the COM interface proved to be
prone to crashing. The use of these dependencies is shown in Figure 1.
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Figure 1. Raspy-Cal and Raspy architecture. PyRASFile is a set of HEC-RAS file writers and parsers
for Python. The unified API class within Raspy provides a unified, abstract interface for other
programs (e.g., Raspy-Cal) to use.

Using the COM wrapper and PyRASFile functions, the main portion of Raspy im-
plements a unified Application Program Interface (API) object that provides a variety of
methods grouped as parameter modifiers, data retrievers, and operations tools. Param-

https://github.com/larflows/pyrasfile


Water 2021, 13, 3061 4 of 15

eter modifiers are used to set roughness coefficients and flow profiles, data retrievers to
retrieve flow data, and operations tools to run simulations. The methods provided by this
API class are designed to allow the calibration module to be written in a model-agnostic
way. Because of this, users input information that is, as much as possible, applicable to
any model and not specific to the hydraulic model used. The architecture of Raspy-Cal,
including Raspy, is shown in Figure 1.

2.2. Calibration (Raspy-Cal)

The Raspy automation module provides a reference and default implementation of
the automation functionality required by the calibration module of Raspy-Cal. Raspy-Cal’s
calibration module centers on running a user-specified number of simulations with a
variety of roughness coefficients and retrieving the results for comparison to empirical
data. The process of using Raspy-Cal is illustrated in Figure 2. The simulations and data
retrieval are done using a provided model object, which by default is the Raspy module’s
API object. The sole dependency of Raspy-Cal on Raspy is a “default model” function that
can easily be switched out. This modular design allows easy use of different models or
automation implementations.
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The core suite of functions performs three basic tasks. The first function, the central
component for running multiple simulations, runs the model with a given set of roughness
coefficients and returns the stage height for each flow value for each coefficient. The second
set of functions generates roughness coefficients to test according to user specifications,
and the third set of functions produces a set of goodness of fit metrics between empirical
and simulated data.

The core functions are used to support the two calibration modes, interactive and
automatic. In both cases, the user provides a prepared model with geometry data. The
user can then either provide a file containing empirical rating curve data or, if applicable,
the United States Geological Survey (USGS) gage number for the calibration cross-section.
If a USGS gage number is specified, the tool will automatically retrieve a range of rating
curve points from the last two years’ worth of USGS data by default [22], selected such
that the flow values are roughly evenly distributed across the full range on a log scale.
Specification of the exact date range to use and how many values to use is possible through
the command-line version of the tool.

In interactive (manual) mode, the user specifies a range of roughness coefficients,
how many to test, and whether to use evenly distributed or randomly generated coeffi-
cients within the range. The user also specifies which metrics to use out of the root mean
squared error (RMSE), the coefficient of determination, percent bias, the Kolmogorov–
Smirnov statistic, the paired t-test, mean absolute error (MAE), and Nash–Sutcliffe Effi-
ciency (NSE) [23–25]. The tool runs the model with all the roughness coefficients, then
chooses all the non-dominated results based on the chosen metrics. The metrics are pro-
vided by the HydroErr and SciPy libraries [26,27], with the exception of percent bias, which
is implemented in the code based on the equivalent R language function provided by
R language’s hydroGOF hydrology goodness of fit library [28]. Matplotlib [29] is used to
generate plots from the simulation. The tool displays a table of the non-dominated rough-
ness coefficients and their fit metrics as well as a plot comparing the rating curves for the
best-fitting coefficients to the empirical rating curve. Based on error metric results (table)
and the accompanying visualization (plot), the user specifies a new range of roughness
coefficients, and iterates until a satisfactory result is found.

In automatic mode, the user similarly specifies which error metrics to use as optimiza-
tion objectives, as well as the number of simulations to run and the number of roughness
coefficients to evaluate each time. The tool then uses the NSGA-II multi-objective genetic
algorithm [20] to find optimal results within the number of trials specified, in order to con-
verge on a Pareto-optimal set of coefficients. We chose the NSGA-II algorithm because it is
an efficient algorithm for identifying optimal solutions according to multiple objectives and
it has been used for similar water resources applications [9,10], while genetic algorithms in
general have also found applications in other civil engineering optimization problems [30].
Compared to classical multi-objective optimization algorithms, NSGA-II fares better when
the problem space tends towards local optima [31]. Reducing the tendency towards lo-
cal optima makes initial conditions less important and makes the Raspy-Cal calibration
module more generalizable to applications where distinct local optima are likely. The
platypus-opt package [32] is used as the implementation of NSGA-II. After all the trials
are run, the program displays a fit metric table and rating curve comparison plot as in
interactive mode. The processes for both modes are shown in Figure 2.

Raspy-Cal as currently developed does not support automatic validation. However,
the user can validate the calibrated results by setting the empirical data as the validation
data and running a single iteration in interactive mode with the roughness coefficient range
set to the calibrated value. Raspy-Cal also exports the raw data for the optimal results in
CSV format, which can be used for manual validation outside of the tool.

Early testing of Raspy-Cal showed that differences in datum with regards to stage
could cause significant issues in calibration. Therefore, an option for datum adjustment
was added to the evaluation functions and the graphical interface, although it is turned off
by default. Assuming that the very lowest modeled and empirical depths are separated
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by a very small absolute amount, the evaluation functions first shift the simulated stages
by the average difference between the lowest 5% of the two sets of stages. For example, if,
with 100 flow values tested, the depths predicted for the lowest five simulated flows are on
average 5 cm below the corresponding empirical depths, the entire simulated rating curve
is adjusted upwards by 5 cm before calculating goodness-of-fit statistics and plotting the
data. The datum adjustment is in effect for both the goodness of fit coefficients and for the
rating curve comparison plot; the user can see the non-datum-adjusted results by running
just the optimal roughness coefficient in interactive mode with datum adjustment disabled.
If datum adjustment is disabled, as it is by default, then the statistics are left unmodified.

2.3. Case Study

The tool was tested on a model of the Los Angeles River (73.8 km) and two tributaries,
Rio Hondo (12.8 km) and Compton Creek (13.7 km; Figure 3 [33]). The Los Angeles River
watershed is in Los Angeles County, CA, USA and is about 2160 km2. About 32% of the
watershed is impervious and dominant land use types include residential, open space,
and commercial. Slopes within the watershed vary from 20% in the northern national
forest to 0.2% in the densely urbanized lower watershed (watershed average = 8%). The
climate is characterized as Mediterranean with wet winters and dry summers. The average
annual precipitation varies spatially in the catchment from about 200 to 460 mm (8 to
18 inches). The watershed is highly altered for water supply and flood control, and eight
major dams are located within the watershed. Most of the mainstem river is channelized,
and many of the channelized segments include a low flow channel (notch). Several
spreading grounds are also operated within the watershed that capture stormwater, treated
wastewater, or imported water to recharge groundwater aquifers. Three water reclamation
plants (WRPs) are located within the watershed, which discharge a combined average
of 2.1 m3/s (73 cfs) to the river annually, and contribute a significant amount of the dry
season flow (Figure 3 [33]). The Los Angeles River watershed serves as an ideal case study
because of the large range in channel geometries and flow rates within the system. The
model used for the case study was too large to run in unsteady state without exceeding the
maximum allowed error and therefore could not be calibrated using the built-in automatic
calibration system in HEC-RAS.

The model was assembled from several partial models retrieved from local consul-
tants and government agencies [34–38]. The model includes about 3000 nodes over both
channelized and soft-bottomed portions of the Los Angeles River between the estuary and
Sepulveda Dam, Compton Creek, and Rio Hondo up to Whittier Narrows Dam (Figure 3).
Empirical data were available for several points throughout the system covering both
rectangular and trapezoidal cross-sections, and some with a smaller low flow channel
within the main channel. We used five flow gages for the case study (Figure 3):

• F37B, a rectangular cross-section in Compton Creek
• USGS 11102300, a trapezoidal cross-section in Rio Hondo
• F45B, a trapezoidal cross-section in Rio Hondo
• F300, a rectangular cross-section with a low-flow channel in the LA River mainstem
• F319, a trapezoidal cross-section with a low-flow channel in the LA River mainstem

All calibration gages were in concrete channels. The data for the non-USGS (F-) gages
were provided by Los Angeles County Department of Public Works, while the data for the
USGS gage were retrieved from USGS Water Data for the Nation [22]. Two examples of
channel cross-sections, including one with a low flow channel, are included in Figure 4.
The empirical data include a wide range of discharge rates, ranging from less than 0.03 cms
to greater than 300 cms (1–10,000 cfs). Automatic mode was used for all calibrations.
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Based on general recommendations for model fitting [39], we selected RMSE and
NSE for objective functions in Raspy-Cal, which are defined in Equations (1) and (2)
below, respectively [39]. Reaches with low flow notches (e.g., F300 in Figure 4) were
calibrated separately for low and high flows. To evaluate the performance of the automatic
calibration algorithm, automatically calibrated roughness coefficients and rating curves
were compared to those achieved with manual calibration.

RMSE =

√
Σn

i=1(Oi − Pi)

N
(1)

NSE = 1 − Σn
i=1(Oi − Pi)

2

Σn
i=1
(
Oi − O

)2 (2)

where Oi, Pi are the observed and modeled rating curve values, respectively, O is the
average observed value, n is the number of flow rates simulated, and σ is the standard
deviation of the observed data.

3. Results and Discussion
3.1. User Interface

Raspy-Cal can be used either through the command line or through a graphical user
interface. The command-line interface interactively requests any required information
that is not provided by a configuration file. Figure 5 shows the graphical interface, which
visually displays the fields that would be requested by the command-line interface and,
after simulations, displays the results. The parameters can be specified interactively, or the
user can load a configuration file containing information about how to run the simulation.
The configuration file format is designed to be human-readable and -writable, consisting
of “key:value” entries, and the graphical interface can also save the current settings to a
configuration file. A configuration file that is entirely filled out will allow simulations to be
run from the command line without any further input. With both interfaces, the results are
displayed in the form of a table of roughness coefficients and fit metrics, as in Table 1, and
a plot comparing empirical to simulated rating curves, as in Figure 6. Raspy-Cal also saves
the metrics table and the raw data as a comma separated value file (.csv) and the plot as a
PNG image. For testing purposes, a demo project is provided in Releases along with the
Raspy-Cal executable, which is linked to from the Raspy-Cal website.

Table 1. Sample Raspy-Cal output table.

Roughness Coefficient R2 RMSE (m) NSE

0.094 0.984 0.29 0.514

0.106 0.982 0.247 0.647

0.128 0.98 0.162 0.847

0.139 0.979 0.122 0.913

0.15 0.975 0.093 0.95
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3.2. Case Study

Raspy-Cal successfully calibrated most reaches of the model. An example of a good
model fit is shown in Figure 7 for a concrete-lined cross section on the Rio Hondo Tributary
(USGS 11102300), with an NSE of 0.971 and RMSE of 8.5 cm.
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Figure 7. Example of a good rating curve comparison from Raspy-Cal for the Los Angeles River, Los
Angeles County, CA, USA. Plot shows a trapezoidal, concrete-lined portion of the channel (USGS
11102300; right).

However, Raspy-Cal was unable to successfully calibrate Manning’s n for parts of
the channel with highly irregular cross-sections (i.e., low-flow channels; see Figure 4
for the cross-section and Figure 8 for the result) when calibrating over the entire flow
range. In this case, the tool fit the low flow section well but not the high flow section. On
recalibrating separately for the low and high flow ranges, the calibration converged to
roughness coefficients of 0.035 for low flows and 0.020 for high flows, both substantially
different than the manually calibrated values of 0.020 for low flows and 0.008 for high
flows. This is highlighted in the separate low-flow/high-flow plots along with several
other case study locations in Figure 9.

Similar comparisons for each of the testing cross-sections are shown below in Table 2,
and selected rating curve comparisons, covering rectangular, trapezoidal, and low-flow
channels, are shown in Figure 9. The comparison is based on the rating curve plots for
each case, as the automatic method, with sufficient trials, always converges on the set of
optimal solutions for the specified fit coefficients; however, this would entirely miss, for
example, the issues created by the low flow channel, where the optimal fit that attempts
to apply a single roughness coefficient to all flow regimes is not in fact a very close fit.
In each case, the automatic calibration results proved to be either comparable or a closer
fit; in the case of the low-flow channel, this held true when running separate calibrations
for low and high flows. The automatic calibrations generally took several hours to run
100 trials, which was a longer runtime than manual calibrations due to running more trials.
However, the overall process involved much less time spent by the user because it could
be run in the background until results were produced. As shown in Figure 9, in some
cases datum adjustment was helpful for producing a good fit, whereas in others it caused a
worse fit; as it is an optional adjustment, the user can determine if it is required for their
particular application.
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Figure 9. Selected rating curve comparisons for (a) LA River (F300) at low flows with datum adjustment, (b) LA River
(F300) at high flows with datum adjustment, (c) Rio Hondo (USGS 11102300) with datum adjustment, (d) LA River (F300)
at low flows without datum adjustment, (e) LA River (F300) at high flows without datum adjustment, and (f) Rio Hondo
(USGS 11102300) without datum adjustment. In some cases, calibration is more successful with datum adjustment, as for
USGS 11102300 and F300 (high flows) (panels (b,c)); in others, it produces a better apparent fit but unrealistic result, as
with F300 (low flows) (panel (a)), where the datum-adjusted calibration resulted in n = 0.292 for a concrete channel (typical
roughness coefficients for concrete are between 0.011 and 0.020 [40]). In such cases, unadjusted calibration tends to produce
more realistic results, although the apparent fit does not tend to be as good; datum adjustment should therefore only be
used when the user is confident there is an actual datum gap.
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Table 2. Comparison of automatic and manual calibration results for all calibration cross-sections.

Description Gage ID Manning’s n NSE RMSE (cm)

Automatic Manual Automatic Manual Automatic Manual

Rio Hondo below
Whittier Narrows Dam 11102300 0.017 0.014 0.997 0.996 3.4 3.5

Rio Hondo below
spreading grounds F45B 0.016 0.014 0.989 0.983 1.9 2.4

Compton Creek F37B 0.016 0.010 0.985 0.838 2.2 7.2

Los Angeles River above
confluence with Burbank

Channel–Low Flows
F300 0.035 0.02 0.890 −1.28 3.2 14.3

Los Angeles River above
confluence with Burbank

Channel–High Flows
F300 0.020 0.008 0.933 0.888 6.8 8.6

Los Angeles River near
above tidal reach F319 0.013 0.012 0.995 0.989 2.5 3.7

3.3. Discussion

In a few cases, the results of automatic calibration were much better than those of
manual calibration; this was especially true in the case of the Upper LA River for low
flows. In most cases where results were comparable, the automatic calibration retained a
significant advantage in speed and convenience, as each calibration took several hours at
most. This means that the entire river system could be calibrated in a few days, whereas
calibrating the system manually took weeks. This corresponds to similar efforts for other
models, which have often found heuristic algorithms to be an efficient way of accurately
calibrating hydraulic and hydrologic models [12,41].

The cross-sections with a low-flow channel cause Manning’s equation to behave
strangely around the transition from the low flow notch to the main channel due to a
sudden increase in wetted perimeter without a significant corresponding increase in flow
area (Figure 4). This facilitated testing the calibration tool to see how it would handle these
more complex situations. It turned out to be necessary to calibrate separately for low and
high flows; this had also been necessary with manual calibration. With this constraint,
Raspy-Cal produced better results and did so more efficiently than manual calibration. We
did not use interactive mode for the case study to test the genetic algorithm, but, for this
and other more complex situations, the interactive option is useful to allow the modeler to
apply their judgment, as has been implemented in other automatic calibration systems [42].

It is possible that the requirement to calibrate high flows and low flows separately
is due to different roughness coefficients throughout the cross-section. Raspy-Cal does
not currently support spatially-variable roughness, but this is a key planned usage im-
provement. In addition to support for roughness variation within cross-sections, integrated
support for multi-cross-section calibration, allowing both faster overall calibration and
automatic handling of longitudinal roughness variations, will be an important ease-of-use
improvement. For maximum convenience, handling of HEC-RAS and Raspy-Cal errors
and support for automatic validation will also be necessary.

3.4. Future Work

While NSGA-II is popular for multi-objective calibration, Lin et al. [12] have argued
that equally effective and more efficient algorithms, namely dynamically-dimensioned
search in their case, exist for the same purpose. Dynamically-dimensioned search was also
chosen for the Soil and Water Assessment Tool (SWAT) Integrated Parameter Estimation
and Uncertainty Analysis Tool Plus (IPEAT+) calibration utility because of its efficiency [43].
It would be worth comparing some such algorithms for efficiency and results, as an
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algorithm involving fewer iterations could result in being able to achieve the same accuracy
much faster, or better accuracy through more detail in the same time. The architecture of the
Raspy-Cal code also makes it easy to add new calibration algorithms, as the optimization
algorithm portion is independent of other components. Lin et al. [12] also calibrated
separately for low- and high-flow roughness coefficients, which would be a valuable
feature for concerns such as low-flow channels. A further efficiency advantage could be
possible through parallel computing, as in the example of Zhang et al. [44], which achieved
speedups by a factor of up to 110 when using several dozen processor cores to calibrate a
SWAT model in parallel.

A longer-term goal would be to make use of the tool’s intentionally generic architecture
to extend it to other aspects of calibration within hydraulic and hydrologic modeling.
This would require two steps: extending the options for calibration parameters and data
comparison beyond roughness coefficient and stage, and developing Raspy-like wrappers
for other models. For example, it would require minimal modification to use Raspy-Cal
to provide extended calibration functionality, such as the use of NSGA-II, to HSPF by
using the existing PyHSPF package [21] as an automation layer. Such development work
is made easier by the open-source nature of the tool, as it makes it easy to see what is
required of other interfaces as well as clearly showcasing what could be called the reference
implementation, Raspy.

It would also be useful to have access to the libraries available in R, as in the example
of Wu and Liu [45], which made use of a powerful R modeling framework to provide not
just model fit optimization but also sensitivity analysis and other useful features. Being
able to access HEC-RAS automation through R would also likely be easier for practitioners
in the field, as R is well-known for its use in statistics and data analysis. This suggests
the goal of providing an R interface to Raspy-Cal and Raspy, likely through the Reticulate
library [46], which facilitates using Python from R.

4. Conclusions

Hydraulic modeling is a powerful tool and calibration of models is important to
produce reliable results. However, this is often a time-consuming process when done
manually, and no general, easy to use automatic calibration frameworks supporting the
steady-state simulations necessary for large models currently exist for the HEC-RAS hy-
draulic modeling system. This work presents an easy to use, general automatic calibration
tool for HEC-RAS as well as a case study of its use.

Several important usability improvements remain: support for longitudinal and
within-cross-section roughness variations; integrated error handling; and automatic valida-
tion. These changes are planned for implementation during continuing development. The
present state of development, however, is fully usable and provides advantages compared
to manual calibration. Results from the case study in the Los Angeles River watershed
indicate that automatic calibration with the developed tool improves calibration statistics
and increases efficiency.
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